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Robust simplex algorithm for online optimization
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A new optimization algorithm is introduced for online optimization applications. The algorithm was
modified from the popular Nelder-Mead simplex method to make it noise aware and noise resistant.
Simulation with an analytic function is used to demonstrate its performance. The algorithm has been
successfully tested in experiments, which showed that the algorithm is robust for optimization problems
with complex functional dependence, high cross-coupling between parameters, and high noise. Advantages
of the new algorithm include high efficiency and that it does not require prior knowledge of the parameter

space such as an initial conjugate direction set.
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I. INTRODUCTION

Large, complex machines such as accelerators are
usually built according to exquisitely studied and optimized
designs and are expected to perform in a way as predicted
in the design studies. However, in reality there are always
random and systematic errors in an actual machine that are
not included in the corresponding design model and these
errors will cause deviations of the behaviors of the machine
from the model. Compensation of these errors is necessary
for the machine to attain the optimal performance.

Traditionally the desired error compensation approach is
to use diagnostics to monitor or probe the beam and to use
data acquired by these diagnostics to determine the actual
errors or a set of changes to actuators (i.e., knobs) for cor-
rections. This approach, however, may not always be pos-
sible as there may be a lack of diagnostics, an undetermined
correction target, or a lack of causal relationship between the
diagnostic measurements and the performance measures.
In such cases, tuning knobs directly to improve machine
performance is inevitable.

Manual tuning has been common since the early days of
accelerators. In the era of computerized controls, automated
tuning has become possible. Traditional algorithms, such as
the Nelder-Mead simplex method [1], have been imple-
mented in accelerator controls [2]. More recently, an
exploration of suitable online optimization algorithms
has led to the invention of the robust conjugate direction
search method (RCDS) [3], which has been proven to be an
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effective method for automated accelerator tuning through
successful applications at many laboratories [4—10].

The RCDS algorithm is an efficient parameter scan
method for multivariable optimization problems without
significant cross-coupling between the decision variables.
For problems with severe cross-coupling, the algorithm, in
theory, can build up a conjugate direction set in the parameter
space to gain high efficiency [11]. However, in realistic
online applications, the algorithm usually does not run
enough iterations to substantially benefit from the scheme.
Therefore, supplying an initial conjugate direction set (which
may be obtained with a model) to the algorithm is very
important. For example, Ref. [3] showed that, for the storage
ring coupling minimization problem, RCDS efficiency is
much higher with the initial conjugate direction set calcu-
lated with the lattice model than by starting with directions
along individual decision variables (skew quadrupoles).

On the other hand, Ref. [3] showed that the Nelder-Mead
simplex method is very efficient without prior knowledge
of the parameter space. It was also shown that the
deficiency of the simplex method for online optimization
is its susceptibility to noise in function evaluation. As soon as
the noise starts to alter the results of function value compar-
isons between the simplex vertices, the algorithm breaks
down and fails to converge to the optimum. The above
observations have prompted us to modify the simplex
method to improve its robustness against noise.

There have been a number of attempts to modify the
Nelder-Mead simplex method to make it more suitable for
dealing with noise in simulation optimization. For example,
in Ref. [12] it was proposed to reevaluate the best solution
and to reduce the down-scaling ratio of the simplex size in the
shrink step, which resulted in a moderate improvement.
Reference [13] proposed a three-phase simplex approach in
which the initial step size and the shrink scaling ratio are
changed at each phase. Neither of the above two modifica-
tions makes explicit use of the noise level. Reference [14]
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proposed a modification that combines a stochastic searching
approach that replaces the shrink operation and a sample size
scheme that requires the signal-to-noise ratio to be greater
than 3.0. The signal-to-noise standard in the determination of
sample size may not be universal since in many applications
the objective function converge toward zero and thus it may
require a large sample size at the later stage.

In this study we propose a robust simplex algorithm
that is suitable for the optimization of noisy functions.
This algorithm takes the noise level into consideration in
function value comparisons, takes additional measurements
if necessary to reduce noise, uses local curve fitting when
direct comparisons do not yield definitive operation deci-
sions, and explores multiple directions in an iteration.
These modifications make the algorithm significantly more
robust against noise. The new algorithm also adjusts the
sample size to increase the reliability of function value
comparisons. However, unlike Ref. [14], we uses a more
natural criterion in setting the sample size that compares the
difference between the function values to the noise level.

We have tested the new algorithm in simulation with the
analytic Rosenbrock function [15]. We have also tested it in
experiments on the SPEAR3 storage ring for the coupling
minimization and the kicker bump matching problems. The
results demonstrated that the new method is robust against
noise and is efficient, even for problems with high cross-
coupling between parameters.

In Sec. II we describe the robust simplex algorithm.
Section III discusses the simulation test of the algorithm.
Experimental results for both the coupling correction prob-
lem and the kicker bump matching problem are presented in
Sec. I'V. The conclusion is given in Sec. V.

II. THE ROBUST SIMPLEX ALGORITHM

In this paper we deal with multivariable, single objective
optimization problems. For definitiveness, we assume
minimization problems. In online machine tuning applica-
tions, the decision variables naturally have limited valid
ranges. As in Ref. [3], we normalize each variable to the
range [0, 1]. Each point in the n-dimensional parameter
space is represented by a vector X = (xy, X, ..., X, ), where
n is the number of decision variables. The goal of the
algorithm is to find a point, X;,, where the objective
function value f(X,;,) is lower than the value at any
other point.

A. The original simplex algorithm

The Nelder-Mead simplex algorithm does not constrain
the ranges of the variables. A simple modification to imple-
ment variable range constraint is to set any component of the
solution vector X to the nearest range limit, which is O or 1.

The simplex algorithm follows a simple and elegant
paradigm. It operates with a simplex in the parameter space,
which consists of n 4 1 vertices. The initial simplex may be

rebuilt by taking a small step along each axis from the
starting point to make n new points.

After the objective function values for each vertex is
evaluated, the original simplex algorithm executes the
following steps iteratively [1]: (1) Sort the function values
for the n+ 1 vertices, with f; <--- < f, < f,.1. The
corresponding vertices are located at X, -, X,. X, ..
(2) Define the center point on the simplex face that is
opposite to vertex X, ;, X, :% ", X;. The algorithm
may evaluate the function values at several points on the
line connecting the points X, ; and X.. These points are
defined as follows: reflection X, = X, + (X, =X, ).
expansion X, = X, + 2(X. — X,,,1). inner contraction
Xi. = X, =3 (X, = X,,11). outer contraction X, = X+
1(X.—X,;). First evaluate the function value at the
reflection point, f, = f(X,). If f| < f, < f,. replace vertex
X, with X, and terminate the iteration. (3) If f, < f/,
evaluate the function value at the expansion point,
fe = f(X,), replace vertex X, ; with X, or X,, whichever
has the smaller function value, and terminate the iteration.
@DIff, <fr < fnr1, evaluate fo. = f(Xoc)' If foo < fr
replace vertex X, ; with X,. and terminate the iteration.
) If f,> fapr, evaluate fio = f(Xio). If fic < foi1,
replace vertex X, with X;. and terminate the iteration.
(6) When none of the previous steps terminate the iteration,
perform a shrink toward X, the vertex with the minimum
function value, i.e., replace vertex X, through X, ,; with
new points

X; =X, +%(Xi - X)),
where i =2,3,...,n+ 1. Terminate the iteration. After
each iteration, the algorithm goes back to step 1 for the next
iteration. The algorithm may terminate after a prespecified
number of function evaluations or after the difference
between the minimum and the maximum of the vertex
function values is below a target value.

B. The robust simplex method

When noise is introduced to the objective function, the
evaluated function value at a point X differs from the true
value,

f(X) = F(X) + (o), (1)

where f(X) and f(X) are the evaluated value and the true
value, respectively, £(o) is a Gaussian random variable with
zero mean and standard deviation o. In the following we
assume o is a constant throughout the parameter space.
The original simplex method uses function value com-
parisons at almost every step. The outcomes of these
comparisons provide information about the objective func-
tion in the vicinity of the simplex which aids the algorithm
in choosing the search path. When noise contaminates the
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function values, the comparison outcomes may be changed,
which will distort the function information, lead to a wrong
search direction, and prevent the algorithm from converg-
ing to the minimum. On the other hand, the algorithm has
high efficiency in searching for the minimum when there is
no noise. Therefore, the appropriate approach of modifying
the algorithm to improve its robustness against noise would
be to preserve the actions wherever noise does not modify
the comparison results and to reduce noise or to change the
behavior when the comparison results become corrupted
due to noise.

During an iteration, the main actions of the simplex
method are to sample the objective function along the line
connecting X, ; and X, at the specified positions. If the
reflection and contraction operations result in a new point
with function value lower than the current maximum vertex
value, the new point will replace the current maximum
vertex. Noise in function values may introduce two
problems here. First, it may affect the sorting results of
the vertex function values. The differences between the
largest function values of the vertices may be below the
noise level and thus there is no unambiguous maximum
value vertex. Second, the sequence of actions in reflection,
expansion, and contraction may be changed by noise.

A straightforward remedy for the ambiguity in compari-
son results would be to increase the number of samples at
the points involved. However, we do not want to increase
the sample numbers at all points since in many cases the
comparison results are not ambiguous. A sensible approach
would be to increase the number of samples as needed
using the noise level and the differences between the two
values in a comparison as the guide. It is noted that the
average value of N samples of a normal distribution
N (u,6*), with expectation y and standard deviation o,
obeys the normal distribution A (u, 6>/N). If we draw N,
and N, samples from two normal distributions, NV (u;, 67)
and N (u,,03), and calculate their average values, X; and
X,, respectively, the difference between the two average
values, X, — X,, obeys the normal distribution

2 2
N(py =, 32), with x2=2L4 %2
(u1 — p2. 27) N, +N2

If the absolute value of y; — p, is substantially larger than
¥, the sign of X; — X, is a good estimate of the sign of
Ui — Uy For example, if |y — po| = %, the chance of y; —
U and X, — X, having the same sign is 84%; if
|y — up| = 1.4%, the chance is 92%.

When applying the above statistical theory to the
comparison of function values at two vertices, we will
use X; — X, as an estimate of y; — p,. Therefore, when
necessary we will increase the number of samples, N,
and N,, until

or an upper limit, N, for the total number of evaluations
per point is reached, where M, is a numerical value which
we choose to be 1.4. Upper limits for N, and N, are set to
avoid excessive function evaluations. The actual value of
the upper limit may depend on the noise level and the
nature of the function terrain. High noise levels and
complicated terrains would require more averaging.

If a comparison result of two function values is obtained
with condition (2) satisfied, we call the result definitive,
otherwise ambiguous. In cases the determination of the
maximum-value vertex is ambiguous, instead of trying to
pick out the actual maximum-value vertex, the algorithm
collects a set of vertices with the largest values and performs
the reflection, expansion, contraction operations on each of
them until a significant reduction (i.e., above the noise level)
of the maximum vertex function value is achieved.

In the reflection, expansion, and contraction operations,
the corresponding vertex is replaced by a new point only if
the comparisons leading to it are definitive. If no vertex
replacement takes place with the operations along the line
of the vertex and the center point on its opposite face, a
quadratic fit of five points on the line is performed to
improve the accuracy of determining the next step.

Combining the modifications, we devised a robust
simplex (RSimplex) algorithm that is suitable for online
optimization. The algorithm requires the rms noise level of
the objective function, o, as an input parameter. It also takes
an iterative approach to change the simplex using function
values at the vertices as a guide. When making a com-
parison of function values at two points, unless noted
otherwise, the procedure described in the above to reach a
definitive result is applied, subject to the upper limit of the
number of evaluations for each point. Details of the steps in
one iteration are described in the following. (1) Sort the
vertex function values in the ascending order and identify
the maximum value vertex group, G.x, With

Gmax = {Xn—Hv Xnv L) Xiz—m1+2}’
where vertices X, through X,,_,, ., have function values
that are too close to (X, ) to be definitively ruled out as
the maximum value vertex. Upper limits may be given to
the size of the group, m,. For example, m; may be no more
than 4. (2) Perform reflection/expansion and contraction
operations for members vertices of G, sequentially,
terminate the iteration if a vertex replacement takes place.

The reflection/expansion and contraction operations are
described in more details below. For each member vertex of
Goaxs Say X, calculate the function value at its reflection
point, f,. If f, < f1, also evaluate at the expansion point
and compare the functions values at the reflection point and
the expansion point, use the point with the lower function
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value to replace X; and terminate the iteration if the
comparison is definitive; otherwise, evaluate the middle
point between the two points, use it to replace X;, and
terminate the iteration.

Otherwise, compare f, and f, = f(X,,). If f, is defini-
tively lower than f,,, use X, to replace X;; otherwise, move
on to the contraction operation as described in the next
paragraph.

In the contraction operation, if f, > f; definitively,
evaluate the inside contraction point; if, instead, f, <
fny1 definitively, evaluate the outside contraction point;
otherwise evaluate both the inside and outside contraction
points and the center of mass point X. and perform a
quadratic fit for a more accurate examination. If either the
inside contraction yields f;. < f,.; or the outside con-
traction yields f,. < f, definitively, use the correspond-
ing contraction point to replace vertex X;. Otherwise
perform the quadratic fit.

In the quadratic fit, function values at five points, X; (i.e.,
the member vertex in G,,,) and its corresponding X;., X,
X, and X, are fitted to a function

y = aa* + ba +c,

wherea = —1,—-0.5,0,0.5, 1 for the five points, respectively,
and y is the function value. From the fitting we also get the
uncertainty of the fitting parameters. If each of the five points
is only evaluated once, we have ¢, = 1.070, 6, = 0.630,
and o, = 0.700. The fitted function value difference between
points X; and X;.is f; — fic = %a - %b. If this value is larger
than Mo, and b > 0, we use the inside contraction point
to replace X;. If b <0 and 3a + b > M,o,, we use the
outside contraction point to replace X;. Terminate the
iteration if vertex X, is replaced. (3) If no vertex replacement
takes place in step 2, and if the difference between the
maximum and minimum vertex function values, f,,| — f1,
is above M,o, perform a shrink toward the vertex with the
minimum function value. Here M, is a numerical value
which may be chosen to be 2.0. The M, requirement is
imposed to avoid the reduction of the simplex size to a level
when comparison operations are swamped by noise. Note
there could be ambiguity as to which vertex has the minimum
value. Comparisons between a few leading candidates for a
definitive choice are performed, subject to the upper limit of
the number of function evaluations for each vertex. After the
shrink operation, move to step 1 for the next iteration.

The values M; =14 or M, =2.0 are empirically
chosen and are somewhat arbitrary. These values could
be refined with future analysis.

The size of the simplex decreases every time a contrac-
tion or shrink operation is performed. During optimization
the simplex may shrink in size to a point such that the
differences between the vertex function values are not
significantly higher than the noise level. At this point, if no
gain is being made in reducing either f,,; or f;, one may

rebuild the simplex by using the current minimum as the
starting point. The vertex with the current minimum is kept
in the simplex and the other vertices are replaced with
points shifted in one axis from the minimum in the same
fashion as is done for the construction of the initial simplex.
The step size of the parameter shift may be equal to or a
fraction of the initial step size. This could allow the search
algorithm to jump out a local minimum, although there is no
guarantee that the algorithm can find the global minimum.

Additional exploration of the parameter space may also
be introduced when the simplex has become too small
compared to the noise level. Such exploration can be a
search over a direction that is perpendicular to a simplex
face with the robust 1-dimensional optimizer as found in
Ref. [3], or some sorts of stochastic exploration around the
minimum value vertices.

It is worth pointing out that both the original Nelder-
Mead simplex method and the RSimplex method are
single objective algorithms and tend to converge to nearby
local extrema. Multiobjective genetic algorithms (MOGA)
[16,17] or multiobjective particle swarm optimization
(MOPSO) [4,18] algorithms could be used when a multi-
objective application or a global search over a parameter
space with many local extrema are desired, although
caution should be given to the fact that the performance
of MOGA can be affected by function evaluation noise [3].

III. SIMULATION

To test the performance of the modified simplex pro-
gram, we did a simulation study using the analytic
Rosenbrock function [15]. The Rosenbrock function with
n variables is defined to be

f= ”2 100(x; — x2 )% + (1 —x;)2. (3)
i1

In the tests we set n = 6 and the parameter range of all 6
variables to be within [-5,5]. The global minimum is
f =0, which is achieved when x; =1 fori =1,2,...,6.

The initial solution is chosen to be the origin, with x; = 0
for all 6 variables and a corresponding function value of
f =5. Without noise the original simplex algorithm
(Nelder-Mead) converges to the minimum with about
600 function evaluations. The step length for the initial
simplex is 2. When random Gaussian noise with a standard
deviation o = 0.01 is added to the function, the Nelder-
Mead algorithm typically does not converge to the mini-
mum. Instead, it converges to solutions with function
values between 0 and 4.5.

When the modified simplex algorithm is applied, with
M, =14 and M, = 2.0, and an upper limit of function
evaluations per vertex N, = 3, the minimum function
values achieved are significantly closer to the minimum.
Figure 1 shows the minimum function values obtained
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FIG. 1. Minimum function values in 1000 evaluations for the
Rosenbrock problem in 100 optimization runs (sorted) with the
Nelder-Mead simplex algorithm (blue dashed line), Nelder-Mead
with N = 3 averaging (red dash-dot line), the robust simplex
algorithm without simplex rebuilding (RSimplex w/o Rebuild,
solid yellow line) and with simplex rebuilding (RSimplex w/
Rebuild, solid magenta line).

within 1000 function evaluations for 100 repeated runs,
sorted in the ascending order, for the original simplex
algorithm, the robust simplex without simplex rebuilding,
and the robust simplex with simplex rebuilding. Simplex
rebuilding is performed around the minimum function
value vertex when f,.; — f; < M,o and the reductions
of both the maximum and the minimum values in the last N
iterations are less than 0.2¢. The side length of the rebuilt
simplex is one half of the initial simplex. Also shown in
Fig. 1 is the result for the original simplex method but with
sample averaging for noise reduction, for which the
objective function is the average of 3 evaluations.

Figure 2 shows the histories of evaluated solutions for a
typical case for the Nelder-Mead algorithm and the two
variations of the robust simplex algorithm with a final
minimum value that corresponds to the median value of the
100 cases. While the modified simplex method is more
robust against noise, it can still be trapped by a suboptimal

Nelder-Mead

10 \ RSimplex w/o Rebuild
] RSimplex w/ Rebuild
o 8 l Rosenbrock, n=6, 0=0.01, 1000 evals
'8 i,

4t Rt
§i
T W

0 200 400 600 800 1000
number of function evaluations

FIG. 2. History of the objective function values of all evaluated
solutions for the Rosenbrock function optimization problem
using three algorithms: Nelder-Mead simplex (blue line), RSim-
plex w/o simplex rebuilding (red line), and RSimplex w/ simplex
rebuilding (yellow line).

solution. Rebuilding the simplex helps the algorithm break
out from such a situation.

Figures 1 and 2 clearly illustrate the benefits of the
modified simplex algorithm. By taking extra samples when
needed and using local fitting to improve the accuracy of
vertex comparisons, the modified algorithm is better able to
find the optimum in a noisy environment.

IV. EXPERIMENTS

We have tested the robust simplex method on the
SPEAR3 storage ring with two experiments. The first
application is to minimize the vertical emittance with skew
quadrupoles. The other is to minimize the transient oscil-
lation on the stored beam by improving kicker bump
matching. Both experiments were previously used to test
the RCDS algorithm [3].

A. Coupling minimization

In an electron storage ring, the vertical emittance arises
from various error sources, such as rolls of quadrupoles,
vertical orbit distortion in sextupoles, and skew quadrupole
components from insertion devices and other magnets.
These errors can be compensated with skew quadrupole
magnets. This is often referred to as coupling correction. In
the SPEAR3 storage ring, we use 13 skew quadrupoles
(which are actually windings on sextupole magnets) to
correct coupling.

When the dominant beam loss is Touschek scattering loss,
the beam loss rate is inversely proportional to the vertical
beam size, which, in turn, is proportional to the square root of
the vertical emittance. Skew quadrupoles typically do not
affect beam lifetime in other ways. Therefore, maximizing
beam loss rate with skew quadrupoles is equivalent to
minimizing the vertical emittance.

In the experiment, beam loss over a 6-second period is
converted to beam loss rate (in mA/min) to be used as the
objective function (with a change of sign to make a
minimization problem). The beam current is maintained at
nearly 500 mA with top-off injection every 5 minutes. The
initial set points of all 13 skew quadrupoles are set to zero.
The corresponding loss rate is about 0.6 mA/ min. The rms
noise of the objective function is about 0.03 mA/ min, which
comes from the noise in the beam current measurement.

The ranges of skew quadrupole current set points are from
—20 to 20 Amp. The initial simplex is built by shifting from
the initial point in the positive direction of each skew
quadrupole by 10% of the whole range, or 4 Amp, to
create the other 13 vertices. After the algorithm is launched,
it moves the simplex in the parameter space toward the
minimum without intervention.

The robust simplex algorithm converged to a minimum in
about 200 function evaluations. The program was terminated
after 260 evaluations were executed as no further improve-
ment was made. The algorithm ran 91 iterations. The history
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1 . . . . .

normalized parameters

RSimplex

50 100 150 200 250
number of function evaluations

FIG. 3. Variation of the 13 skew quadrupole current set points
(normalized to the range [0, 1]) for the coupling correction experi-
ment using the RSimplex algorithm (w/o simplex rebuilding).

of the normalized parameters in the optimization run is
shown in Fig. 3, from which we can see the evaluation of
the initial simplex vertices, the subsequent exploration of the
parameter space, and finally the convergence toward the
minimum.

The size of the simplex and the difference between the
maximum and minimum values on the vertices varied
during the iterations. Figure 4 shows two dimensionless
parameters defined as

LX) = (X))

c

. v=Vix500, (4)

where V is the volume of the simplex, n is the dimension of
the parameter space, and v is scaled arbitrarily for plotting.
The u parameter serves as an indication of the simplex size
relative to the function evaluation noise level. A small u
(say, u# < 3.0) means the function value comparison out-
come would be frequently altered by random noise. The »
parameter represents the geometric dimension of the
simplex. Changes in the v parameter indicate the nature
of the operations being performed by the algorithm, as

—e— u=(Max-Min)/o
—E— v=volume13*500 [§

50 100 150 200 250
number of function evaluations

FIG. 4. Evolution of the simplex size as indicated by the u
(circles) and v (squares) parameters defined in Eq. (4) during the
RSimplex optimization run for the coupling correction experi-
ment.

the volume of the simplex changes during expansion,
contraction, or shrink operations. The first 44 iterations
(about 100 evaluations) only applied reflection operations.
There were two shrink operations toward the end.

For comparison, we also tested the same optimization
problem with the Nelder-Mead simplex method and the
RCDS method. The history of the objective functions of all
three algorithms are shown in Fig. 5. The Nelder-Mead
simplex algorithm could not make any significant gains. As
its simplex quickly shrank, it soon stopped making appre-
ciable changes to the parameters. It was terminated after
about 100 function evaluations as no gain was being made.
The RCDS algorithm reached the same level of loss rate in
about 120 evaluations. However, it benefited from the
conjugate direction set that was calculated using the lattice
model [3].

After the optimization, the skew quadrupoles were set
to the best solutions found with RSimplex and RCDS,
respectively. The corresponding loss rates were 1.55 and
1.56 mA/ min, respectively. The skew quadrupole setting
for coupling correction obtained with LOCO [19], the orbit
response matrix based method, was also applied to the
machine. The resulting loss rate was 1.41 mA/ min, lower
than the solutions found with the optimization algorithms.

B. Kicker bump matching

The robust simplex algorithm is also applied to optimize
the kicker bump matching problem on SPEAR3. This
problem was previously used to test the RCDS algorithm
[3] and the extremum seeking (ES) algorithm [20]. The goal
is to minimize the transient oscillation of the stored beam
after the three injection kickers are fired. The kick amplitude,
pulse width, and pulse delay for each kicker can be changed.
The parameters for one of the kickers, K3, are held constant,
while the parameters for the other two kickers are used as
optimization knobs. There are two skew quadrupoles
between the kickers, which affect the horizontal to vertical
coupling. These two skew quadrupoles are also used as

0
* RCDS

= ek O Nelder-Mead Simplex
€ -0 5{;’%\ RSimplex
3 TO
E
g
°©
(0]
2
o

1571

50 100 150 200 250
number of function evaluations
FIG. 5. History of the objective function (which is essentially

the beam loss per minute with a negative sign) over the coupling
minimization experiment for the three algorithms: RCDS,
Nelder-Mead simplex, and RSimplex (w/o simplex rebuilding).
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30| v=volume "°*500 | |
>
520r

101

0

2b 4b éO 8b 160
number of function evaluations

FIG. 6. Evolution of the simplex size as indicated by the u

(circles) and v (squares) parameters defined in Eq. (4) during

the RSimplex optimization run for the kicker bump matching
experiment.

optimization knobs to help reduce vertical oscillation. There
are a total of 8 knobs.

The objective function is o, + 30,, where o, , are the
rms of the horizontal and vertical turn-by-turn orbit
readings on a beam position monitor (BPM) for the first
256 turns after the kickers are fired. A weight factor of 3 is
given to the vertical plane because user experiments are
more sensitive to vertical oscillations. The initial oscillation
amplitudes correspond to approximately ¢, = 100 ym and
o, = 35 pm. The noise sigma for the objective function is
o =3 um.

Four algorithms, the robust simplex, the Nelder-Mead
simplex, RCDS, and the ES were applied. The Nelder-
Mead simplex method also worked in this experiment
because the cross-coupling between the decision variables
is not severe and the function terrain in the parameter space
is relatively simple. Figure 6 shows the history of the u, v
parameters defined similarly as in the coupling minimiza-
tion problem. It is noted that the u parameter remains at
large values (# > 10.0) before the algorithm converged,
which could explain why here the RSimplex method
behaves similarly to the Nelder-Mead simplex method.
The difference of function values on the simplex vertices is
significantly higher than the noise level before it converged.
The modifications we introduced in the robust simplex do
not need to kick in if there is no ambiguity in function value
comparisons.

The history of the objective function values during the
experiments for all algorithms are shown in Fig. 7. The
robust simplex, the original simplex, and RCDS reached
the same minimum level of objective function with about
the same number of function evaluations. This demon-
strates the fact that the robust simplex does not make
unnecessary additional steps in the converging process. No
initial conjugate direction set was supplied to the RCDS
algorithm in this experiment. The results of the ES
algorithm on the same problem, using the control parameter
values in Ref. [20], are presented for comparison.

ES
RCDS
- Nelder-Mead Simplex | |
1S RSimplex
3
H
a +73F
o
0 L L L L
50 100 150 200 250

number of function evaluations

FIG. 7. History of the objective function (o, + 30, of the turn-
by-turn beam position oscillation in the first 256 turns after the
kickers are fired) for the kicker bump matching experiments for
four optimization algorithms: Extremum Seeking (ES, plus),
RCDS (asterisk), Nelder-Mead simplex (squares), and RSimplex
(w/o simplex rebuilding, circles).

V. CONCLUSION

We modified the original Nelder-Mead simplex algorithm
for online optimization. The new algorithm (robust simplex,
or RSimplex) takes extra samples for noise reduction when
statistically the comparisons of function values do not yield
definitive results, and makes additional changes to the
operations to improve the accuracy of decision making and
to further explore the parameter space. The new algorithm is
significantly more robust against noise than the original
simplex algorithm in the optimization of complex functions.
Different from the RCDS algorithm, which is also robust
against noise, the robust simplex algorithm does not need any
prior information about the objective function in order to be
efficient for problems with high cross-coupling between
decision variables.

The new algorithm has been tested with simulations
using an analytic function and demonstrated with experi-
ments on the SPEAR3 storage ring. The coupling mini-
mization experiment showed that the robust simplex
algorithm can find the optimum setting despite significant
cross-coupling between the decision variables, complex
function terrain, and high noise levels. In the less chal-
lenging problem of kicker bump matching, both the robust
simplex method and the original method worked with the
same efficiency.
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