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We generalize the temporally encoded spectral shifting (TESS) analysis for measuring plasma
wakefields using spectral interferometry to dissimilar probe pulses of arbitrary spectral profile and to
measuring nonlinear wakefields. We demonstrate that the Gaussian approximation used up until now
results in a substantial miscalculation of the wakefield amplitude, by a factor of up to two. A method to
accurately measure higher amplitude quasilinear and nonlinear wakefields is suggested, using an extension
to the TESS procedure, and we place some limits on its accuracy in these regimes. These extensions and
improvements to the analysis demonstrate its potential for rapid and accurate on-shot diagnosis of plasma
wakefields, even at low plasma densities.
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I. INTRODUCTION

Acceleration of electrons by plasma wakefields has
demonstrated much potential, with laser-driven plasma
wakefield acceleration (LWFA) [1] producing electrons
on the GeV scale over interaction lengths of just a few
centimeters [2–4], while beam-driven wakefield acceler-
ation (PWFA) [5,6] has used longer, metre scale plasma
cells to boost electron energies by 10s of GeV [7,8]. In
order to assist the development of this new technology, it is
vital that sensitive, noninvasive diagnostics are developed
which are capable of characterizing the wakefield structure
and the electron beams they produced.
Measurement of the plasma wakefield is commonly

made through changes in the refractive index of the plasma,
determined by the effect on an optical probe through
techniques such as shadowgraphy [9] and photon accel-
eration [10]. An optical probe passing through the plasma
accumulates a phase change δϕ ∝ ne0

R ðδne=ne0Þdl [11].
At high electron densities this phase change is large even
when integrating over short interaction lengths; with
electron densities of 1018 cm−3 and wake amplitudes of
δne=ne0 ∼ 0.1 the phase accumulated is of the order of one
radian after an interaction length of just 1 mm. However, as
LWFA experiments aim to increase the energy gain, the
length of the acceleration stages is increasing. To do this

one must increase the dephasing length Ldp ∝ n
−3
2

e by
moving to lower plasma densities, around 1017 cm−3

[12,13]. Transverse probing techniques such as shadowg-
raphy, with an interaction length on the scale of the plasma

wavelength λp ∝ n
−1
2

e , are no longer sufficiently sensitive, as

the total phase change varies as δϕ ∝ λpδne ∝ n
þ1

2
e .

Collective Thomson scattering is a useful diagnostic for
measuring waves in these low density plasmas (e.g., [14]).
However, when probing at an angle to the pump beam the
geometry must be carefully matched to the very shallow
scattering angle, which is dependent on the plasma density.
Furthermore, the scattered power, which varies with the
plasma wave amplitude as Ps ∝ ðδne=ne0Þ2n2e0, is
extremely small for weak plasma waves at low densities,
requiring intense probe pulses or sensitive detectors. It is
therefore more common in LWFA experiments to maximise
the scattering rate by using a copropagating geometry,
where the plasma wave is probed longitudinally (e.g., [15]).
In this situation, it becomes difficult when using ultrashort
broadband probe pulses to separate the scattered light from
the original probe spectrum, leaving the Stokes and anti-
Stokes spectral components poorly resolved and making it
impossible in practice to extract information about the
plasma wave. Using longer duration probe pulses would
overcome this difficulty, but at the cost of reducing the
temporal resolution.
Frequency domain interferometry (FDI) [16,17] and

holography (FDH) [18] are some of the most sensitive
techniques for longitudinally probing rapidly evolving
density structures with high temporal resolution. In these
methods, copropagating probe and reference pulses pass
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through an interaction region along the same path but are
separated in time, such that the probe accumulates a phase
change due to the density structure which the reference
pulse does not. The interaction region is imaged onto the
entrance slit of a spectrometer, giving spatial resolution of
the density structure in one dimension, while in the
spectrometer the separation between the probe and refer-
ence pulses leads to spectral interference, with a fringe
spacing dependent on the delay between the pulses. The
interference pattern contains information about the differ-
ence in phase shifts—and hence the local density of the
plasma—experienced by the probe and reference pulses.
In both FDI and FDH the probe pulse copropagates with

the plasma wakefield, and hence—assuming that these
waves propagate at the same speed—these measurements
can determine the electron density as a function of a local
space coordinate fixed in the frame of the plasma wake-
field. In FDI the probe pulse is shorter than the plasma
wavelength, and hence scanning the delay between the
probe and reference pulses allows the temporal behavior of
the plasma wave to be mapped out. In FDH the probe and
reference pulses are chirped and stretched, and hence the
temporal dependence of the wakefield can be determined,
in a single shot, from the spectral phase of the probe.
However, the phase reconstruction analysis process in FDH
requires several further measurements of the temporal and
spectral phases of both the probe and reference pulses in
order to distinguish the wakefield information from the
intrinsic phase of the pulses. Recently, the technique of
temporally encoded spectral shifting (TESS) [19] was
developed to extract information about phase modulation,
such as from plasma wakefields, without phase recon-
struction. The method uses the same experimental set up as
FDH but involves less computationally expensive analysis
and requires fewer reference measurements.
To date, however, the TESS analysis has been restricted

to the case of probe and reference pulses which have
identical Gaussian spectral profiles. Here we extend the
TESS method to the case of nonidentical probe and ref-
erence pulses of arbitrary spectral profile. We use exper-
imental results to demonstrate that under real conditions the
assumption of Gaussian probe and reference pulses can
lead to significant errors in the deduced wakefield. We also
extend the analysis to the case of nonlinear plasma wake-
fields and use simulations to show that the wakefield
amplitude and frequency can accurately be recovered for
quasilinear wakefields, and that the wakefield frequency
can still be recovered for strongly nonlinear wakefields.

II. ARBITRARY PROBE AND
REFERENCE PULSES

A. TESS in general

As described by Matlis et al. [19], a probe pulse
copropagating with a linear plasma wave is transformed

in a well-defined way. In the linear regime the plasma
wakefield is sinusoidal, and information about the wake-
field is encoded in the modulation of the spectrum of the
probe by an additional phase ϕwakeðζÞ ¼ ϕ1 sinðωp0ζÞ,
where ωp0 is the nonrelativistic plasma frequency, ζ ¼
τ − z=vg is a comoving time coordinate for the probe pulse,
which propagates at vg, and the amplitude of the phase is
proportional to the density amplitude of the plasma wave,
ϕ1 ¼ ðω 2

p0L=2ω0cÞðδne=ne0Þ. This leads to the transfor-
mations between the electric field of the probe before
entering the plasma, in temporal space EprðζÞ and in
spectral space EprðωÞ, and after leaving the plasma,
E0
prðζÞ and E0

prðωÞ, shown below:

E0
prðζÞ ¼ EprðζÞeiϕ1 sinðωp0ζ

¼ EprðζÞ
X∞
k¼−∞

Jkðϕ1Þeikωp0ζ: ð1Þ

E0
prðωÞ ¼

1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
EprðζÞeiϕwakeðζÞe−iωζdζ

¼
X∞
k¼−∞

Jkðϕ1ÞEprðω − kωp0Þ; ð2Þ

where JnðxÞ is the nth order Bessel function of the
first kind.
From Eq. (2) we see that after it interacts with the plasma

wave the spectrum of the transmitted probe pulse is a
superposition of the original spectrum of the incident pulse
and copies shifted in frequency by multiples of the plasma
frequency, as shown in the cartoon in Fig. 1(a). The
reference, meanwhile, remains unchanged, copropagating
with the probe a time Δt earlier:

E0
rðζÞ ¼ Erðζ þ ΔtÞ: ð3Þ

E0
rðωÞ ¼

1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
Erðζ þ ΔtÞe−iωζdζ

¼ ErðωÞeþiωΔt: ð4Þ

The two pulses interfere within the spectrometer to create
a spectral interferogram SðωÞ ¼ jE0

prðωÞj2 þ jE0
rðωÞj2þ

E0
prðωÞE0�

r ðωÞ þ c:c:, where c.c. denotes the complex con-
jugate of the previous term. In FDH the interferogram is
analyzed as follows: First, one uses an inverse Fourier
transform to the temporal domain to isolate the interference
term, E0

prðωÞE0�
r ðωÞ, as described in Takeda et al. [20],

before Fourier transforming back to the spectral domain.
Next, one removes information about the reference pulse to
recover the electric field of the transmitted probe, E0

prðωÞ.
From this, another inverse Fourier transform gives E0

prðζÞ;
removing the temporal phase of the probe and extracting
the phase due to the wakefield one obtains ϕwakeðζÞ.
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In TESS, however, it is only necessary to make the first inverse Fourier transform to the temporal domain. This yields a
TESS signal of the form shown schematically in Fig. 1(b). The form of the signal is given by [19]:

sðtÞ ¼ 1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
SðωÞeþiωtdω

¼ Hr;rðt; 0Þ þ
X∞

m¼−∞
gmðϕ1; t;ωp0ÞHpr;prðt; mωp0Þ þ

X∞
k¼−∞

Jkðϕ1Þ½Hpr;rðt − Δt; kωp0Þ þH�
pr;rð−t − Δt; kωp0Þ� ð5Þ

where Ha;bðt;ΩÞ≡ 1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
Eaðω − ΩÞE�

bðωÞeiωtdω ð6Þ

and gmðϕ1; t;ΩÞ≡
X∞
n¼−∞

Jnðϕ1ÞJmþnðϕ1ÞeinΩt ð7Þ

As we discuss below, the TESS signal comprises of a set
of peaks, with each term Ha;bðt;ΩÞ contributing a peak at a
different time. The amplitudes and locations of these peaks
contain information about the wakefield. A TESS signal
can be calculated at several different spatial positions,
giving spatial profiles of the wakefield’s amplitude and
frequency.

B. Non-Gaussian pulses

So far we have made no assumptions about the probe and
reference pulses, other than that they have well-behaved
Fourier transforms. In previous work [19] it was assumed
that the incident probe and reference pulses are identical
Gaussian pulses with no 3rd or higher order spectral phase:
EprðωÞ ¼ ErðωÞ ¼ E0ðωÞ≡ Ae−

1
2
ð1þiσÞðω−ω0δω Þ2 . Here we

remove the restriction on the spectral shape of the probe
and reference pulses, whilst retaining the approximation
that third and higher order phases can be neglected. Hence
we may write:

EaðωÞ ¼ jEaðωÞj exp
�
i½ψ ð0Þ

a þ ψ ð1Þ
a ðω − ω0Þ

þ 1

2
ψ ð2Þ
a ðω − ω0Þ2 þ � � ��

�
; ð8Þ

where the first order spectral phase ψ ð1Þ
a is the group delay,

and the second order spectral phase ψ ð2Þ
a is the group delay

dispersion (GDD). The group delay describes the arrival
time of the central frequency ω0 before the delay Δt has
been introduced; for our incident probe and reference

pulses EprðζÞ and ErðζÞ we have defined ψ ð1Þ
pr ¼ ψ ð1Þ

r

without loss of generality.
It can be shown (see Appendix) that, if the difference in

the 2nd order spectral phase of the probe and reference
pulses is sufficiently small, ψ ð2Þ

r ≈ ψ ð2Þ
pr ≈ ψ ð2Þ, the function

Hpr;rðt;ΩÞ peaks at tΩ ¼ ψ ð2ÞΩþ ψ ð1Þ
r − ψ ð1Þ

pr ¼ ψ ð2ÞΩ, at

which time the peak amplitude is described by a cross-
correlation:

jHpr;rðtΩ;ΩÞj ¼
1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
jEprðω − ΩÞjjErðωÞjdω ð9Þ

From Eqs. (5) and (9) we see that in general the TESS
signal is composed of the DC peak at t ¼ 0, the two familiar
delay sidebands at t0 ¼ �Δt, and a series of equally spaced
satellites either side of the delay sidebands,with the kth order
satellite of the t0 ¼ Δt peak located at tk ¼ Δtþ kωp0ψ

ð2Þ,
see Fig. 1. This gives us a measurement of the wakefield
frequency, using ωp0 ¼ ðtk − ΔtÞ=kψ ð2Þ, and hence an
estimate of the electron density of the plasma, as
ne0 ¼ ωp0meϵ0=e2.
Additionally, the height of the satellite relative to that of

the sideband is described by:

(a) (b)

FIG. 1. (a) Frequency-time domain plots of the reference pulse,
and the probe pulse after it has interacted with a sinusoidal
plasma wave of frequency ωp0. Modulation of the probe pulse
generates copies of the incident probe pulse, spectrally shifted by
multiples of ωp0. (b) The TESS signal, obtained by a Fourier
transform of the recorded spectrum of the transmitted probe and
reference pulses. The temporal separation of the probe and
reference pulses yields a DC term at t ¼ 0 and a sideband at
t ¼ Δt, and modulation of the probe causes a series of satellites
(lighter blue) separated from the sideband by multiples
of ωp0ψ

ð2Þ.
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rk ¼
Jkðϕ1Þ
J0ðϕ1Þ

F ðkωp0Þ; ð10Þ

where the spectral overlap factor F is given by:

F ðΩÞ≡
R∞
−∞ jEprðω − ΩÞjjErðωÞjdωR∞

−∞ jEprðωÞjjErðωÞjdω

¼
R∞
−∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iprðω −ΩÞIrðωÞ

p
dωR∞

−∞
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IprðωÞIrðωÞ

p
dω

; ð11Þ

where Ipr and Ir are the spectral intensities of the input
probe and reference pulses. For probe and reference pulses
of a bandwidth δω, we would expect this spectral overlap
factor to become important when ωp0 ≳ δω.
For the case of identical Gaussian probe and reference

pulses with
ffiffiffiffiffiffiffiffiffi
IðωÞp ¼ jE0ðωÞj ¼ Ae−

1
2
ðω−ω0δω Þ2 we find:

fðkΩÞ≡ FGaussðkΩÞ ¼ exp

�
−
�
1

4

kΩ
δω

�
2
�
; ð12Þ

which agrees with the result found by Matlis et al. [19].
Equation (12) can lead to inaccurate determination of the

wakefield amplitude for practical probe and reference pulses.
For example, in recent experiments [21] we measured
low amplitude wakefields δne=ne0 ∼ 1% using frequency
doubled probe and reference pulses, the spectra of which
were far from Gaussian, as shown in Fig. 2(a). The spectrum
has a bandwidth of approximately δω ≈ 40 rad ps−1 and
therefore a density of only ne ≈ 0.5 × 1018 cm−3 produces a
plasma frequency ωp0 ≈ δω. As a consequence, even at low
electron densities the Gaussian approximationFGaussðkωp0Þ
used by Matlis et al. [19] diverges from the real overlap
factor, making it unsuitable for accurately measuring wake-
field amplitudes when the probe spectrum is non-Gaussian.
For example, at a density of ne ≈ 2.5 × 1018 cm−3, the

Gaussian approximation reduced the calculated wakefield
amplitude by a factor of approximately two.
Accurately measuring the wakefield frequency and

amplitude over a range of experimental conditions can
allow us to produce a resonance curve of wakefield
amplitude with plasma frequency. In our recent experi-
ments [21] this allowed us to infer information about the
laser pulse which is driving the wakefield. For instance, for
laser drivers with a0 ≪ 1 we expect the wakefield ampli-
tude to increase linearly with the intensity of the drive
pulse. Measuring violations of this trend would lead us to
infer both an intense laser driver, with a0 ∼ 1, and a non-
linear wakefield. We discuss estimating the wakefield
amplitude under these conditions in Sec. III.

C. Nonequal GDDs

In general, the probe and reference pulses will have
different GDDs; this difference, which is usually small,
arises from differences in the materials present in their
optical paths. Whereas the previous work by Matlis et al.
[19] has ignored these effects, they may cause changes in
the locations of the satellites, and hence on the deduced
plasma frequency. Using the Fourier shift theorem it can be
shown that Hpr;rðt; kωp0Þ ¼ H�

r;prð−t;−kωp0Þeikωp0t and the
satellite peak location must depend equally on the probe
and reference pulses. We show in the Appendix that for the
case of nonidentical Gaussian pulses the satellite peak is

located at t ¼ Δtþ kωp0ψ
ð2Þ
eff , where ψ

ð2Þ
eff is the mean of the

probe and reference GDDs, weighted by the square of their
bandwidths:

ψ ð2Þ
eff ¼

δω2
prψ

ð2Þ
pr þ δω2

rψ
ð2Þ
r

δω2
pr þ δω2

r
ð13Þ

In the case where probe and reference pulses have the
same bandwidth δωpr ≈ δωr, this reduces to the arithmetic

(a) (b) (c)

FIG. 2. (a) The measured spectrum of the probe pulse in a recent experiment [21] (solid red line) and a Gaussian fit to it (dashed black
line). (b) Comparison of the spectral overlap factors F ðωp0Þ (solid, red) and FGaussðωp0Þ (dashed, black) evaluated at the first order
TESS peak as a function of gas cell pressure, assuming that the hydrogen gas was fully ionized by the driving laser. (c) Deduced
wakefield amplitude as a function of cell pressure assuming spectral overlap factors F ðωp0Þ (solid, red) and fðωp0Þ (dashed, black),
showing the mismeasurement of an example wakefield amplitude when assuming a Gaussian profile.
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mean GDD ψ ð2Þ
eff ¼ 1

2
½ψ ð2Þ

pr þ ψ ð2Þ
r �. In previous experimental

work [21] we measured a difference in GDDs of around

1000 fs2 compared to ψ ð2Þ
eff ≈ 20; 000 fs2. In this case, using

the probe GDD alone and assuming ψ ð2Þ
eff ≈ ψ ð2Þ

pr would
result in an error in the calculated plasma frequency of
around 2%.

III. NONLINEAR WAKEFIELDS

A. Quasilinear wakefields

We now consider the extension of TESS to the charac-
terization of nonlinear plasma wakefields, where electrons
in the plasma wave have relativistic velocities. Following
Akhiezer and Noble [22,23], in the quasilinear regime the
plasma wave amplitude can be described by the maximum
electron velocity through βm ¼ ve;max=c, where δne=ne0 ¼
β=ð1 − βÞ and jβj ≤ βm. The plasma waves are linear in the
regime βm ≪ 1. Figure 3(a) shows the calculated relative
wave amplitude δne=ne0 as a function of the comoving

coordinate ζ for two values of βm at a plasma density of
ne0 ¼ 1018 cm−3. It can be seen that as βm increases,
the wave becomes more sharply peaked and the period of
the plasma wave is increased as τp ¼

ffiffiffī
γ

p
τp0, where γ̄ is the

normal relativistic factor averaged over one cycle.
As the wakefield remains both periodic, with a period τp,

and continuous, the phase change acquired by the probe
can be decomposed into a linear combination of harmonics:
ϕwakeðζÞ ≈

P
N
n¼1 ϕn sinðnωpζ þ θnÞ, where ωp ¼ ωp0=

ffiffiffī
γ

p
and N can be arbitrarily large. Figure 3(b) shows the
amplitudes ϕn of the first five harmonics resulting from a
400 nm probe co-propagating over a distance of 1 mm with
the plasma waves shown in Fig. 3(a). Whereas at βm ¼ 0.3
the phase change is dominated by the fundamental n ¼ 1,
as βm increases the wave becomes more nonlinear and the
higher harmonics at n > 1 become relatively more signifi-
cant. The Jacobi-Anger expansion can be applied to each
of these N harmonics as in the case of a linear wakefield,
and so the electric field of the transmitted probe can be
expanded as,

E0
prðζÞ ¼ EprðζÞ

YN
n¼1

eiϕn sinðnωpζþθnÞ

¼ EprðζÞ
YN
n¼1

� X∞
kn¼−∞

JknðϕnÞeiknðnωpζþθnÞ
�

¼ EprðζÞ
X∞

k1¼−∞
…

X∞
kN¼−∞

Jk1ðϕ1Þ…JkN ðϕNÞe
i

	P
N
n¼1

knn



ωpζ

ei
P

N
n¼1

knθn ð14Þ

E0
prðωÞ ¼

X∞
k1¼−∞

…
X∞

kN¼−∞
Jk1ðϕ1Þ…JkN ðϕNÞei

P
N
n¼1

knθnEpr

�
ω −

XN
n¼1

knnωp

�
: ð15Þ

(a) (b) (c)

FIG. 3. (a) Calculated temporal behaviour of the relative density of quasi-linear plasma waves for βm ¼ 0.3 (blue) and βm ¼ 0.6 (red).
(b) Harmonic amplitudes ϕn of the phase shift experienced by a 400 nm probe pulse copropagating for 1 mm with the plasma waves
shown in (a). (c) Calculated TESS signals for the plasma waves in (a) and the phase shifts shown in (b) at βm ¼ 0.3 (blue)
and βm ¼ 0.6 (red).
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The transmitted probe spectrum therefore contains con-
tributions from theN (in principle, infinite) harmonics, each
of which in turn produces an infinite set of carrier waves,
labelled by the integers kn, which can be both positive or
negative. By truncating the phase expansion at finite N,
each term is uniquely labeled with a set of N different
indices, from k1 to kN . However, as jknj increases, the
amplitude of the carrier wave decreases since jJknðϕnÞj → 0

as jknj → ∞. For any finite ϕn the carrier wave expansion
can therefore be terminated at a finite value of jknj ≤ K. The
larger the phase ϕn, the larger K must be for accurate

reconstruction of the wakefield. Every term in this expan-
sion can therefore be described with a point on a discreteN-
dimensional grid with 2K þ 1 points on each side, although
both K and N can be arbitrarily large; the point is described
by k ¼ ðk1; k2; k3; k4;…; kNÞ. There are ð2K þ 1ÞN such
points in the grid. The reference pulse is the same as before,
and the interference between the two gives rise to a TESS
signal.We shall consider only the term corresponding to the
peaks near t ¼ Δt, which arises from the interference term
E0
prðωÞE0�

r ðωÞ, i.e.,

sðtÞ ≈ � � � þ
XK

k1¼−K
…

XK
kN¼−K

Jk1ðϕ1Þ…JkN ðϕNÞei
P

N
n¼1

knθnHpr;r

�
t − Δt;

XN
n¼1

knnωp

�
þ � � �

¼ � � � þ
XK
κ¼−K

Zκðfϕng; fθngÞHpr;rðt − Δt; κωpÞ þ � � � ð16Þ

where Zκðfϕng; fθngÞ ¼
X
k∈Sκ

Jk1ðϕ1Þ…JkN ðϕNÞei
P

N
n¼1

knθn ð17Þ

for a subset Sκ ¼
�
ðk1;…; kNÞ∶

XN
n¼1

nkn ¼ κ

�
ð18Þ

In Eq. (16) we have divided the set of points k in the grid
into subsets, each labeled with the new integer κ, which, as
seen in Eq. (16), is the effective harmonic order. Each
of these subsets Sκ comprises those points from the
originalN dimensional grid which also lie upon a particular
N − 1 dimensional plane, which is perpendicular to the
vector v ¼ ð1; 2; 3;…; NÞ. The new label κ is then the
plane number, κ ¼ v · k, which can be both positive or
negative. For instance, the κ ¼ 2 subset contains points
k ¼ ð2; 0; 0; 0;…Þ, ð0; 1; 0; 0;…Þ, ð−1; 0; 1; 0;…Þ and
ð2;−2; 0; 1;…Þ, amongst many others. To completely
span the original grid we must consider all planes up
to jκj ≤ κmax ¼ K þ 2K þ � � � þ NK ¼ KNðN þ 1Þ=2.

The TESS signal sðtÞ now looks very similar to that for a
linear wakefield, with the substitution of a new complex
number Zκ, which includes contributions from all of the
wakefield’s frequency components, instead of the Bessel
function Jk, which only accounts for the fundamental
frequency. The crucial part of this signal again consists
of a sideband peak at t0 ¼ Δt and a series of satellite peaks
spaced around it at times tκ ¼ Δtþ κψ ð2Þωp. For a quasi-
linear wakefield, however, each peak will contain contri-
butions from many different frequency components; the κth
order peak will have contributions from all terms in Sκ,
including all harmonics such that

P
N
n¼1 nkn ¼ κ.

Figure 3(c) shows the TESS satellites resulting from the
phase shifts shown in Fig. 3(b), for quasilinear plasma

waves with βm ¼ 0.3 and βm ¼ 0.6. While the relative
heights of the satellite peaks are slightly greater for
βm ¼ 0.6, the form of the signal is largely unchanged
from that of a linear wakefield. The satellites are located
slightly closer to the origin because the plasma frequency is
reduced as ωp ¼ ωp0=

ffiffiffī
γ

p
. The satellite peak heights,

relative to the sideband, are now:

rκ ¼
����Zκðfϕng; fθngÞ
Z0ðfϕng; fθngÞ

����F ðκωpÞ: ð19Þ

In general, the wakefield is difficult to recover from
measured rκ, as every combination of ðk1; k2;…; kNÞ ∈ Sκ
must be accounted for. This set, the points of an N
dimensional grid of side length 2K þ 1 which also lie
on the (N − 1) dimensional plane κ ¼ v · k, contains on the
order of jSκj ∼ ð2K þ 1ÞðN−1Þ members and the contribu-
tion of each must be calculated. For example, limiting the
set to N ¼ 5, K ¼ 5 gives jS2j ¼ 2583 solutions to κ ¼ 2.
Once the sets S0 and Sκ have been found for each of N

satellite peaks, obtaining the wakefield profile from the
measured peak heights would involve measuring the
amplitude and phase of N satellite peaks, yielding 2N
nonlinear simultaneous equations, and solving for the 2N
unknowns fϕng and fθng. In practice, however, it is
difficult to measure more than a few satellite peaks since
the overlap factor F ðκωpÞ becomes small as κ increases.
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Given a set of experimental parameters and a particular
model of the wake, such as Akhiezer and Noble quasilinear
plasma waves, it is nonetheless possible to tackle this
problem numerically by calculating the values fϕng and
fθng for a range of wakefield amplitudes. Instead of 2N
unknowns the wakefield is described by a single amplitude
βm, and using fϕng and fθng, a lookup table of ratios
jZκ=Z0j against wakefield amplitudes βm can be con-
structed. Comparing measured ratios to these values then
yields the wakefield amplitudes. In the following section
we demonstrate this approach for simulated data.

1. Simulated TESS analysis

In order to demonstrate this procedure, the TESS signals,
similar to those shown in Fig. 3(c), were calculated for
simulated plasma waves with maximum electron velocity βm
of up to 0.9, using the same probe frequency, plasma density
and interaction length as above. From these TESS signals the
peak ratios r1 and r2 were extracted and divided by the
overlap factors to calculate jZ1=Z0j and jZ2=Z0j. These
simulated ratios were compared to expectations from
Eq. (17), where Z0, Z1, and Z2 were calculated for cold
1D plasma waves as above. In all cases we limited the Bessel
expansion to third order, jknj ≤ 3 as J4ðxÞ=J3ðxÞ < 0.13 for
x < 1. We considered three possible analyses, with trunca-
tion of the harmonic expansion at: N ¼ 1, corresponding to
assumption of a linear wakefield; N ¼ 5, for which there are
around jSκj ≈ 400 combinations; and N ¼ 10, for which
jSκj ≈ 3million. The results, shown in Fig. 4(a), demonstrate
that as wakefield amplitude increases more harmonics must
be accounted for in Eq. (17) in order to correctly calculate
the ratios jZ1=Z0j and jZ2=Z0j. Whereas the linear approxi-
mation N ¼ 1 fails for βm > 0.1, using N ¼ 10 the simu-
lations match the calculations very closely up to a wakefield
amplitude of around βm ≈ 0.8.

Next, these ratios were used to calculate lookup tables of
jZ1=Z0j and jZ2=Z0j over different wakefield amplitudes;
each value of N gave a different lookup table. The wake-
field amplitude of the simulated TESS spectra was then
estimated by using these lookup tables and the known
interaction length and wakefield frequency. For each
simulated TESS spectra we chose the value of βm which
minimized the distance (or 2-norm) between the measured
ratios and the ratios on the lookup table. For N ¼ 1 we
ignored Z2 and followed the same procedure as for linear
plasma waves. As shown in Fig. 4(b), the linear assumption
used in Sec. II works surprisingly well for nonlinear plasma
waves, and the accuracy can be increased by further
expanding N. The linear TESS procedure, N ¼ 1, begins
to diverge from the true value at wakefield amplitudes of
βm ≈ 0.2, or δne=ne0 ≈ 25%, and subsequently overesti-
mates the wakefield amplitude by around 10% of the true
value. Using the N ¼ 5 expansion, however, accurately
measures wakefield amplitudes up to βm ≈ 0.6, and the
expansion to N ¼ 10 only fails at βm > 0.8.
There is therefore a trade off between accuracy and

computation time. We have demonstrated that an expansion
to the 10th harmonic of the plasma frequency allows us to
accurately calculate the amplitude of a quasilinear wake-
field up to βm ≈ 0.8. However, it requires calculating the
sum of around 3 million components for each satellite peak
at each wakefield amplitude, which takes several minutes
on a desktop computer. When truncating the expansion to
N ¼ 5 harmonics, however, the process requires only
around 400 components and takes less than 0.1 seconds.
These considerations are important as each lookup table is
only valid for a certain experimental set up, with a given
plasma density, probe frequency and interaction length.
Once the lookup table is calculated, however, retrieval of
the wakefield amplitude and frequency is extremely fast.

(a) i) (a) ii) (b)

FIG. 4. (a) The calculated ratios jZκ=Z0j against plasma wave amplitude βm for (i) the κ ¼ 1 and (ii) κ ¼ 2 satellite peaks. The ratios
are approximated using N ¼ 1 (blue), N ¼ 5 (green) and N ¼ 10 (red) and are compared to simulations of the ideal ratios (black).
(b) The wakefield amplitude retrieved using the peak ratios jZκ=Z0j against the simulated plasma wave amplitude.
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The analysis can be simplified in two cases. If the wake-
field is not too nonlinear, βm ≪ 1, the original frequency
component at ωp dominates, such that ∀ n > 1ðϕn ≪ ϕ1Þ.
In this case, it is possible to truncate the expansion at N ¼ 1
and use the same procedure as for linear wakefields, with
r1 ≈ ½J1ðϕ1Þ=J0ðϕ1Þ�F ðωpÞ. This sacrifices only a small
amount of accuracy, on the few percent level. On the other
hand, if the phase change is sufficiently small, ϕðζÞ ≪ 1,
such as at low densities or short interaction lengths, it is
feasible to limit the order of the Bessel peaks jknj ≤ 1, as
J2ðxÞ=J1ðxÞ < 0.13 for x < 0.5. If we further allow only one
kn to be nonzero, the ratio of heights of the κth satellite to the
sideband is much easier to calculate:

rκ ¼
J1ðϕκÞ
J0ðϕκÞ

F ðκωpÞ ð20Þ

This situation can always be achieved for a given
experiment by reducing the interaction length until
ϕðζÞ ≪ 1. As with conventional interferometry, phase
changes which are too large make reconstruction difficult,
but small phase changes are difficult to measure.

B. General wakefields

In general, wakefields need not be periodic, and hence
contain many frequencies which are not multiples of the

plasma frequency. If we approximate this with a finite
set of N frequencies, which are not uniformly spaced,
the phase change due to the wakefield can be written
ϕwakeðζÞ ¼

P
N
n¼1 ϕn sinðωnζ þ θnÞ. By comparison with

the results for a quasilinear wakefield with nωp → ωn we
can find the resulting TESS signal:

sðtÞ ¼ � � � þ
X∞

k1¼−∞
…

X∞
kN¼−∞

Jk1ðϕ1Þ…JkN ðϕNÞ

· ei
P

N
n¼1

knθnHpr;r

�
t − Δt;

XN
n¼1

knωn

�
þ � � � ð21Þ

While this looks very similar to the result for quasilinear
wakefields, the peaks for general wakefields will lie
either side of the original TESS satellites at locations
t ¼ Δtþ ψ ð2ÞðPN

n¼1 knωnÞ. These positions are not
equally spaced and therefore each of the TESS satellites
will be split into new peaks. However, as one of the
sinusoidal components is at the plasma frequency,
ω1 ¼ ωp, there will still be peaks at tk ¼ Δtþ kψ ð2Þωp,
from the cases fkng ¼ fk; 0; 0;…g.
This is demonstrated for example simulated wakefields,

in (i) a weakly nonlinear regime and (ii) the bubble regime,
shown in Fig. 5. In the bubble regime the ponderomotive

(a) i) (b) i) (c) i)

(a) ii) (b) ii) (c) ii)

FIG. 5. (a) Simulated electron density maps of a wakefield in (i) a weakly nonlinear regime and (ii) the strongly non-linear bubble
regime. (b) Maps of the calculated TESS signal resulting from these density profiles, plotted in both space and in time against the
expected peak positions. The magnitude of the TESS signal is plotted on a logarithmic scale. (c) A reconstruction of the electron density
map of the wakefield using the TESS analysis, using N ¼ 4 peaks from the TESS signal. In all plots the profile on-axis is shown below.
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force from an intense laser pulse is sufficient to completely
evacuate a region of electrons, leaving only ions within a
bubble with a diameter equal to the plasma period.
The density maps were simulated with the EPOCH
particle-in-cell code [24], with a bi-Gaussian drive
laser with a peak beam intensity of (i) 2 × 1018 Wcm−2

and (ii) 4 × 1019 Wcm−2, passing through a high density
plasma at ne ¼ 1019 cm−3. The pulse was matched to the
plasma wavelength and period with aw0 ¼ 3 μm spot and a
duration of tFWHM ¼ 13 fs. The resulting density profiles
are neither sinusoidal nor periodic and hence will contain
many frequency components. The resulting TESS signals
in both space and time were simulated for identical and
Gaussian probe and reference pulses with 400 nm wave-
length and 10 fs bandwidth limited duration, each stretched
to 1 ps FWHM duration.
Figure 5(a) shows the density maps in the two cases: in

the weakly nonlinear case several plasma periods are
captured by the simulation, whereas in the bubble regime
only two bubbles are shown, separated by τp. Because the
wakefield is strongly nonlinear the electrons are relativistic
and the plasma period is longer than expected for the density,
τp ¼

ffiffiffī
γ

p
τp0, giving ωp ¼ ωp0=

ffiffiffī
γ

p
. Figure 5(b) shows the

TESS signal for each spatial position of the simulation, with
many peaks present at different spatial positions. The 1st and
2nd order satellites can be seen at locations t1 ≈ Δtþ
0.8ωp0ψ

ð2Þ and t2 ≈ Δtþ 1.6ωp0ψ
ð2Þ, which implies that

γ̄ ≈ 1.6. From this it is possible to estimate the wakefield
amplitude as β̄ ≈ 0.8, or δne=ne0 ≈ 4, which is a substantial
underestimate.
Recovering the wakefield amplitude more accurately is

difficult as in general many frequencies are required to
completely reconstruct the wakefield; the amplitude of the
fundamental at a frequency ωp is much smaller than the
total height of the density fluctuation. Unlike periodic
quasilinear wakefields, there is no way to know from the
satellite peak heights alone whether the amplitude is
reduced because of the shape of the wakefield or because
there are only a few plasma periods present. With only two
plasma periods present in the strongly nonlinear regime,
applying the linear analysis of Sec. II to the TESS signal in
Fig. 5(b) measures the density fluctuation as δne=ne0 ≈ 0.9,
which is a factor of 10 lower than the true value. In the
weakly nonlinear regime, however, the wake amplitude is
estimated as δne=ne0 ≈ 0.4, close to the true value. In this
situation the first TESS peak is sufficient for a first order
approximation.
Figure 5(c) shows attempted reconstructions by instead

measuring the location, amplitude and phase of all peaks
up to t ¼ Δtþ 3ψ ð2Þωp0 at each spatial position of the
TESS spectrum. The frequency of each component was
deduced as ωn ¼ ðtn − ΔtÞ=ψ ð2Þ, where tn was the location
of the nth peak; the amplitude was deduced from
rn ¼ ½J1ðϕnÞ=J0ðϕnÞ�F ðωnÞ, where rn ¼ jsðtnÞ=sðΔtÞj is
the measured ratio of peak heights; and the phase was

deduced from θn ≈ arg ½sðtnÞ=sðΔtÞ�. This allowed us to
reconstruct the phase change due to the wakefield as
ϕwake ≈

P
N
n¼1 ϕn sinðωnζ þ θnÞ, for each spatial position,

and hence to reconstruct the density map of the wakefield.
While some of the general features of the wakefield are

reproduced, only a limited number of peaks (N ¼ 4) were
captured in the TESS signal and so this reconstruction
inevitably fails to reproduce the true profile present in the
simulation, particularly small spatial features. Whereas for
the weakly nonlinear wakefield it is still possible to
reconstruct the density with reasonable accuracy, for the
simulation in the bubble regime the reconstruction fails and
the calculated wakefield amplitude is more than an order of
magnitude too small. The accuracy is limited by the number
of peaks that can be captured in the TESS signal, which in
turn is effectively limited by the bandwidth of the probe pulse
and the overlap factorF ðωnÞ. Sharp andnonperiodic features
with durations less than the bandwidth limited duration of the
probe pulse, for instance features such as an ionization front,
are poorly reproduced by TESS, and are a source of noise
when trying to extract the wakefield amplitude. Capturing
shorter duration features requires using a shorter duration
probe pulse with a broader bandwidth.
When attempting to reconstruct the density profile of a

nonlinear wakefield with a continuous range of frequency
components, FDH is therefore likely to be more effective
than TESS. We can see this by considering another
approach to this problem, where we can approximate the
phase with N uniformly spaced frequencies separated
by an arbitrarily small frequency, δω. The phase can then
be written as ϕwakeðζÞ ¼

P
N
n¼1 ϕn sinðnδωζ þ θnÞ, where

many of the amplitudes ϕn are small or zero. This is a
discrete Fourier transform (DFT), and approximates the
true phase profile increasingly well at larger N and smaller
δω. All of the information about the wakefield is contained
in the region of the TESS signal surrounding the sideband
at t ¼ Δt, which can be written as:

sðtÞ ¼ …þ
X∞
κ¼−∞

Zκðfϕng; fθngÞHpr;rðt − Δt; κδωÞ þ � � � ;

ð22Þ

where as before κ ¼ P
N
n¼1 knn and Z is defined in Eq. (17).

The potential TESS peaks are then separated by ψ ð2Þδω,
although only some of these peaks will be nonzero. Fourier
transforming this region of the TESS signal to the spectral
domain yields:

SðωÞ ¼ � � � þ
X∞
κ¼−∞

Zκðfϕng; fθngÞ

· Eprðω − κδωÞE�
r ðωÞe−iωΔt þ � � �

¼ � � � þ E0
prðωÞE0�

r ðωÞ þ � � � ð23Þ
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The reference pulse in the spectral domain is unchanged,
but the presence of the wakefield has modulated the electric
field of the probe, creating many copies of the probe pulse,
spectrally shifted by multiples of δω and with amplitudes
and phases described by Zκ. The frequency interval δω can
therefore be considered as the resolution of the DFT in the
spectral domain. However, as the DFT becomes continuous
with δω → 0, these copies, and the resulting satellite peaks
in the TESS signal, are no longer distinct. In the continuum
limit we cannot measure relative peak heights and the TESS
procedure will inevitable fail. Instead we have isolated
the spectral component E0

prðωÞE0�
r ðωÞ and must continue

the FDH procedure to reconstruct the phase due to the
wakefield.

1. Longitudinal variation

We have just discussed a situation where the wakefield is
not periodic in the comoving frame. The same phase
change can arise, however, if the background plasma
density varies longitudinally and the plasma frequency
changes along the path of the probe pulse. By the nature of
the experimental set up both FDH and TESS average the
density profile along this path, with each point ζ in the
comoving frame corresponding to a line of points in space
described by z ¼ vgðτ − ζÞ. Whereas an FDH recon-
struction risks obscuring the signal from one region by
overlaying it with the signal from another region, TESS
separates the density profile into its different frequency
components. If the probe pulse encounters distinct regions
of varying electron density along its path, such as in two
stage injection-acceleration setups described in Refs. [25–
27], the spectral interferogram will again contain compo-
nents from several frequencies described by ωn ¼ ωpðznÞ.
As described above, this will have the effect of creating

new peaks in the TESS spectrum, where each corresponds
to the plasma frequency at a particular region along the path
of the probe pulse. However, if we are aware of the
longitudinal variation of the plasma density and have
measured the length of each region, we can again look
only at uniformly spaced peaks from the sets fk1; 0; 0…g,
f0; k2; 0; 0…g, f0; 0; k3; 0…g etc. These relate to distinct
regions along the path of the probe pulse, each with a
distinct plasma density. So long as these do not overlap, if
the density ramps between different regions are sufficiently
short, it is possible to reconstruct the wakefield frequency
and amplitude within each region as before, using:

tx;kx ¼ Δtþ kxψ ð2Þωp;x; ð24Þ

rx;kx ¼
JkxðϕxÞ
J0ðϕxÞ

F ðkxωp0Þ; ð25Þ

and ϕx ¼
ω2
p;xLx

2ω0c
δne
ne;x

; ð26Þ

where Lx is the length of a region with plasma density ne;x
and plasma frequency ωpx. This causes a phase change
of amplitude ϕx and peaks in the TESS spectrum at
locations tx;kx .

IV. CONCLUSIONS

We have extended the TESS analysis technique to probe
and reference pulses of arbitrary temporal and spectral
profile. This allows more accurate measurement of the
frequency and amplitude of the wakefield in real situations
by using the measured spectra of the probe and reference
pulses instead of a Gaussian approximation. In turn this
allowsus to calculate the electron density of the plasma and to
infer information about the laser pulse driving the wakefield.
In calculating wakefield amplitudes using TESS, the

generalized spectral overlap factor given in Eq. (11) can
be calculated straightforwardly from the measured spectra of
the probe and reference pulses. Using recent experimental
results,we showed that the assumption ofGaussianprobe and
reference pulse spectra can lead to errors in the deduced
amplitude of the plasmawakefield by a factor of around two.
Wehave also demonstrated thatwhen the probe and reference
have different GDDs the TESS peak separation is described
by the effective GDD, which is the mean of the probe and
reference GDDs weighted by the square of their bandwidths.
We have also explored the applicability of TESS to

measurements of nonlinear relativistic plasma waves by
decomposing the wakefield into harmonics of the plasma
frequency. Simulations showed that the extension of TESS to
quasilinear plasmawaves allowed accurate reconstruction of
cold plasma waves with electron velocities as high as
βm ≈ 0.8. For high wakefield amplitudes finding the peak
height ratios involves solving a Diophantine equation and
summing over millions of contributions, but at lower
amplitudes or smaller phase shifts the wakefield amplitude
can be extracted rapidly. TESS therefore retains its advan-
tages over FDH for wakefields in the quasilinear regime. For
general nonlinear wakefields, however, it was only possible
to measure the wakefield frequency and not the amplitude,
and in this regime an FDH phase reconstruction is required.
On the other hand, for wakefields in plasmas with distinct
regions of different density TESS has the capability to extract
thewakefield amplitude in each region separately, but only if
the length of these regions are known.
The extension of TESS to quasilinear plasma waves is

particularly relevant for measuring strong wakefields
generated at low plasma densities. As laser wakefield
experiments attempt to increase the electron energy gain
through increasing the interaction length, TESS provides a
means of rapidly diagnosing problems with the wakefield
on-shot, without requiring electron injection. We have
previously demonstrated [21] that TESS can work effec-
tively at densities of ne ∼ 1018 cm−3 and below, accurately
measuring wakefields with a relative amplitude as small as
1%. By demonstrating that TESS can also be effective for
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plasma waves with density fluctuations on the scale of
δne ∼ ne0, it is possible to envisage applying it to accurately
measure large amplitude wakefields at electron densities
below ne ∼ 1017 cm−3.
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APPENDIX: DETAILED TESS CALCULATIONS

We consider the probe and reference pulses to be
nonidentical and to be of arbitrary spectral profile
ExðωÞ ¼ jExðωÞj exp ðiψxÞ. In evaluating Eq. (6) we will
need to calculate the difference in spectral phase:

Δψ a;bðω;ΩÞ≡ ψ aðω−ΩÞ− ψbðωÞ

¼
�
ψ ð0Þ
a þ ψ ð1Þ

a ðω−ω0 −ΩÞ þ 1

2
ψ ð2Þ
a ðω−ω0 −ΩÞ2 þ � � �

�
−
�
ψ ð0Þ
b þ ψ ð1Þ

b ðω−ω0Þ þ
1

2
ψ ð2Þ
a ðω−ω0Þ2 þ � � �

�

¼ 1

2
ðψ ð2Þ

a − ψ ð2Þ
b Þðω−ω0Þ2 þ ðψ ð1Þ

a − ψ ð1Þ
b − ψ ð2Þ

a ΩÞðω−ω0Þ þ
�
ψ ð0Þ
a − ψ ð0Þ

b − ψ ð1Þ
a Ωþ 1

2
ψ ð2Þ
a Ω2

�
þ � � �

¼ Aðω−ω0Þ2 þ BðΩÞðω−ω0Þ þCðΩÞ þ � � � ðA1Þ

for A ¼ 1

2
ðψ ð2Þ

a − ψ ð2Þ
b Þ ðA2Þ

B ¼ ψ ð1Þ
a − ψ ð1Þ

b − ψ ð2Þ
a Ω ðA3Þ

C ¼ ψ ð0Þ
a − ψ ð0Þ

b − ψ ð1Þ
a Ωþ 1

2
ψ ð2Þ
a Ω2 ðA4Þ

1. Case ψð2Þ
a =ψð2Þ

b

When the two pulses have equal GDD the coefficient A ¼ 0 and hence:

Ha;bðt;ΩÞ≡ 1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
Eaðω −ΩÞE�

bðωÞ exp ðiωtÞdω

¼ 1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
jEaðω −ΩÞjjEbðωÞj exp ½iBðΩÞðω − ω0Þ þ iCðΩÞ þ iωt�dω

¼ 1ffiffiffiffiffiffi
2π

p eiCðΩÞe−iω0BðΩÞ
Z

∞

−∞
jEaðω −ΩÞjjEbðωÞj exp fiω½BðΩÞ þ t�gdω ðA5Þ

Since jEaðω −ΩÞjjEbðωÞj is real, this integral is maximized when the phase psi ¼ ω½BðΩÞ þ t� is stationary with respect
to ω at tΩ ¼ −BðΩÞ ¼ ψ ð2Þ

a Ωþ ψ ð1Þ
b − ψ ð1Þ

a . At this peak, the integral has an amplitude:

jHa;bðtΩ;ΩÞj ¼
1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
jEaðω −ΩÞjjEbðωÞjdω ðA6Þ

2. Case ψð2Þ
a ≈ ψð2Þ

b

The situation when the pulses have different GDDs is more complex, but progress can be made by treatingHa;bðt;ΩÞ as a
Fourier transform of a product, which is equal to the convolution of the individual Fourier transforms:
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Ha;bðt;ΩÞ ¼
1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
jEaðω − ΩÞjjEbðωÞj exp ½iψ aðω −ΩÞ − iψbðωÞ þ iωt�dω

¼ 1ffiffiffiffiffiffi
2π

p
Z

∞

−∞

�
1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
jEaðω0 −ΩÞjjEbðω0Þjeiω0t0dω0

�
·

�
1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
exp ½iΔψ a;bðω00;ΩÞ þ iω00ðt − t0Þ�dω00

�
dt0

¼ 1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
Ka;bðt0;ΩÞ · La;bðt − t0;ΩÞdt0 ðA7Þ

If we truncate the phase expansion in Eq. (A2) at second order, the phase term Δψ a;bðω00;ΩÞ þ iω00ðt − t0Þ is a real
quadratic and so the integral La;bðt; t0;ΩÞ in Eq. (A7) is a Gaussian integral with a purely imaginary argument, or a Fresnel
integral, which admits an analytic solution:

La;bðt − t0;ΩÞ ¼ 1ffiffiffiffiffiffi
2π

p exp ½þiCðΩÞ þ iω0ðt − t0Þ� ·
Z

∞

−∞
exp fiAðω00 − ω0Þ2 þ i½BðΩÞ þ t − t0�ðω00 − ω0Þgdω00

¼ 1ffiffiffiffiffiffi
2π

p
ffiffiffiffi
πi
A

r
exp

�
−i

½BðΩÞ þ t − t0�2
4A

�
eiCðΩÞeiω0ðt−t0Þ

¼
ffiffiffiffiffiffi
i
2A

r
eiCðΩÞeiω0ðt−t0Þeλgðt−t0;ΩÞ; ðA8Þ

where gðτ;ΩÞ ¼ − i
4
ðBðΩÞ þ τÞ2 and λ ¼ A−1 ¼ 2ðψ ð2Þ

a − ψ ð2Þ
b Þ−1. This means that for a given t and Ω the integral

Ha;bðt;ΩÞ is of the form
R
Γ fðxÞeλgðxÞdx and if the difference between the probe and reference pulse GDDs is sufficiently

small, λ ≫ 1. gðt − t0;ΩÞ is an exact quadratic in t0 and so if Ka;bðt0;ΩÞ is sufficiently well behaved we can extend t0 to the
complex plane while ensuring that fðt0;ΩÞ and gðt − t0;ΩÞ are holomorphic. This allows us to deform the contour of
integration Γ and use the method of steepest descent, with gðt − t0;ΩÞ having a single nondegenerate saddle point at
t − t00 ¼ −BðΩÞ at which point gðt − t00;ΩÞ ¼ 0 and g00ðt − t00;ΩÞ ¼ − i

2
:

Ha;bðt;ΩÞ ¼
1ffiffiffiffiffiffi
2π

p
ffiffiffiffiffiffi
i
2A

r
eiCðΩÞ

Z
∞

−∞
Ka;bðt0;ΩÞeiωðt−t0Þeλgðt−t0;ΩÞdt0

≈
ffiffiffiffiffiffiffiffiffi
i

4πA

r
eiCðΩÞKa;bðt00;ΩÞeiω0ðt−t00Þ

ffiffiffiffiffiffi
2π

λ

r
eλgðt−t00;ΩÞ½−g00ðt − t00;ΩÞ�−

1
2

¼ eiCðΩÞeiω0ðt−t00ÞKa;bðt00;ΩÞ

¼ 1ffiffiffiffiffiffi
2π

p eiCðΩÞe−iω0BðΩÞ
Z

∞

−∞
jEaðω0 −ΩÞjjE�

bðω0Þjeiω0ðtþBðΩÞÞdω0 ðA9Þ

This expression is identical to Eq. (A5) for the case ψ ð2Þ
a ¼ ψ ð2Þ

b and hence when the difference between GDDs is small

but finite, the integral will again be maximized at approximately tΩ ¼ −BðΩÞ ¼ ψ ð2Þ
a Ωþ ψ ð1Þ

b − ψ ð1Þ
a with an amplitude

given by Eq. (A6).

3. Case ψð2Þ
a ≠ ψð2Þ

b for Gaussian jExðωÞj
The final tractable case is when pulses a and b can both be assumed to be Gaussian, but not identical, such that they can be

described as:

jExðωÞj ¼ Ex0 exp

�
−
1

2

�
ω − ω0

δωx

�
2

− σxðω − ω0Þ
�
; ðA10Þ

where δωx is a measure of the spectral bandwidth of the pulse and σx allows the central frequency of the pulse to vary.
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Then,

jEaðω −ΩÞjjEbðωÞj ¼ Ea0Eb0 exp

�
−
1

2

�
ω − ω0 − Ω

δωa

�
2

− σaðω − ω0Þ −
1

2

�
ω − ω0

δωb

�
2

− σbðω − ω0Þ
�

¼ Ea0Eb0 exp

�
−
1

2

�
1

δω2
a
þ 1

δω2
b

�
ðω − ω0Þ2 −

�
σa þ σb −

Ω
δω2

a

�
ðω − ω0Þ −

Ω2

2δω2
a

�

¼ Ea0Eb0 exp ½−Dðω − ω0Þ2 − EðΩÞðω − ω0Þ − FðΩÞ� ðA11Þ

This allows us to construct the integrand of Ha;bðt;ΩÞ as a Gaussian, using α≡D − iA, βðΩÞ≡ EðΩÞ − iBðΩÞ and
γ ≡ FðΩÞ − iCðΩÞ, and hence to integrate it exactly, with the positive real part of α ensuring convergence:

Ha;bðt;ΩÞ ¼
1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
jEaðω −ΩÞjjEbðωÞj exp ½iψ aðω − ΩÞ − iψbðωÞ þ iωt�dω

¼ 1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
Ea0Eb0 exp ½−αðω − ω0Þ2 − βðΩÞðω − ω0Þ − γðΩÞ þ iωt�dω

¼ 1ffiffiffiffiffiffi
2π

p Ea0Eb0e−γðΩÞeiω0t

Z
∞

−∞
exp f−αðω − ω0Þ2 þ ½it − βðΩÞ�ðω − ω0Þgdω

¼ 1ffiffiffiffiffiffi
2π

p Ea0Eb0e−γðΩÞeiω0t

ffiffiffi
π

α

r
exp

�½it − βðΩÞ�2
4α

�
ðA12Þ

Ha;bðt;ΩÞ is a complex Gaussian and the real part of the argument of the exponential can be written:

ℜ

�½it − βðΩÞ�2
4α

�
¼ ℜ

� ðDþ iAÞ
4ðA2 þD2Þ ½it − EðΩÞ þ iBðΩÞ�2

�

¼ ℜ

� ðDþ iAÞ
4ðA2 þD2Þ f−½tþ BðΩÞ�2 þ ½EðΩÞ�2 − 2iEðΩÞ½tþ BðΩÞ�g

�

¼ 1

4ðA2 þD2Þ f−D½tþ BðΩÞ�2 þD½EðΩÞ�2 þ 2AEðΩÞ½tþ BðΩÞ�g

¼ 1

4ðA2 þD2Þ
�
−D

�
tþ BðΩÞ − AEðΩÞ

D

��
2

þ ½AEðΩÞ�2
D

þD½EðΩÞ�2
�

ðA13Þ

Ha;bðt;ΩÞ is therefore maximum at,

tΩ ¼ −BðΩÞ þ AEðΩÞ
D

¼ ðψ ð2Þ
a Ωþ ψ ð1Þ

b − ψ ð1Þ
a Þ þ 1

2
ðψ ð2Þ

a − ψ ð2Þ
b Þ

�
σa þ σb −

Ω
δω2

a

��
1

2

�
1

δω2
a
þ 1

δω2
b

��
−1

¼
�
ψ ð1Þ
b − ψ ð1Þ

a þ ðψ ð2Þ
a − ψ ð2Þ

b Þðσa þ σbÞ
�

δω2
aδω

2
b

δω2
a þ δω2

b

��
þΩ

�
ψ ð2Þ
a − ðψ ð2Þ

a − ψ ð2Þ
b Þ 1

δω2
a

�
δω2

aδω
2
b

δω2
a þ δω2

b

��

¼ t0 þΩ½ðδω2
a þ δω2

bÞψ ð2Þ
a − δω2

bðψ ð2Þ
a − ψ ð2Þ

b Þ�
�

1

δω2
a þ δω2

b

�

¼ t0 þΩ
δω2

aψ
ð2Þ
a þ δω2

bψ
ð2Þ
b

δω2
a þ δω2

b

ðA14Þ

¼ t0 þΩψ ð2Þ
eff ðA15Þ
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This implies that instead of the GDD of pulse a, ψ ð2Þ
a , we

should use the mean GDD of pulses a and b, weighted by
the square of their bandwidths. If the probe and reference
pulses are similar but not identical, δωa ≈ δωb, this tends

toward the mean GDD, 1
2
ðψ ð2Þ

a þ ψ ð2Þ
b Þ. While the position

of the main sideband t0 is dependent on the central
frequencies of the two pulses through σa and σb, the

separation of the peak from the main sideband, Ωψ ð2Þ
eff , is

unaffected by changes in the central frequency of the two
pulses.
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