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Linear optics errors in the linac, the transport line, and the undulator section of a free electron laser (FEL)
can significantly impact the FEL performance. In this paper we propose two methods to measure and
correct the linear optics of one-pass systems using trajectory scan data. The methods have been successfully
applied to data taken on the Linac Coherent Light Source (LCLS) to find the quadrupole errors and beam
position monitor (BPM) gains.
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I. INTRODUCTION

Linear optics in an accelerator are a representation of the
focusing scheme of its lattice. First-order deviations of the
focusing scheme from design settings are called linear optics
errors and can have significant impact on the propagation
of the beam through steering errors and degradation of the
beam transverse profile. In storage rings, linear optics errors
have significant impact on the nonlinear beam dynamics
performance in terms of dynamic aperture and momentum
aperture. Therefore, global optics correction for storage rings
has been a topic of intensive study and has achieved
reasonable success [1–8] with a brief review of linear optics
correction presented recently in [9].
Global optics correction for one-pass systems, including

linacs and transport lines, have not received as much
attention as for storage rings. For example, at the LCLS
[10] optics are typically measured at a few selected
locations with the transverse beam profile analyzed on
wire scanners or fluorescent screens [11,12]. Optics control
is focused primarily at these locations. Transverse proper-
ties at other locations of the linac and transport lines are
then inferred by numerically propagating these measure-
ments throughout based on knowledge of magnet current
settings and offline magnetic measurement data. However,
several applications leveraging global trajectory, or “orbit”
data have also been studied. This includes global steering
and beam-based alignment [13,14], dispersion-free steering
solutions [15], and global optics measurement and match-
ing of a multipass transport system [16]. A demonstration at
the LCLS to fit the orbit response for BPM gain and offset

correction has been shown [17], though there is so far no
reported determination of quantitative quadrupole errors.
A more detailed global optics measurement and correc-

tion scheme that can identify errors including specific
magnet strength errors would have many benefits for a long
linac. First, any large errors due to short circuits, improper
wiring, or mechanical roll in quadrupole magnets can be
detected and corrected which can be particularly helpful
during commissioning stages or after significant mainte-
nance. Second, isolation and correction of even smaller
(∼1%) focusing errors can help mitigate uncontrolled
emittance dilution associated with betatron oscillations
[18]. Third, the correction of optics throughout the linac
also puts the beam profile closer to the design at the
selected profile-measurement locations which may make
systematic local optics matching easier. Finally, for free
electron lasers such as the LCLS and the European XFEL,
the correction of optics up to and throughout the undulator
section may improve FEL output as lower emittance and
improved undulator matching are achieved.
More advanced optics correction methods developed

for storage rings could be modified for one-pass systems.
The idea of using trajectory response matrices for optics
modeling has a long history [19]. A trajectory response
matrix based method has been successfully applied to the
SPEAR3 booster to storage ring (BTS) transport line [20].
This approach fits the trajectory response matrix data to the
lattice model in a way similar to LOCO, the orbit response
matrix based method [1].
In storage rings turn-by-turn beam position monitor

(BPM) data taken with the beam undergoing coherent
betatron oscillations has been used for optics correction in
many studies [3–8]. Most methods rely on extracting
betatron phase advance and beta functions at the BPMs
using temporally coherent oscillations. Because there is no
temporally coherent oscillation in a linac, these methods do
not apply.

*xiahuang@slac.stanford.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW ACCELERATORS AND BEAMS 21, 092801 (2018)

2469-9888=18=21(9)=092801(11) 092801-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevAccelBeams.21.092801&domain=pdf&date_stamp=2018-09-04
https://doi.org/10.1103/PhysRevAccelBeams.21.092801
https://doi.org/10.1103/PhysRevAccelBeams.21.092801
https://doi.org/10.1103/PhysRevAccelBeams.21.092801
https://doi.org/10.1103/PhysRevAccelBeams.21.092801
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


There is, however, one method that uses the turn-by-turn
BPM data directly and does not rely on temporal oscillation
signals [4]. This method derives the angle coordinates
using two BPMs separated by a drift, uses the full phase
space coordinates in tracking with a lattice model, and fits
the lattice model to the measured BPM data. The method
was tested with a section of the SPEAR3 storage ring,
which was essentially a one-pass system. This method can
be applied to a long linac or transport line directly. The
difference between such an application and the test in
Ref. [4] would only be how the phase space is sampled. In
the SPEAR3 test the beam samples the phase space through
temporal betatron oscillation, which traces out an ellipse in
the phase space, while in a linac application we can drive
the beam to paint the phase space arbitrarily [21].
Long linacs and the undulator sections of FELs often

consist of periodic structures with one BPM and one
quadrupole located next to each other in each period. In
such a case the kick angle a quadrupole applies to the beam
in one pass can be calculated with the beam positions
observed by the nearby BPMs, from which the quadrupole
gradient can be derived. This leads to a local analysis
method for optics error detection and correction.
We have applied both the local analysis method and the

BPM data fitting method to trajectory scan data taken on
the LCLS. The data were taken by a grid scan of trajectories
as prescribed in Ref. [21]. The two methods found quadru-
pole gradient errors consistent with the experimental
setting, and without the manual intervention to fitting
previously required [19]. Simulation has also been done
to investigate the performance and application require-
ments of the global fitting method, using particle tracking
with the LCLS lattice to generate data.
In this paper we will first describe the two data analysis

methods in Sec. II. The application of the methods to LCLS
is discussed in Sec. III, which includes both experimental
and simulation results. Section IV gives the conclusions.

II. DATA ANALYSIS METHODS

A. Local analysis in periodic structures

If a one-pass lattice system consists of periodic cells and
each cell has a BPM and a quadrupole magnet which are
located closely, a local analysis of trajectory data could be
conducted to derive the gradient of the quadrupole. A
special case of such a situation is found in the LCLS linac,
in which a BPM is located at the center of a quadrupole in
each cell between two adjacent acceleration structures, as
illustrated in Fig. 1.
In the LCLS linac case the length of the quadrupole is

0.1 m, very small compared to the cell length of 12.3 m.
The quadrupole may be treated as a thin-lens device. The
angle coordinate of the beam in the space between adjacent
quadrupoles can be calculated with the beam positions
recorded by the BPMs. Considering the angle coordinate

changes in the acceleration sections due to small energy
changes, the angle coordinates at the entrance and exit of
quadrupole Q2 as shown in Fig. 1 are

x0− ¼ ðx2 − x1Þ
L

�
3

2
−

E2

2E1

�
; ð1Þ

x0þ ¼ ðx3 − x2Þ
L

�
1

2
þ E3

2E2

�
; ð2Þ

where x and E are the beam position and energy at the three
BPMs, respectively, with subscripts indicating the corre-
sponding BPMs. The integrated gradient of the Q2 magnet,
½KLq�2 can be derived from

Δx02 ≡ x0þ − x0− ¼ ½KLq�2x2 ð3Þ

with a linear fit of Δx02 vs x2.
The more general case is for the BPM to be separated by

a small distance from the quadrupole center, for example,
as illustrated in Fig. 2. In this case the beam angle and
position coordinates at the BPMs are related by

x2 ¼ x1 þ x02L − Δx01L0; ð4Þ

x3 ¼ x2 þ x03L − Δx02L0; ð5Þ

where Δx01;2 are kick angles by quadrupole Q1 and Q2,
respectively, and x02;3 are angle coordinates at BPM 2 and 3,
respectively, and we have assumed no energy change for
simplicity. The angular kick by quadrupole Q2 can be
solved to be

Δx02 ¼ x03 − x02 ¼
x1 þ x3 − 2x2

L − L0

−
L0Δx01
L − L0

: ð6Þ

FIG. 1. Layout of BPMs and quadrupoles in the LCLS Linac.

FIG. 2. Casewith a small distance betweenBPMandquadrupole.
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In the case L0 ≪ L as we have assumed, the angular kick
Δx01 in Eq. (6) can be calculated with the nominal gradient
of Q1

Δx01 ¼ ½KLq�1;nomx1: ð7Þ

Any error between the actual and nominal gradients for Q1
will be scaled down by the factor L0=ðL − L0Þ in the
calculated value of Δx02 and may be neglected. If necessary,
a second iteration can be conducted to recompute Δx02
using the quadrupole gradient results from the first iteration
instead of the nominal values. Knowing the angular kick
Δx02, the gradient of Q2 can be computed using Eq. (3).
The effect of the finite quadrupole lengths would be

small if Lq ≪ L and can be included as a correction if
necessary. The above approach could be applied to con-
figurations different from the above two cases, as long as
there is one nearby BPM for each quadrupole with a
separation distance that is much shorter than the distance
between the adjacent quadrupoles.
Advantages of the local analysis approach include that it

does not require a thorough lattice model and that it is not
affected by optics errors elsewhere. A disadvantage is that
if the three adjacent BPMs have different calibration gain
errors, the measured quadrupole gradient will have a
systematic error. It is noted that if all BPMs have the
same calibration error, the calculated quadrupole gradient
value is not affected.

B. Global trajectory data fitting

If the beam path is away from the centers of the
quadrupole magnets along the beam line, the beam trajec-
tories sample the strengths of the quadrupoles and hence
contain linear optics information. One way to recover
the optics information from the trajectory data is to fit
the lattice model to minimize the differences between the
measured trajectories and the trajectories predicted by the
model. This approach has been tested for a one-pass system
using a section of a storage ring [4].
The key to realizing the approach is to derive the angle

coordinates to be used for tracking. This could be done with
two BPMs separated by a lattice section for which the
transfer matrix is precisely known. A simple case is when
the two BPMs are separated by a drift space. For example,
in Fig. 3 BPMs 0 and 1 are separated by a drift with length
L and hence the angle coordinates at BPM 1 are

x01 ¼
x1 − x0

L
; y01 ¼

y1 − y0
L

: ð8Þ

Knowing the transverse phase space coordinates (x, x0, y,
y0) at BPM 1, the beam positions at all downstream BPMs
can be predicted with particle tracking using the lattice
model.

BPM gain errors and rolls can be included in the
prediction. For each BPM, the predicted position readings
ðx̃; ỹÞ are related to tracking coordinates ðx̄; ȳÞ by

�
x̃

ỹ

�
¼

�
cos θ sin θ

−sin θ cos θ

��
gxx̄

gyȳ

�
; ð9Þ

where θ is the BPM roll and gx;y are horizontal and vertical
gains, respectively.
The predicted BPM readings are necessarily different

from the measured trajectories, given the errors in the actual
machine optics and in the BPM calibration. These errors
could be recovered through a fitting scheme that adjust the
lattice parameters and the BPM parameters to minimize the
differences between the measured and predicted trajecto-
ries. This fitting scheme is a least-square problem with the
objective function

χ2 ¼
XN
n¼1

XM
i¼1

��
xiðnÞ − x̃iðpÞ

σxi

�
2

þ
�
yiðnÞ − ỹiðpÞ

σyi

�
2
�
;

ð10Þ

where N is the number of trajectories, M is the number of
BPMs, p is a vector of fitting parameters, and σx;y are BPM
noise sigmas. The fitting parameters include quadrupole
gradients in the lattice model and BPM parameters. The
least-square problem can be solved with the Levenberg-
Marquardt method [22,23].
Quadrupole rolls can also be fitted. However, small rolls

are typically not very important if only the linear optics is
concerned as the change of the normal quadrupole com-
ponent due to a small roll is a second order effect and the
resulting skew quadrupole component should not interfere
the fitting of normal quadrupole gradients because the skew
and normal quadrupole components affect the objective
function differently.
It is worth pointing out that the ability to determine the

fitting parameters from the data may be limited, depending
on how the fitting parameters affect the χ2 function and the
noise level in the data. One challenge is to distinguish the
contributions of quadrupoles that are very close in terms of
betatron phase advances. Another challenge is to determine
the gradient errors of quadrupoles located near the end of
the line with few downstream BPMs to detect their effects.
In these cases there is a near degeneracy in the fitting
problem and the fitting parameter vector p could have large
excursions in certain directions in the parameter space that

FIG. 3. Configuration for global trajectory fitting.
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are not constrained well by the data. The degeneracy
problem is common to linear optics correction methods
and has been previously studied in Ref. [2].
A practical solution to the degeneracy problem is to use

constrained fitting, which tries to limit the deviations of
fitting parameters from their initial values in each iteration
by adding penalty terms to the χ2 function [2]. For example,
the objective function may be modified to

χ2c ¼ χ2 þ
XP
i¼1

w2
i

�∂rT
∂Ki

∂r
∂Ki

�
ΔK2

i ; ð11Þ

in order to limit the deviations of fitted quadrupole
gradients, ΔKi, i ¼ 1; 2;…; P, where P is the number of
quadrupole parameters, wi are weight factors, ∂r

∂Ki
is the

column of the Jacobian matrix corresponding to quadrupole
i, and r is the residual vector. The residual vector consists of
all the terms in χ2, but not squared, such that χ2 ¼ rTr,
where rT is the transpose of the column vector r. The
appropriate values of the weight factors differ for different
fitting setup and can be empirically found, using the χ2

contribution of the parameters as a guidance. More dis-
cussion on the constrained fitting scheme can be found in
Ref. [2]. With constrained fitting, we can find equivalent
solutions that represent the optics information in the
trajectory data with minimal deviations from the nominal
setting. Solutions by constrained fitting also have smaller
error bars. Such solutions are more ideal for iterative optics
correction on the machine.

III. APPLICATION TO THE LCLS

The portion of the LCLS [10] under study consists of the
L3 sublinac downstream of final bunch compression, the
beam switch yard (BSY) and linac to undulator (LTU)
transport line, the undulator section, and the dump line
consisting of 126 working BPMs and 131 quadrupole
magnets. The design linear optics for the beam line are
shown in Fig. 4. The design L3 linac accelerates the beam
from 4.5 GeV to the full energy of 13.6 GeV.
In evaluating the significance of the fitting both in the

initial measurement and in simulation, we consider the
design and measured tolerances. In the L2 and L3 sub-
linacs, the magnetic stability of all quadrupoles is required
to be 0.5% or less. For the BSY, LTU and undulator
regions, this requirement is reduced to 0.1%–0.2% or less.
Offline magnet measurements confirms the quadrupole
field reproducibility to be 0.03%–0.06%, well within
requirements. However, quadrupole strengths in the actual
machine may differ from the offline bench measurements
due to changes of operation conditions, interference from
other components, or human errors. Though these methods
will allow determination of BPM noise, this has previously
been determined for the stripline-type BPMs used in all
regions outside of the undulator as typically 25 μm RMS

[24]. In the undulator where beam trajectory tolerance is
much tighter (< 1 μm), RF BPMs have a noise level
of 300 nm.

A. LCLS trajectory scan data

We have applied the methods described in the previous
section to LCLS experimental data. In the experiment,
trajectories from the end of bunch compressor 2 (BC2) to
the final dump were scanned on a 6 × 6 grid by two orbit
correctors upstream of L3 in each of two transverse planes,
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respectively. On each grid point the trajectories were read
30 times. The trajectory data on two BPMs in L3 are shown
in Fig. 5 as an example. The design beta functions on both
BPMs are approximately βx ¼ 36 m and βy ¼ 61 m. The
scan amplitude is about 300 μm.
The standard deviation of the 30 trajectory reads for

each grid point can serve as a measure of the noise of
the measurements. Singular value analysis (SVD) of the
trajectory data matrix can help reveal the sources of
trajectory variations. Fig. 6 shows the singular values for
the horizontal and vertical trajectories. Two leading modes
dominate for both planes and their spatial patterns bear
features of the optics functions, which indicates they
correspond to true trajectory variations due to steering
errors upstream of the L3 linac. If treated properly, such
trajectory variations are not noise, but a source of infor-
mation. Removing the two leading modes, we can obtain an
estimate of the BPM noise level. The standard deviations of
trajectories before and after the two leading SV modes are
removed are shown in Fig. 7. The noise of L3 linac BPMs
are 5–10 μm RMS, lower than previously determined.

B. Local analysis for the L3 linac

In the L3 linac, there is one BPM for each quadrupole
and the BPM is located at the center of the quadrupole.

This allows the application of the local analysis described
in the previous section, using Eqs. (1)–(3).
Figure 8 shows the data fitting of Δx0 ∼ x and Δy0 ∼ y

for one of the L3 quadrupoles as an example. Here
and in the following the x and y position values are
trajectory offsets after the nominal trajectory is sub-
tracted. The energy gain between two adjacent quadru-
poles in the L3 linac is 200 MeV. The effect of
beam energy change on the angular coordinates is
included in the calculation of Δx0 and Δy0. The linear
fitting gives the integrated gradient and an estimate of
its error bar based on the BPM noise level. The
integrated gradients fitted from the horizontal and
vertical data are ½KLq� ¼ −0.0415� 0.00015 m−1 and
½KLq� ¼ −0.0413� 0.00012 m−1, respectively.
In the above example we show data fitting for the

horizontal and vertical planes separately as an illustration.
In the actual data processing we fit the horizontal and
vertical data together for each quadrupole. The fitted
gradients for the L3 quadrupoles are compared to the
design model values in Fig. 9. Good agreement is seen
almost everywhere except for quadrupoles 9 (model name
Q26201) through 13 (Q26601). These quadrupoles were
tuned for optics matching in operation and therefore are
expected to deviate from the design model (see next
subsection for comparison to the expected values). Their
effects on the trajectory data will be discussed in the next
subsection.
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C. Global lattice fitting

There are three pairs of BPMs that are separated by
drift spaces in the LCLS line downstream of BC2. The
locations of these BPMs are shown in Fig. 4 with vertical
bars. Using these BPMs to derive the angle coordinates, we
can apply the global lattice fitting method to various
sections of the line.
The first pair of BPMs are located in the BSY, after the

L3 linac. The distance between the two BPMs is 21.4 m.
Quadrupoles in the L3 linac can be fitted with trajectory
data using backward tracking. The particle tracking
code Accelerator Toolbox (AT) [25] is used. Since AT
considers the reference beam energy a fixed value, we
made simple modifications to the code to account for the
changes to the angle coordinates due to beam energy
increases in the linac.
The design model is used as the initial lattice in the least-

square fitting. The χ2 value normalized by the degrees of
freedom (the number of data points minus the number of
fitting parameters) was reduced from 1350 to 3.6. The final
χ2 value does not converge to 1.0 because of effects that
are not accounted for by the fitting model, such as, orbit
corrector fluctuations, energy jitters, and quadrupole and
BPM rolls. The differences between the fitted values and
the design model values, ΔK, for the L3 quadrupoles are
shown in Fig. 10. Results using the global fitting approach
and the local analysis approach are compared to the
“Extant” model, which calculates quadrupole gradient
values with the magnet setpoints and off-line magnetic
field measurements. The differences between the fitting
results and the Extant model are also shown. Error bars
for the fitting results are obtained from the Jacobian matrix
of the fitting parameters. Good agreement is found between
the two beam-based methods and the Extant model.
Deviations are on the level of the error sigma for most
of the quadrupole parameters. The expected accuracy of
fitted quadrupole gradients is discussed in Sec. III D. The
fitted BPM gains are plotted in Fig. 11. Gains for the pair
of drift separated BPMs are also included in the fitting.

The BPM gains are scaled so that the horizontal and
vertical gains for one of the BSY BPM pair, BPM #50,
are 1.0.
Figure 12 shows the differences between the measured

and the tracked trajectories before and after the fitted
parameters are applied to the model. The measured
trajectories significantly differ from tracking results
obtained with the original lattice model at BPMs at or
after quadrupoles 9 through 13 (note tracking direction is
backward). After fitting, the differences are substantially
reduced.
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FIG. 11. Fitted BPM gains for the L3 linac BPMs. The gains are
scaled for BPM gain #50 to be 1.0.
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The global fitting method is applied to the BSYand LTU
sections that follows the same pair of BSY BPMs using
forward tracking. Fitting for this section can also be done
with a pair of drift separated BPMs located at the end of the
LTU (just before the undulators), using backward tracking.
The distance between this second pair of BPMs is 6.6 m.
In this section some quadrupoles are powered with serial
power supplies. One quadrupole fitting parameter is used
for all the quadrupoles with a common power supply.
There are 20 quadrupole parameters and 33 BPMs in the
fitting setup.
The forward tracking fitting reduces the normalized χ2

value from 877 to 6.7. The backward tracking reduces the
normalized χ2 value from 1905 to 3.9. The differences of
the fitted quadrupole gradient values for both fitting setups
and the Extant model from the fitting starting values are
plotted in Fig. 13 top plot. There are two BSY design optics
for LCLS. The one we used as the fitting starting point was
not used in operation during the time of data taking. This is
the explanation for the large differences for quadrupole
parameters 3–5. Note that the four QEM quadrupoles are
also different from the design model. These quadrupoles
were tuned for optics matching to the undulator and thus
deviated from the design values. The differences between
the Extant model and the fitted gradient values are shown in
Fig. 13 bottom plot. The fitting results from the forward and
backward setups agree very well. While the fitting results
successfully recovered the Extant model with beam based

data, there are differences considerably higher than the
error sigma level.
The fitted BPM gains are plotted in Fig. 14 for

results obtained with both forward tracking and backward
tracking. Here we also set the gains for BPM #50 to 1.0.
The BPMs obtained with the two tracking setups are very
similar. It is worth noting that the gains for BPM#51
obtained here with the BSY-LTU data and the L3 linac data
shown in Fig. 11 are also similar.

FIG. 12. Trajectory differences between measurements and
tracking before and after fitting for the L3 Linac. Top: horizontal
trajectories; Bottom: vertical trajectories.
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The trajectory differences between measurements and
tracking before and after fitting are shown in Fig. 15 for the
forward tracking case. It can be seen that before the model
is calibrated with fitting, there are significant differences
between the measured and tracked trajectories. This is in
part because we used a wrong BSY lattice model as the
starting point, in part because the four optics matching
quadrupoles in LTU were adjusted away from the model.
After fitting, the difference is also substantially reduced.
Using the second pair of drift-separated BPMs, we can

also fit the trajectory data for the undulator section.
However, it is more difficult to resolve the quadrupole
errors in this section. The fitted quadrupole gradients
show a spurious zig-zag pattern with ΔK reaching the
�0.02 m−2 level, which indicates that the cross coupling
between the adjacent quadrupole parameters is causing the
fitting result to drift toward the underconstrained directions
[2]. The challenges of optics correction for the undulator
section and potential solutions are discussed in the
subsection III D 3.

D. Simulation

1. L3 Linac

We performed simulation for the L3 linac section to
study the accuracy and the applicability requirements of the
global fitting method. In the simulation we modified the

quadrupole strengths in the lattice model to the values
obtained with the global fitting method as in Fig. 10.
Particle tracking is used to generate simulated BPM data
with initial phase space coordinates distributed on 6 × 6
grid points similar to that of the experimental data. BPM
gain errors are inserted to the data using values fitted with
the actual data. Gaussian white noise is added to the BPM
data with the noise sigma at each BPM given by the
standard deviation of the raw BPM data as shown in Fig. 7.
The global fitting method with backward tracking is

applied to the simulation data 10 times, each time with a
different random seed for BPM noise generation. The initial
solution in the fitting is the design model. The fitted BPM
gains reproduce the target values, with a median error
sigma of 0.8% for the horizontal gains and 1.2% for the
vertical gains, where the error sigmas are estimated with the
standard deviations of the 10 fitting solutions.
The errors in the fitted quadrupole gradients are shown in

Fig. 16. The median of the error sigmas, σK , is 0.0052 m−2,
and the median of σK

K is 1.4%. The error sigmas can be
reduced by increasing the trajectory scan amplitude. If the
scan amplitude is increased by a factor of 5, to 1.5 mm, the
error sigmas will be reduced by a factor of 5.
A major cause of the large error sigmas for the quadru-

pole gradients is the correlation between the adjacent
quadrupoles, which can be mitigated with the constrained
fitting scheme [see Eq. (11)]. The correlation problem is
more severe with the undulator section. More discussion
on the use of constrained fitting is provided in
subsection III D 3.

2. BSY-LTU section

Simulation is also performed for the BSY-LTU section
using the same approach as done for the L3 Linac.
Quadrupole errors fitted with forward tracking are inserted
to the model to generate simulation data (see Fig. 13). BPM
gain errors and random noise are added to the data.
The fitting procedure is applied to the simulated data

with different random noise seeds for 10 times. The average

FIG. 15. Trajectory differences between measurements and
tracking before and after fitting for the BSY-LTU section using
forward tracking. Top: horizontal trajectories; Bottom: vertical
trajectories.
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FIG. 16. Differences between the fitted quadrupole gradients
and the target gradients in the L3 Linac simulation. Error bars are
the standard deviation of fitting results from 10 random seeds.

TONG ZHANG, XIAOBIAO HUANG, and TIM MAXWELL PHYS. REV. ACCEL. BEAMS 21, 092801 (2018)

092801-8



values and the standard deviations for the fitted quadrupole
gradients are shown in Fig. 17. The error bars for the last
two quadrupoles are much larger than the other quadrupole
parameters because the distance between the last two BPMs
is small. In the forward tracking case, the last two quadru-
poles are constrained only by data from these BPMs; in the
backward tracking case, these two quadrupoles are varied
in fitting to compensate the large angle coordinate noise
due to the small distance, resulting in big error bars. The
error sigma, σK , for the other quadrupole parameters has a
median value of 1.0 × 10−3 m−2 (with σK=K ≈ 0.20%) and
1.3 × 10−3 m−2 (σK=K ≈ 0.26%) for the forward and back-
ward tracking cases, respectively. The error sigmas for
quadrupole gradient in the BSY-LTU section are smaller
than the L3 Linac case because there are more BPMs than
quadrupole parameters.

3. Undulator section

Simulation was also done for the undulator section. This
section consists of 33 quadrupoles, located between undu-
lators, with a separation of about 4 m between two adjacent
quadrupoles. Each quadrupole is accompanied by a BPM
in the lattice. The betatron phase advances, ½μx; μy�, for the
entire undulator section are ½0.696; 0.780� × 2π, less than
one betatron period for both planes. The small phase
advances between the adjacent quadrupoles means the
impact of gradient errors of these quadrupoles to the linear
optics are very similar, as indicated by the correlation
coefficients of the corresponding columns of the Jacobian
matrix of the quadrupole pairs shown in Fig. 18. The high
correlation cause difficulties for the optics fitting method to
resolve the contribution of individual quadrupoles.
In the simulation we insert large gradient errors, at 5%

of the nominal values, to three quadrupoles and random
small errors, with rms of 0.5% to the other quadrupoles.
Trajectory scan data are generated using particle tracking
with the amplitude of 300 μm. Random BPM noise with
rms value of 1 μm is added to the data on all BPMs. The
pair of BPMs with a separation of 6.6 m before the

undulator section are used to calculate the angle coordi-
nates for forward tracking.
Global fitting was performed 10 times with different

random seeds. The average fitted quadrupole gradients are
compared to the target values in Fig. 19, where the error
bars are standard deviations of the 10 data sets. Because
of the near degeneracy of the quadrupole parameters, the
fitted gradients have large error bars, with an average value
for σK at 0.016 m−2. Figure 20 shows the beta beat in the
undulator section before and after the quadrupole errors in
the lattice model are corrected. With the quadrupole errors,
the beta beat reaches 25% for the horizontal plane and 20%
for the vertical plane, respectively. When the lattice errors
are corrected, the beta beat is reduced to below 2%, even for
fitting solutions that are substantially different from the
target values. This clearly indicates that the large variations
are mainly due to excursions of the solution toward the
under-constrained patterns which involve a lot of cancel-
lation between the quadrupole parameters [2].
By applying constraints to the quadrupole parameters,

we could derive an equivalent optics model that may differ
from the target model in quadrupole gradient values, yet
with nearly the same optics functions [2]. Figure 21 shows
the fitting results for the same data sets as used in Fig. 19
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FIG. 18. Correlation coefficients of Jacobian matrix columns
between adjacent quadrupole pairs (blue square) and second
neighbor pairs (red circle) in the undulator section.
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standard deviation of fitting results from 10 random seeds.
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using constrained fitting. The average error sigma for the
gradient parameters are 1.9 × 10−3 m−2, with the weight
factors w ¼ 0.02 for all quadrupoles [see Eq. (11)]. Even
though the fitted gradient values are significantly different
from the target solution, the beta beats of the corrected
lattices are below 2%.
Simulation with the undulator section also shows that

increasing the trajectory scan amplitude and increasing the
distance between the two drift-separated BPMs increase
the capability of the fitting method to resolve quadrupole
errors. We also found that the trajectory scan does not need
to span a grid in the phase space as the data we used in the
analysis for LCLS. Populating the trajectories uniformly on
the design ellipse in the phase space at the entrance point
with the largest amplitude has better performance in the
resolution of quadrupole errors.

IV. CONCLUSION

In this paper we proposed and demonstrated two
methods to determine the focusing errors in one-pass
systems such as linacs and transport lines. The thin-lens

local analysis method is applicable to special cases where
one quadrupole is always accompanied by one BPM with a
very small separation in between as compared to the
distances between adjacent quadrupoles. This is the typical
case for long linacs with many repetitive cells. The second
method is a global fitting approach that fits trajectory scan
data to the lattice model by minimizing the differences
between the measured and tracked trajectories. A pair of
BPMs that are separated by a drift space are needed to
derive the phase space coordinates for tracking.
The first approach has the benefit of using local

information only and not requiring a full lattice model.
However, it is sensitive to differences in BPM calibration
factors for the BPMs involved. Effects of energy changes,
finite lengths of quadrupoles, and distances between the
BPM-quadrupole pairs can be included in the formulas.
The second approach is more general. It requires a lattice

model and a pair of drift-separated BPMs. But this should
not be difficult to achieve. BPM calibration errors, and even
BPM rolls and quadrupole rolls can be fitted, although
small rolls are typically not important if only the linear
optics is concerned.
After the quadrupole errors are derived from the data,

they can be inserted into the model to evaluate the optics
errors in the machine. Corrections can be applied to the
machine to correct the linear optics errors.
Simulation shows that with a scan amplitude of 300 μm

and BPM noise sigmas around 5–10 μm, the global fitting
method can retrieve the quadrupole errors with a median
accuracy of σK ≈ 0.005 m−2 (σK=K ≈ 1.4%) for the L3
Linac and σK ≈ 0.001 m−2 (σK=K ≈ 0.2%) for the BSY-
LTU section. The error sigmas currently achieved are
higher than the quadrupole accuracy requirements set
for LCLS (0.5% for L2 and L3 linacs and 0.1%∼0.2%
for BSY, LTU, and undulator sections). Increasing the signal
to noise ratio in the data improves the quadrupole calibration
accuracy, which can be achieved by either increasing the
trajectory scan amplitude or reducingBPMnoise. And, even
though the errors of individual quadrupoles cannot be
determined to the desired accuracy, the fitted solutions
can still be used for global optics corrections because
usually a significant fraction of the uncertainty is due to
excursions along under-constrained directions which have
little impact to the global optics. The constrained fitting
scheme can be used to find solutionswith smaller excursions
in K, which are more suitable for optics correction.
For the global fitting approach, through simulation, we

have also found that a large distance between the two
drift-separated BPMs are important. The drift distance is
preferred to be comparable to the average beta function
value in the beam line of concern. A pair of drift-separated
BPMs help determine the strengths of quadrupoles located
toward the end of the line for the global fitting method. It is
desirable to create multiple pairs of BPMs separated by
long drift spaces in a long linac or transport line.
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FIG. 21. Fitted quadrupole gradients using constrained fitting
for the LCLS undulator section with the same simulated data as in
Fig. 19. Correction of the lattice model with the fitted solutions
reduces beta beat to below 2%.
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The global fitting method can also be used for optics
correction of storage rings during the commissioning phase
using BPM data of only one or a few turns.
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