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This paper extends the existing Vlasov theory for transverse coherent beam instabilities to account for
nonlinear chromaticity. It confirms the hypothesis that nonlinear chromaticity has two effects on the beam
dynamics: (i) it changes the effective impedance which results in a modification of the coherent frequencies
of the head-tail modes, and (ii) it can introduce betatron detuning with longitudinal action and provide
Landau damping of transverse modes. Based on the new formalism, these two mechanisms are identified
and studied analytically with both an airbag and a Gaussian beam. To complete the study, the theory is
successfully benchmarked against the circulant matrix solver BimBim as well as the PyHEADTAIL
macroparticle tracking code.
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I. INTRODUCTION

The objective of this paper is to extend the Vlasov theory
on impedance-driven transverse beam instabilities in proton
synchrotrons to provide an analytical understanding of the
coherent beam dynamics effects introduced by nonlinear
chromaticity. The motivation for this study originates from
the proposal of beam stabilization with a radio frequency
(rf) quadrupole described and analyzed in detail in
Refs. [1,2]. In summary, the purpose of the rf quadrupole
is to provide Landau damping in the transverse planes by
producing an incoherent betatron frequency spread as a
function of the longitudinal action of the particles in the
bunch. This new method for Landau damping in the
transverse planes is particularly promising in potential
future colliders, e.g., the Future Circular Collider project
[3], where traditional approaches such as magnetic octu-
poles (detuning with transverse action) experience a
strongly reduced efficiency as a result of the high energy
and low transverse emittances of the particle beams [2,4].
It was shown in Ref. [5] that the beam dynamics effects

of second-order chromaticity are equivalent to those of an rf
quadrupole at first order. The major advantage of second-
order chromaticity over the rf quadrupole is that it can be
enhanced and controlled in an existing machine without the

need to develop and install additional equipment as
demonstrated in the same reference. This makes it possible
to experimentally validate numerical and analytical models
describing the beam dynamics in presence of second-order
chromaticity and is the reason why this paper focuses on
nonlinear chromaticity rather than an rf quadrupole.
Nevertheless, the analytical understanding gained of the
effects of nonlinear chromaticity is directly applicable to an
rf quadrupole.
Although the theory developed in this paper is valid for

arbitrary orders, the second-order chromaticity is of par-
ticular interest here given the experimental observations
made in the Large Hadron Collider (LHC) at CERN [6,7].
Both LHC measurements as well as tracking simulations
indicate that second-order chromaticity introduces two
beam dynamics effects: (i) it changes the effective imped-
ance, i.e., the overlap sum of the beam spectrum with the
impedance, leading to a modification of the transverse
dipole modes and the associated coherent frequencies, and
(ii) it introduces a betatron frequency spread as a function
of longitudinal action which leads to a dispersion integral
and Landau damping [8]. Indeed, the LHC experiments
demonstrate that head-tail modes can be suppressed if the
amount of second-order chromaticity is chosen accord-
ingly. The same observations have been made also in
simulations with an rf quadrupole [5]. In general, the two
effects are interlinked and hence difficult to study sepa-
rately, especially in particle tracking simulations. And,
although they seem to govern the beam dynamics with
second-order chromaticity as suggested by both experi-
ments and simulations, the formal proof has yet been
missing. The goal of this paper is to fill in the gaps from an
analytical point-of-view. Specifically, the idea is to extend
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the existing Vlasov theory to include nonlinear chroma-
ticities to identify and decouple the two effects analytically.
The paper is structured as follows. The first part of Sec. II

reviews the basics of the Vlasov theory on transverse dipole
modes in presence of linear chromaticity. Based on these
derivations, the Vlasov formalism is extended to include
arbitrary orders of chromaticity. The final result is an
eigenvalue problem which is analytically solved for sec-
ond-order chromaticity in Sec. III. This is done first for a
longitudinal airbag beam which cannot experience Landau
damping from nonlinear chromaticity, but whose dynamics
is still affected by the change of the effective impedance. In
the second part, arbitrary longitudinal phase space distri-
butions are considered and a dispersion integral is derived
under specific constraints on the shape of the impedance.
The circulant matrix model (CMM), implemented in the
BimBim code, is one of the two accelerator physics models
employed in Sec. IV to benchmark the newly developed
theory [9,10]. For further validation of the theory, results
from PyHEADTAIL 6Dmacroparticle tracking simulations
are included as well, both for airbag and Gaussian beams
[11]. For the latter, stability diagram theory is compared to
predictions from PyHEADTAIL for a specific head-tail
mode driven by a highly narrow-band resonator. Finally,
the main findings of the paper are summarized in Sec. V.

II. VLASOV FORMALISM

This section recaps the Vlasov formalism and introduces
the notation used throughout the manuscript. The objec-
tives are twofold. First, the Vlasov equation for transverse
collective single-bunch dipole modes in a machine with
purely linear chromaticity is recapped. Second, a newly
developed theory is introduced which is valid also in
presence of higher order chromaticity including depend-
encies of arbitrary orders in the relative momentum error.
The conventions and notation used by A. Chao in Ref. [12]
are closely followed to optimize readability and to make
direct comparisons possible. All the derivations are made
assuming the ultrarelativistic limit, i.e., β ¼ 1.

A. Linear chromaticity

Let Ψ ¼ Ψðs; y; py; z; δÞ be the particle distribution of
the bunch in 4D phase space, considering the longitudinal
(2D) and only one transverse plane (2D). The parameter s
denotes the longitudinal position of the bunch along the
accelerator and is equivalent to the time t through s ¼ ct,
where c is the speed of light. The variable pairs ðy; pyÞ and
ðz; δÞ correspond respectively to the transverse (horizontal
or vertical) and longitudinal coordinates and conjugate
momenta. These four phase space variables are all implic-
itly dependent on s. The Vlasov equation hence reads [12]

dΨ
ds

¼ ð∂s þ y0∂y þ p0
y∂py

þ z0∂z þ δ0∂δÞΨ ¼ 0; ð1Þ

where y0, p0
y, z0, and δ0 denote the first derivatives with

respect to s. They are known from the transverse and
longitudinal equations of motion describing the single
particle beam dynamics (see, e.g., Ref. [12]). The impact
of a transverse wakefield on the beam is accounted for
by the p0

y term and is expressed in more detail in the
following. The Fokker-Planck term describing, amongst
others, radiation effects is neglected in our study as the
focus is put on proton machines [13,14].
The Vlasov equation can be simplified using polar

coordinates in the transverse and longitudinal planes

ðy; pyÞ ¼
�
q cos θ;−

ωβ;0

c
q sin θ

�
;

ðz; δÞ ¼
�
r cosϕ;

1

βz
r sinϕ

�
: ð2Þ

ωβ;0 denotes the unperturbed betatron frequency and
βz ¼ ηc=ωs is the longitudinal Courant-Snyder beta func-
tion, where ωs is the synchrotron frequency and η the slip
factor. Linear synchrotron motion is assumed throughout
the manuscript. The Vlasov equation in polar coordinates
reads

�
∂s þ

ωβ;0

c
ð1þ ξð1ÞδÞ∂θ þ

ωs

c
∂ϕ þ

Fy

E
∂py

�
Ψ ¼ 0: ð3Þ

The betatron frequency is ωβðδÞ ¼ ð1þ ξð1ÞδÞωβ;0, and
ξð1Þ ¼ ω−1

β;0ð∂ωβ=∂δÞjδ¼0 denotes the first-order chromatic-
ity. E ¼ γm0c2 is the total energy of the beam particles,
with γ the Lorentz factor and m0 the rest mass of the
particles. Fy describes the transverse force and represents
here the effect of transverse dipolar wakefields on the
beam. It is given by the convolution of the transverse wake
with the longitudinal bunch profile, or, equivalently, by the
overlap sum of the transverse impedance with the fre-
quency spectrum of the bunch. As in Ref. [12], the
longitudinal kick introduced by the transverse wakefield
has been neglected since it has an insignificant impact on
our studies. This is valid as long as synchro-betatron
resonance conditions are avoided, and given that the
transverse beam sizes remain small enough.
The solutions Ψ to Eq. (3) are the collective transverse

dipolemodes. They can be described by a sum of a stationary
solution and a perturbation term Ψ ¼ Ψ0 þΨ1, with

Ψ0 ¼ g0ðrÞf0ðqÞ;
Ψ1 ¼ g1ðr;ϕÞf1ðq; θÞe−iΩs=c: ð4Þ

The longitudinal g0ðrÞ and transverse f0ðqÞ distributions
being stationary can only have a radial dependence. The
two planes are furthermore assumed to be fully decoupled
which is why Ψ0 can be expressed as a product of two
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independent functions. The perturbative distributions
g1ðr;ϕÞ and f1ðq; θÞ represent respectively the longitudinal
and transverse structures of the coherent mode. The
exponential term describes its time evolution where Ω is
the complex coherent frequency associated with the mode.
The transverse instabilities under study are of dipolar
nature and hence their transverse structure can be antici-
pated f1ðq; θÞ ¼ −Df00ðqÞeiθ. D is the dipolar moment of
the perturbed distribution and f00ðqÞ is the first derivative of
f0ðqÞ with respect to q.
To further simplify the Vlasov equation, the wakefield

force term is expressed in frequency domain using the
transverse dipolar impedance Z⊥

1 ðωÞ and the frequency
spectrum ρ̃1ðωÞ of the bunch. The latter is given by the
Fourier transform of Ψ1 projected onto the z-axis

ρ̃1ðωÞ ¼
ωs

ηc

Z
∞

0

Z
2π

0

re−
iω
c r cosϕg1ðr;ϕÞdϕ dr: ð5Þ

The wakefield force, including multiturn effects, is
expressed as

Fy ¼ i
De2ω2

0

4π2c
e−iΩs=c

X∞
p¼−∞

ρ̃1ðω0ÞZ⊥
1 ðω0Þeiω0z=c; ð6Þ

where ω0 ¼ pω0 þ Ω, with ω0 the angular revolution
frequency of the bunch and e the elementary charge.
Equations (5) and (6) are inserted into Eq. (3) and all
the partial derivatives, apart from ∂ϕ can be evaluated. After
linearization in the perturbation Ψ1, the Vlasov equation
reads

i½Ω − ωβ;0ð1þ ξð1ÞδÞ − ωs∂ϕ�g1ðr;ϕÞ

¼ e2ωs

2ωβ;0T2
0Eη

g0ðrÞ
X∞
p¼−∞

Z⊥
1 ðω0Þ

×
Z

∞

0

Z
2π

0

r̃e
iω0
c ðr cosϕ−r̃ cos ϕ̃Þg1ðr̃; ϕ̃Þdϕ̃ dr̃; ð7Þ

where T0 ¼ 2π=ω0 is the revolution period of the beam.
To integrate the equation over ϕ, g1ðr;ϕÞ is decomposed

into a series of azimuthal modes gl1ðr;ϕÞ

g1ðr;ϕÞ ¼
X∞
l0¼−∞

Rl0 ðrÞeil0ϕeiξ
ð1Þωβ;0

ηc r cosϕ; ð8Þ

using the fact that g1ðr;ϕÞ has a 2π-periodicity in ϕ. The
functions gl1ðr;ϕÞ are the eigenmodes of the free (Z⊥

1 ≡ 0)
Vlasov equation [Eq. (7)], where l denotes the azimuthal
mode number. The corresponding eigenvalues are
ΩðlÞ ¼ ωβ;0 þ lωs, for l ∈ Z. Plugging the decomposed
g1ðr;ϕÞ into Eq. (7) and after multiplying both sides with
e−ilϕ, one can perform the integration over ϕ and finds an
infinite set of equations

ðΩðlÞ −ωβ;0 − lωsÞRlðrÞ

¼ iKg0ðrÞ
X∞

l;p¼−∞

Z
∞

0

r0Rl0 ðr0Þil−l0Z⊥
1 ðω0Þ

× Jl

�
ω0 −ωξ

c
r

�
Jl0
�
ω0 −ωξ

c
r0
�
dr0; for l ∈ Z: ð9Þ

JlðxÞ denotes the Bessel functions of the first kind.
Furthermore, the definitions ωξ ¼ ξð1Þωβ;0=η and K ¼
πe2ωs=ωβ;0T2

0Eη have been introduced. Finally, using the
expression forΩðlÞ, one obtainsω0 ¼ pω0 þ ωβ;0 þ lωs. The
result in Eq. (9) is equivalent to Chao’s Eq. (6.179)
in Ref. [12].

B. Higher order chromaticity

The goal of this section is to introduce a general variation
ΔωβðδÞ of the betatron frequency with arbitrary orders of
chromaticity ξðnÞ

ΔωβðδÞ ¼ ωβ;0

Xm
n¼1

ξðnÞ

n!
δn; ð10Þ

with

ξðnÞ ¼ 1

ωβ;0

∂nωβ

∂δn
����
δ¼0

; ð11Þ

and to evaluate the transverse beam stability in this case.
The derivations explained in Eqs. (1) to (7) are analogous
even for an arbitrary chromatic change of the betatron
frequency. A dependency on higher order chromaticity can
hence be introduced simply by replacing

ωβ;0ð1þ ξð1ÞδÞ → ωβ;0 þ ΔωβðδÞ; ð12Þ

on the left-hand side of Eq. (7). However, the eigenmode
decomposition in Eq. (8) cannot be used anymore as an
ansatz and needs to be replaced by a different one. It is
convenient to define

G1ðr;ϕÞ ≐ e
i
ωs

R
ϕ

0
Δωβðδðr;uÞÞdug1ðr;ϕÞ; ð13Þ

such that the Vlasov equation can be expressed as

½Ω − ωβ;0 þ iωs∂ϕ�G1ðr;ϕÞ

¼ −iKg0ðrÞ
X∞
p¼−∞

Z⊥
1 ðω0Þ

Z
∞

0

Z
2π

0

r̃ei
ω0
c ðr cosϕ−r̃ cos ϕ̃Þ

× e
i
ωs
Aðr;ϕ;r̃;ϕ̃ÞG1ðr̃; ϕ̃Þdϕ̃ dr̃; ð14Þ

with
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Aðr;ϕ; r̃; ϕ̃Þ ≐
Z

ϕ

0

Δωβðδðr; uÞÞdu −
Z

ϕ̃

0

Δωβðδðr̃; uÞÞdu:

ð15Þ

It is straightforward to show that Eq. (14) reduces to Eq. (7)
when assuming a purely linear chromaticityΔωβ ¼ωβ;0ξ

ð1Þδ.
In analogy to Sec. II A, the decomposition of G1ðr;ϕÞ is

chosen such that the functions Gl
1ðr;ϕÞ are the azimuthal

eigenmodes of the free (Z⊥
1 ≡ 0) Vlasov equation

½Ω − ωβ;0 þ iωs∂ϕ�Gl
1ðr;ϕÞ ¼ 0: ð16Þ

By imposing again the 2π-periodicity in ϕ forG1ðr;ϕÞ, one
finds the free eigenvalues and eigenmodes

ΩðlÞ ¼ ωβ;0 þ lωs þ hΔωβiϕ;

Gl
1ðr;ϕÞ ¼ RlðrÞeiðlþ

hΔωβiϕ
ωs

Þϕ; for l ∈ Z: ð17Þ

The term hΔωβiϕ denotes the average betatron frequency
change with respect to ϕ and is, in general, dependent on
the longitudinal amplitude r of every particle

hΔωβiϕðrÞ ¼
1

2π

Z
2π

0

Δωβðδðr;ϕÞÞdϕ: ð18Þ

It describes the betatron frequency spread introduced
through detuning with longitudinal amplitude. It will
become clear in the following that this term leads to
Landau damping. One can already see that for odd orders
of chromaticity ξð2nþ1Þ; n ∈ N0 the average frequency
spread vanishes hΔωβiϕðrÞ≡ 0. This result is independent
of the longitudinal particle distribution. Hence, odd orders
of chromaticity do not introduce Landau damping of slow
head-tail modes that build up over several synchrotron
periods. On the other hand, even orders ξð2nÞ; n ∈ N of
chromaticity introduce a betatron frequency spread with
longitudinal amplitude that does not average out over time,
which leads to Landau damping. In either case, though,
both odd and even orders of chromaticity introduce a
change of the effective impedance and modify the coherent
frequencies of the modes. Both effects will be demonstrated
and discussed in Sec. III.
Using a series of the free eigenmodes [Eq. (17)] as an

ansatz for G1ðr;ϕÞ in Eq. (14), one obtains

X∞
l00¼−∞

Rl00 ðrÞðΩ − ωβ;0 − l00ωs − hΔωβiϕðrÞÞeil00ϕ

¼ −iKg0ðrÞ
X∞

l0;p¼−∞

Z⊥
1 ðω0Þ

Z
∞

0

Z
2π

0

r̃e
iω0
c ½r cosϕ−r̃ cos ϕ̃�

× Rl0 ðr̃Þeil0ϕ̃e
i
ωs
½Bðr;ϕÞ−Bðr̃;ϕ̃Þ�dϕ̃dr̃; ð19Þ

where

Bðr;ϕÞ ≐
Z

ϕ

0

½Δωβðδðr; uÞÞ − hΔωβiϕðrÞ�du: ð20Þ

The next step is to multiply both sides with e−ilϕ and to
perform the integration over ϕ from 0 to 2π

½ΩðlÞ − ωβ;0 − lωs − hΔωβiϕðrÞ�RlðrÞ

¼ −i2πKg0ðrÞ
X∞

l0;p0¼−∞

Z⊥
1 ðω0Þ

×
Z

∞

0

r̃Rl0 ðr̃ÞHp0
l ðrÞHp0

l0 ðr̃Þdr̃; for l ∈ Z; ð21Þ

where

Hp
l ðrÞ ≐

1

2π

Z
2π

0

eilϕe−
iω0
c r cosϕe−

i
ωs
Bðr;ϕÞdϕ; ð22Þ

with l; p ∈ Z. Hp
l ðrÞ can be perceived as a generalized

Bessel function. It is easy to show that in the event of a
purely linear chromaticity, Hp

l ðrÞ reduces to the Bessel
function of the first kind (see Appendix A). The phase
terms e−iBðr;ϕÞ=ωs describe the alteration of the interaction
of the beam with the impedance caused by arbitrary
orders of chromaticity. The result is that the overlap sum

over index p0 in Eq. (21) between the Hp0
l ðrÞ functions and

the impedance Z⊥
1 ðω0Þ changes. In time domain the

chromatic phase terms can be understood as a change of
the synchronicity between wake kicks, betatron, and
synchrotron motion of the particles. This causes a change
of the coherent frequencyΩ, both for the real and imaginary
(instability rise time) components, of all the modes and is
studied in more detail in Secs. III and IV for specific beam
models. This mechanism can mimic the “stabilization” of a
given coherent mode, if the change of effective impedance
induced by a change of chromaticity is such that the growth
rate of the particular mode is reduced. However, the
modification of the effective impedance does not introduce
a frequency spread and there is no increase of the area of
stability in the complex frequency space. Hence, this effect
is not related to Landau damping. Nevertheless, Landau
damping is still part of the beam dynamics with higher
order chromaticity. It is introduced through hΔωβiϕðrÞ ≠ 0

from even orders of chromaticity. This term leads to a
dispersion integral and to an increase of the area of stability
in the complex frequency space as shown in the following.
To summarize, Eq. (21) clearly decouples the two beam
dynamics effects introduced by higher order chromaticity.
To further simplify Eq. (21), it can be multiplied with

rHp
l ðrÞ and integrated over r from 0 to ∞
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σlp ¼ −iK
X∞

l0;p0¼−∞

σl0p0Z⊥
1 ðp0ω0 þ ΩðlÞÞ

×
Z

∞

0

rg0ðrÞHp0
l ðrÞHp

l ðrÞ
ΩðlÞ − ωβ;0 − lωs − hΔωβiϕðrÞ

dr; ð23Þ

where

σlp ≐
Z

∞

0

rRlðrÞHp
l ðrÞdr: ð24Þ

When neglecting azimuthal mode interactions (weak-wake
approximation), the summation on l0 can be ignored and
one ends up with an infinite set of separate equations, one
for each azimuthal mode. The dispersion integral on the
right hand side of Eq. (23) indicates that the term
hΔωβiϕðrÞ in the denominator indeed introduces Landau
damping. A dispersion relation that makes the computation
of stability boundary diagrams with nonlinear chromaticity
possible is derived in Sec. III B and numerical solutions are
shown in Sec. IV.

III. SOLUTIONS OF THE VLASOV EQUATION
WITH NONLINEAR CHROMATICITY

In this section, solutions of the previously derived
Vlasov equation (23) are determined for two different
types of longitudinal particle distributions. The first type
is an airbag beam for which all the particles have exactly
the same longitudinal amplitude. As a result, there can be
no net betatron frequency spread from chromaticity of
any order (hΔωβiϕðrÞ≡ 0) and hence there is no Landau
damping. For that case, an exact solution of Eq. (23) can be
determined for arbitrary orders of chromaticity. The second
type of longitudinal distributions is general as it accounts
for a spread in the longitudinal action of the particles, such as
Gaussian and waterbag beams. In that case, Eq. (23) cannot
be solved exactly. Instead, the analytical solution is deter-
mined with strict assumptions on the shape of the transverse
dipolar impedance Z⊥

1 ðωÞ (narrow-band resonator).
The two types of distributions are chosen to decouple the

two beam dynamics effects that have been identified in
Sec. II B. Nonlinear chromaticity cannot introduce Landau
damping for an airbag beam, but it does cause a change of
effective impedance. Hence, for an airbag model, the latter
mechanism can be studied independently of the Landau
damping which facilitates the understanding of the beam
dynamics in presence of higher order chromaticity in
general. With the second type of beams on the other hand,
there is an interplay of both mechanisms as shown by
Eq. (21). The analytical results derived and presented here
are benchmarked numerically with two different acceler-
ator physics models in Sec. IV.

A. Airbag model

In case of an airbag model, the beam particles populate
an infinitesimally thin elliptical shell in longitudinal phase
space. Such a distribution is also known as a hollow beam
model [12]. It is described by

g0ðrÞ ¼
Nηc
2πωsẑ

δðr − ẑÞ; ð25Þ

where N is the bunch intensity in number of particles, ẑ
defines the radius of the distribution in normalized longi-
tudinal phase space (z; βzδ), and δ is the Dirac delta
function. For the airbag beam, all the particles have the
same longitudinal action Jz ¼ ẑ2=2βz. An illustration is
displayed in Fig. 1.
In the weak-wake approximation considered here, azi-

muthal mode coupling can be neglected, meaning that the
summation over index l0 can be ignored in Eq. (23). Instead,
one can solve the equations for all the azimuthal modes
independently of one another. Using the airbag distribution,
the integration over r can be easily performed leading to

σlp ¼ −i
Ne2c

2ωβ;0T2
0E

X∞
p0¼−∞

σlp0Z⊥
1 ðω0Þ

×
Hp0

l ðẑÞHp
l ðẑÞ

ΩðlÞ − ωβ;0 − lωs − hΔωβiϕðẑÞ
: ð26Þ

The detuning term hΔωβiϕðẑÞ ¼ const. is now independent
of the longitudinal amplitude r and is identical for all the
particles. As expected, the dispersion integral has disap-
peared from the equation which can be interpreted as the
absence of Landau damping.
The eigenvalue problem in Eq. (26) can be analytically

solved and the solution reads

FIG. 1. Illustration of the airbag model in normalized longi-
tudinal phase space. The particles populate a circle of radius
r ¼ ẑ (blue).
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ΩðlÞ − ωβ;0 − lωs − hΔωβiϕðẑÞ

¼ −i
Ne2c

2ωβ;0T2
0E

X∞
p¼−∞

Z⊥
1 ðpω0 þ ωβ;0 þ lωsÞjHp

l ðẑÞj2;

ð27Þ

where ω0 ≈ pω0 þ ωβ;0 þ lωs and l ∈ Z. We have obtained
an explicit expression for the coherent frequency of each
azimuthal mode l. One feature that is discussed further in
Sec. IV is that the average detuning term hΔωβiϕðẑÞ only
affects the real part of ΩðlÞ and is identical for all the
azimuthal modes.
Equation (27) is a generalization of Chao’s Eq. (6.188)

derived in Ref. [12] and is valid for arbitrary orders of
chromaticity. It reduces to Chao’s equation for a purely
linear chromaticity as shown in Appendix A.

B. Arbitrary longitudinal distributions

The goal is now to study the eigenvalue problem in
Eq. (23) for arbitrary longitudinal distributions g0ðrÞ, for
which, in general, there is a spread in amplitudes r (or
longitudinal action Jz) among the particles within the
bunch. In combination with even orders of chromaticity,
the spread in action translates into an amplitude-dependent
betatron frequency distribution hΔωβiϕðrÞ and Landau
damping. This can be seen from the dispersion integral
on the right hand side of Eq. (23). This is similar to a
dispersion integral for detuning with transverse amplitude
as introduced for instance by magnetic octupoles. Both
detuning with longitudinal and transverse amplitude lead to
an increase of the area of stability in the complex frequency
space [8].
The eigenvalue problem for arbitrary distributions is

difficult to solve, even numerically. Hence, to obtain an
analytical solution where the dispersion relation and
Landau damping become even more apparent, and can
be benchmarked against numerical models, constraints are
imposed on the shape of the impedance. Here, a highly
narrow-band resonator impedance is considered, such that
effectively

Z⊥
1 ðω0Þ ¼

�
Zp0

≠ 0; p ¼ p0;

0; otherwise:
ð28Þ

For this type of impedance, Eq. (23) simplifies to

1 ¼ −iKZp0

Z
∞

0

rg0ðrÞjHp0

l ðrÞj2
ΩðlÞ − ωβðrÞ − lωs

dr; ð29Þ

where ωβðrÞ ¼ ωβ;0 þ hΔωβiϕ. Equation (29) is a
dispersion relation. To obtain the stability boundary dia-

gram, one considers the coherent frequency ΩðlÞ
lin in absence

of Landau damping (linear lattice). This can be achieved

by ignoring the frequency spread, i.e., by setting
hΔωβiϕðrÞ ¼ 0 in Eq. (29)

1 ¼ −i
KZp0

ΩðlÞ
lin − ωβ;0 − lωs

Z
∞

0

rg0ðrÞjHp0

l ðrÞj2 dr: ð30Þ

The integral over r can be easily performed numerically.
Combining Eqs. (29) and (30), one finds the formula to
determine the stability boundary diagrams

ðΔΩðlÞ
linÞ−1 ¼

1

N

Z
∞

0

rg0ðrÞjHp0

l ðrÞj2
ΩðlÞ − ωβðrÞ − lωs

dr;

N ¼
Z

∞

0

rg0ðrÞjHp0

l ðrÞj2dr; ð31Þ

where ΔΩðlÞ
lin ¼ ΩðlÞ

lin − ωβ;0 − lωs. The stability boundary
diagram is obtained by computing the frequency shifts

ΔΩðlÞ
lin for different values of ΩðlÞ. According to the Landau

bypass rule, a small complex part iε is added to the
denominator of Eq. (31) to perform the integration [15].
An example for Gaussian beams is discussed in Sec. IV.
By making additional assumptions on the beam spec-

trum and impedance, it can be shown that the dispersion
relation derived here is equivalent to the results found by
Scott Berg and Ruggiero, originally presented in Ref. [8].
The proof is written out in Appendix B.

IV. BENCHMARKS

This section summarizes the benchmarks that were made
to validate the new formalism. Two different accelerator
physics models are employed—a circulant matrix solver
called BimBim and the PyHEADTAIL 6D macroparticle
tracking code. For the sake of simplicity the tests only go up
to order two in chromaticity, but extending them for arbitrary
orders is straightforward with the formalism provided in
Sec. II B. After introducing the tools and methods used for
the comparison with analytical calculations, the new Vlasov
formalism is tested first for an airbag model without Landau
damping, and subsequently for a Gaussian beam which also
experiences Landau damping.

A. Tools and methods

PyHEADTAIL is a tracking code developed at CERN
and is the successor of the HEADTAIL program [16]. A
detailed description of the model and available features is
given in Ref. [11]. PyHEADTAIL being a macroparticle
tracking code, does not directly compute the coherent
frequency shifts of the head-tail modes, but rather it outputs
the bunch centroid signal in time domain. In the event of an
instability, the amplitude of the bunch centroid oscillation
rises exponentially. After a certain latency time, which
depends amongst others on the initial particle distribution,
there is usually one dominant (aka. most unstable) mode
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that establishes and is responsible for the amplitude growth.
The growth rate of the exponential hence corresponds to the
imaginary part of the coherent frequency shift of the most
unstable mode. The other head-tail modes that are present,
but possibly stable or at least have a much slower rise time,
cannot be accessed through time domain analysis. One
method to obtain the imaginary frequency shifts of indi-
vidual azimuthal modes is to analyze the growth rates of
each synchrotron side band in frequency domain, using a
sliding window Fourier transform. With this technique,
stable modes can in principle also be made available by
exciting them and measuring their rate of decay. For the
studies presented here, both time- and frequency domain
analysis methods have been employed for comparison, and
an excellent agreement was always found on the growth
rate of the most unstable mode. In the following, however,
only the results from the time domain analysis are shown.
To obtain the real part of the coherent frequency shift, a
Fourier transform (Fast Fourier Transform or Sussix [17])
of the centroid motion is used. The shift is measured with
respect to the unstable synchrotron side band.
BimBim is another accelerator physics code developed at

CERN and its main purpose is to model beam-beam and
wakefield effects. The underlying scheme is the circulant
matrix model described in Refs. [9,10]. BimBim solves the
circulant matrix and outputs directly the complex coherent
frequency shifts of “all the possible” (stable and unstable)
modes. Naturally, the chosen number of slices and rings for
the discretization of the longitudinal phase space puts a
limit on the maximum order of the unstable mode that can
be described by the model. Since the formalism is based on
matrices, it only accounts for linear dependencies on the
transverse phase space variables, and hence it cannot
model, for instance, detuning with transverse amplitude as
introduced by Landau octupoles. In the longitudinal plane,
however, nonlinear dependencies are correctly described and
hence arbitrary orders of chromaticity can be included.
Another important limitation of the code is that it assumes
the wakefield to decay within one turn. While this is a valid
approximation for broad-band resonator impedances, it is no
longer fulfilled for narrow-band resonatorswith large quality
factors. For the latter, the wakefields typically keep ringing
for several revolution periods.

B. Airbag model

1. Linear chromaticity

To ensure that the new formalism works properly
numerically, it is benchmarked first against the well-known
case of an airbag model assuming a purely linear chroma-
ticity. In that case,

hΔωβiϕðrÞ ¼ 0;

Bðr;ϕÞ ¼ ξð1Þ
ωβ;0r

βz
ð1 − cosϕÞ; ð32Þ

and Eq. (27) reduces to Chao’s Eq. (6.188) in Ref. [12] as
proven in Appendix A. This expression allows to analyti-
cally compute the complex coherent frequency shifts of
each azimuthal mode. The infinite sum over index p is
approximated numerically by a sum extending from p ¼
−105 to 105. This was found to be enough to achieve
convergence for the specific case discussed here.
Equation (27) is benchmarked against BimBim and

PyHEADTAIL using the machine and beam parameters
listed in Table I. The values are loosely based on the CERN
Super Proton Synchrotron at injection energy. The machine
impedance has been replaced by a broad-band (Q ¼ 1)
resonator. For BimBim, using one ring for the discretization
of the longitudinal phase space is what is required to
model an airbag beam. Furthermore, 90 azimuthal slices
were found to be enough for the results to converge,
given the low order of the modes that are considered.
For PyHEADTAIL, Nmp ¼ 5 × 105 macroparticles were
tracked overNturns ¼ 105 turns. The results are summarized
in Fig. 2. The analytical calculations are given by the
colored lines and represent the real (upper plot)
and imaginary (lower plot) coherent frequency shifts of
the six lowest order azimuthal modes as a function of
linear chromaticity ξð1Þ. The real part is measured with
respect to the unstable synchrotron side band l, i.e.,
ReΔΩðlÞ ¼ ReðΩðlÞ − ωβ;0 − lωsÞ, to improve the readabil-
ity of the plot. It can be seen that the azimuthal modes are
degenerate, i.e., the modes for a specific positive and
negative azimuthal number are identical. This will no
longer be the case when introducing second-order chro-
maticity as described below. As expected, for ξð1Þ < 0 the
most unstable mode is a head-tail mode zero. For increasing

TABLE I. Main parameters used in PyHEADTAIL and Bim-
Bim simulations to benchmark the Vlasov formalism for an
airbag beam. The parameters Nmp and Nturns are relevant
exclusively for the PyHEADTAIL simulations, while Nrings

and Nslices are valid solely for the calculations with BimBim.

Parameter Value

Relativistic gamma γ 27.7
Synchrotron tune Qs 0.017
Longitudinal beta function βz 115 m
Bunch intensity N 109 p
Longitudinal action Jz 3 × 10−4 m
Resonator shunt impedance Rs 107 Ω=m
Resonator frequency fr 0.8 GHz
Resonator quality factor Q 1
Wake decay time Nwake 1 turn
Number of p modes Np 2 × 105

Number of macroparticles Nmp 5 × 105 p
Number of turns Nturns 105 turns
Number of rings Nrings 1
Number of azimuthal slices Nslices 90
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ξð1Þ > 0, the most unstable mode changes from azimuthal
mode one through five given the limited range of chroma-
ticity. The locations of the transitions between the modes
depend on the choice of beam and impedance parameters.
The outputs from BimBim (red dots) and PyHEADTAIL
(green crosses) after post-processing are shown on top of
the analytical results and prove an excellent agreement with
the most unstable mode at each value of chromaticity. Not
only is the mode number the same, but both the real and
imaginary parts are in perfect agreement between the three
approaches. The fact that two different numerical accel-
erator physics models confirm the theory to that degree of
accuracy is very satisfying and proves that the analytical
description works well for a basic linear case.

2. Second-order chromaticity

In the following, nonzero first- and second-order chro-
maticities are assumed. In that case, the change of betatron
frequency is given by Δωβ ¼ ωβ;0ðξð1Þδþ ξð2Þδ2=2Þ.
Hence,

hΔωβiϕðrÞ ¼ ξð2Þ
ωβ;0r2

4β2z
;

Bðr;ϕÞ ¼ ξð1Þ
ωβ;0r

βz
ð1 − cosϕÞ

− ξð2Þ
ωβ;0r2

4β2z
sinϕ cosϕ: ð33Þ

Combining Eqs. (27) and (33), one obtains again an explicit
expression for the coherent frequency shifts for each
azimuthal mode. The same number of p modes is used

to guarantee the convergence of the overlap sum.
Analytical results for the same machine and beam param-
eters as above (Table I) are plotted in Fig. 3 and are
represented by the colored lines. The first azimuthal modes
up to order five are shown. Note that in this figure the real
part is normalized to the synchrotron frequency and the
vertical axis hence corresponds to the azimuthal mode
number. One can see that ξð2Þ indeed changes the effective
impedance, and eventually, transitions to other, now more
unstable, azimuthal modes occur. This is very similar to the
case of first-order chromaticity. A major difference with
respect to Fig. 2, however, is that the degeneracy in the
azimuthal mode number is lifted. For a certain absolute
value of the mode number l, the modes with the two
opposite signs are no longer identical. Another observation
is that only every other mode is excited (here only odd
mode numbers). Additionally, the real part of the coherent
frequency shift is dominated by the constant and real-
valued hΔωβiϕðẑÞ, which is the same for all the azimuthal
modes as illustrated by Fig. 3 (top). This is specific to the
airbag beam, and is again a result of the absence of a spread
in longitudinal amplitude. For PyHEADTAIL and BimBim
again only the most unstable modes are shown with their
real and imaginary parts for each value of ξð2Þ. As in the
linear chromaticity case, the theoretical predictions are
again in perfect agreement with both the tracking and
circulant matrix models, which confirms that the formalism
developed in Sec. II B is indeed valid for the airbag beam.
To summarize, the new theory describes the change of

effective impedance from nonlinear chromaticity very
accurately and gives satisfying results for the airbag model.
The next step is to introduce a particle distribution that has a

FIG. 2. Real (top) and imaginary (bottom) coherent frequency
shifts as a function of purely linear chromaticity ξð1Þ for an airbag
model with machine and beam parameters listed in Table I.
Results from BimBim (red circles), PyHEADTAIL simulations
analyzed with Sussix (green crosses), and analytical calculations
(solid lines) are shown.

FIG. 3. Real (top) and imaginary (bottom) coherent frequencies
as a function of second-order chromaticity ξð2Þ at fixed ξð1Þ ¼
0.25 for an airbag model with machine and beam parameters
listed in Table I. Results from the circulant matrix model BimBim
(red circles), PyHEADTAIL simulations analyzed with Sussix
(green crosses), and analytical calculations (solid lines) are
shown.

M. SCHENK, X. BUFFAT, K. LI, and A. MAILLARD PHYS. REV. ACCEL. BEAMS 21, 084402 (2018)

084402-8



spread in longitudinal amplitudes to validate the theory also
in presence of Landau damping.

C. Gaussian beam

To study the effect of Landau damping, a Gaussian beam
is used for the comparison between the theory and the
tracking model

g0ðrÞ ¼
Nηc

2πσ2zωs
e−r

2=2σ2z ; ð34Þ

where σz denotes the one-sigma bunch length.
For the first part of the validation procedure, the betatron

frequency distributions introduced by a specific amount of
ξð2Þ (at ξð1Þ ¼ 0) are compared between analytical formula
and PyHEADTAIL. Figure 4 summarizes the results. The
blue histogram corresponds to the output from the tracking
simulations of 3 × 104 macroparticles over ten synchrotron
periods using the machine parameters listed in Table II and
neglecting the effect of the impedance. The betatron
frequencies of every particle have been analyzed with
Sussix. The red dashed bar diagram corresponds to the
analytical calculation obtained using hΔωβiϕðrÞ with g0ðrÞ
from Eq. (34). The agreement between the tracking model
and the analytical formula is excellent and confirms the
correct implementation of the detuning from second-order
chromaticity in PyHEADTAIL.
Based on this result, the next step is to design a study

case which fulfils the approximations and assumptions
made when deriving the dispersion relation in Eq. (31). The
main one was to use a highly narrow-band resonator
impedance as defined in Eq. (28) such that there would be
only one dominant term in the sum over index p in Eq. (23).
This can be achieved by tuning the quality factor and the
frequency of the resonator accordingly. The optimization

was done by looking at the overlap area between the
impedance and the bunch spectra (Hp

l ðrÞ functions) for
the main lowest-order modes. The resonator frequency and
quality factor were tuned to match the spectral maximum of
the azimuthal mode zero while remaining small for all the
other modes. The final values are listed in Table II.
To verify that the single-peak approximation is valid for

the chosen impedance, a scan in linear chromaticity was
performed first. Because of the large quality factor of the
chosen resonator impedance, and therewith the slow decay
time of the wakefield, PyHEADTAIL was set up to use
the multiturn wake feature. The maximum number of
turns for the wake to be taken into account was set to
Nwake ¼ 80 turns, determined by means of a convergence
study. Figure 5 summarizes the results. It shows the real
(top) and imaginary (bottom) frequencies for the most
unstable mode, which is by design an azimuthal mode zero,
in the scanned range of ξð1Þ. PyHEADTAIL results (green
crosses) are shown on top of analytical predictions, once
including the “full” overlap sum on index p (solid lines),
summing up terms from p ¼ −105 to 105, and once
considering only the most dominant value p0 (dashed
lines). It can be seen that the full sum shows a very
good agreement with the tracking simulations on the full
range of ξð1Þ. The single-peak approximation is close to the
PyHEADTAIL results with a discrepancy of less than
ten percent in both real and imaginary parts for −0.4 <
ξð1Þ < −0.2. It rises, however, to as large as 50 percent in
the imaginary part for ξð1Þ > 0.1. For that reason, the scan
in second-order chromaticity will be performed at ξð1Þ ¼
−0.3 where the approximation works best for both the
real and imaginary parts. This is to limit the error on the
results of the scan in ξð2Þ originating from the single-peak
approximation.

FIG. 4. Comparison of the betatron frequency distributions
obtained using analytical formula (red dashed bars) and
PyHEADTAIL in combination with a Sussix frequency analysis
(blue area). The standard deviation (SD) is also listed for
both cases.

TABLE II. Main parameters used in PyHEADTAIL to bench-
mark the Vlasov formalism for a Gaussian beam. The resonator
impedance is highly narrow-band and its frequency has been
tuned well to ensure that the overlap with the beam spectrum is
largest at one specific mode p0 and negligible everywhere else.

Parameter Value

Relativistic gamma γ 27.7
Synchrotron tune Qs 0.017
Longitudinal beta function βz 115 m
Bunch intensity N 109 p
Bunch length σz 0.21 m
Resonator shunt impedance Rs 5 × 1012 Ω=m
Resonator frequency fr 0.7993 GHz
Resonator quality factor Q 5 × 104

Wake decay time Nwake 80 turns
Number of p modes Np 1
Number of macroparticles Nmp 5 × 105 p
Number of turns Nturns 105 turns
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The PyHEADTAIL results of the scan in ξð2Þ are
displayed in Fig. 6. The plot shows the dependence of
the imaginary coherent frequency shift (instability growth
rate) on the second-order chromaticity as obtained from
tracking (green) when including the betatron frequency
spread from ξð2Þ. Clearly, the stabilization of the mode zero
is achieved by introducing a small amount of negative ξð2Þ
(about −10 units), or a slightly larger amount of positive
ξð2Þ (about 150 units). Beyond these values, there are no
other modes that become unstable given that the scan was
performed up to jξð2Þj ¼ 1000. It will be demonstrated in
the following with a detailed analysis that the stabilization
occurs indeed through the Landau damping mechanism.

The reason why a larger amount of second-order chroma-
ticity is required when using a positive sign has already
been discussed previously in Refs. [2,7]. It is due to the fact
that the specific azimuthal mode has a negative real
coherent frequency shift combined with the one-sided
frequency spreads (and stability boundary diagrams) that
are introduced by ξð2Þ as illustrated, e.g., by Fig. 4. In that
case, ξð2Þ < 0 provides much more effective Landau damp-
ing. Analytical solutions (dashed lines) are shown along-
side the tracking results. They deliberately exclude the
frequency spread from ξð2Þ to remove the effect of Landau
damping and to illustrate solely the implications of a
change of effective impedance. Unfortunately, this decou-
pling of the two effects cannot be achieved in a macro-
particle tracking code as Landau damping is intrinsically
included in this model once nonlinear chromaticity is
added. At ξð2Þ ¼ 0, PyHEADTAIL and the analytical
prediction are expected to be identical. The small difference
is due to the single-peak approximation as already dis-
cussed in Fig. 5 (at ξð1Þ ¼ −0.3). The red dashed line
indicates that with ξð2Þ the growth rate of the mode zero
instability is also decreased, but at a much smaller rate
compared to PyHEADTAIL. This difference is due to the
absence of the frequency spread and Landau damping.
Additionally, there are two other modes (l ¼ −2 and l ¼ 2)
that appear according to the Vlasov formalism with a much
slower rise time than the mode zero. These modes are also
suppressed in PyHEADTAIL. Although not displayed in
the figure, the frequency spectra obtained from tracking
simulations indicate that the dominant frequency compo-
nent is always the mode zero which is in agreement with
analytical predictions.
In the following, the Vlasov formalism is applied

including the betatron frequency spread to make a detailed
comparison with the tracking output possible. This is
achieved by numerically solving the dispersion relation
in Eq. (31), which gives the stability boundary diagram in
complex frequency space. The results are only presented
for ξð2Þ < 0 here since negative second-order chromaticity
provides more effective Landau damping. Stabilization for
ξð2Þ > 0 can be shown analogously, but it is less illustrative
due to the sharp edge of the frequency spread and of the
stability boundary diagrams. The numerical solutions of the
dispersion relation are shown in Fig. 7 for six different
values of ξð2Þ < 0, increasing in absolute value from top left
to bottom right. The plots illustrate the increase of the
stability boundary (black line,−ImΩ ¼ 0) and hence of the
stable area (blue hatched region, −ImΩ ≤ 0) in complex
frequency space. The instability under consideration is
again the head-tail mode zero from Fig. 5 at ξð1Þ ¼ −0.3. Its
coherent frequency shift (red cross) is obtained from
PyHEADTAIL simulations. As demonstrated by Fig. 6,
the change of the effective impedance induced by ξð2Þ is
negligible for jξð2Þj ≤ 200 for this specific instability, and

FIG. 5. Real (top) and imaginary (bottom) coherent frequencies
of the azimuthal mode zero as a function of ξð1Þ (with ξð2Þ ¼ 0)
for the bunch and machine parameters in Table II. PyHEADTAIL
results (green crosses) are compared against analytical calcula-
tions. The latter are obtained using either the full overlap sum on
index p (solid lines), or only the dominant term p0 (dashed lines).

FIG. 6. Dependence of the imaginary coherent frequency shift
(growth rate) of the azimuthal mode zero on ξð2Þ using the bunch
and machine parameters in Table II and ξð1Þ ¼ −0.3. PyHEAD-
TAIL results (green) include the frequency spread and Landau
damping from ξð2Þ, while analytical calculations (dashed lines)
intentionally neglect it to model only the change of effective
impedance for comparison.
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Landau damping is clearly the dominant effect. As a
result, the “unperturbed” coherent frequency can be
assumed to be independent of ξð2Þ. The colored lines in
the figure refer to constant values of imaginary frequency
shift (−ImΩ ¼ const.) and follow the distortion of the
frequency space caused by the spread introduced by
second-order chromaticity. They are computed by plugging
in different values for iε when solving Eq. (31). It can be
seen that for real frequency shifts far away from the extent
of the spread, the frequency space remains undistorted
and the isolines coincide with the ticks shown on the
vertical axis.
Using the isolines in Fig. 7, one can read off the effective

change, i.e., the decrease, of the imaginary frequency of the
unstable mode as a function of frequency spread, or ξð2Þ.
This illustrates the damping process. As the spread
increases, the imaginary part of the unstable mode is
effectively reduced, meaning that the growth rate of the
instability decreases. For ξð2Þ ≤ −9.6, the area of stability
becomes large enough as to fully include the unstable
mode. At this point the mode is Landau damped. A
comparison of the growth rates of the instability between
stability diagram theory and PyHEADTAIL tracking sim-
ulations is displayed in Fig. 8. The values read off from the
stability diagrams and isolines in Fig. 7 are shown in red.
The growth rates fitted to the PyHEADTAIL tracking

simulations are represented by the green crosses and
show an excellent agreement with predictions from theory.
Not only the stabilizing threshold for the amount of ξð2Þ

matches, but also the intermediate stages of ξð2Þ show a

FIG. 7. Stability boundary diagrams in complex frequency space obtained using Eq. (31) are shown for six different values of second-
order chromaticity, with jξð2Þj increasing from top left to bottom right. The unstable mode under consideration is marked with the red
cross. The stability boundary is given by the black solid line and the area where −ImΩ < 0 is represented by the blue hatched region.
The colored lines show a selection of isolines −ImΩ ¼ const. and illustrate the distortion of the complex frequency space which
becomes stronger with increasing frequency spread from ξð2Þ.

FIG. 8. Stabilization of the head-tail mode zero as a function of
ξð2Þ for a Gaussian beam. PyHEADTAIL simulations (green
crosses) are shown together with analytical predictions computed
by means of stability diagram theory (red diamonds). The latter
can be deduced from Fig. 7.
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remarkable agreement on the imaginary frequency. This
proves that the theory works successfully and that second-
order chromaticity indeed provides Landau damping.

V. SUMMARY AND CONCLUSIONS

The existing Vlasov theory on transverse dipole modes
has been extended to include the effects of nonlinear
chromaticity up to arbitrary order. This new formalism
made it possible to confirm the hypothesis that nonlinear
chromaticity has two effects on the beam dynamics of
transverse coherent modes: (i) it introduces Landau damp-
ing thanks to the incoherent betatron frequency spread with
longitudinal amplitude, which is present for even orders of
chromaticity only, and (ii) it leads to a change of effective
impedance. Indeed, the two mechanisms have been iden-
tified and studied separately using analytical formulae. This
analysis has not been possible for example with tracking
simulations as the two effects are closely interlinked in a
macroparticle model.
In addition, the theory has been successfully bench-

marked up to second-order chromaticity for an airbag
model and a Gaussian beam. In the first case, there is
no Landau damping due to the missing frequency spread
from detuning with longitudinal amplitude. Analytical
results have been validated both with a tracking model
and a circulant matrix solver which revealed an outstanding
agreement. For the Gaussian beam it has been shown that,
given the assumption of a strongly-peaked impedance,
analytical predictions from stability diagram theory are in
excellent agreement with tracking simulations. This proves
that detuning with longitudinal amplitude indeed provides
Landau damping. The frequency spread can be introduced
for example using second-order chromaticity, or, similarly,
with an rf quadrupole. This is in accordance with both,
experiments and simulations, that were carried out on the rf
quadrupole and with second-order chromaticity in the LHC,
presented in Refs. [5,7], and confirms the interpretation of
these results. All the theory derived for nonlinear chroma-
ticity can also be directly applied to the rf quadrupole.
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APPENDIX A: VLASOV SOLUTION FOR THE
AIRBAG BEAM WITH LINEAR CHROMATICITY

The goal is to demonstrate that for an airbag beam and in
case of a purely linear chromaticity, the expression for the
coherent frequencies in Eq. (27) reduces to Chao’s
Eq. (6.188) in Ref. [12]. For a first-order chromaticity
ξð1Þ, the betatron frequency changes as Δωβ ¼ ωβ;0ξ

ð1Þδ
and one finds solutions for hΔωβiϕðrÞ and Bðr;ϕÞ as given
in Eq. (32). It can be shown that theHp

l ðrÞ functions reduce

to the Bessel functions of the first kind JlðxÞ under these
circumstances

Hp
l ðrÞ ¼

1

2π

Z
2π

0

eilϕe−
iω0
c r cosϕe−iξ

ð1Þωβ;0
ηc rð1−cosϕÞdϕ

¼ 1

2π
e−iξ

ð1Þωβ;0
ηc r

Z
2π

0

eilϕe−iðω
0−ξð1Þ

ωβ;0
η Þrc cosϕdϕ

¼ i−le−iξ
ð1Þωβ;0

ηc rJl

�
ω0 − ωξ

c
r
�
: ðA1Þ

with ω0 ¼ pω0 þ ωβ;0 þ lωs (and Ω ≈ ωβ;0 þ lωs), and
ωξ ¼ ξð1Þωβ;0=η. By plugging the last result on Hp

l ðrÞ into
Eq. (27), one finds

ΩðlÞ −ωβ;0− lωs ¼−i
Ne2c

2ωβ;0T2
0E

X∞
p¼−∞

Z⊥
1 ðω0ÞJ2l

�
ω0ẑ
c

− χ

�
;

ðA2Þ

where χ ¼ ωξẑ=c is the head-tail phase parameter.
Equation (A2) is indeed equivalent to Chao’s Eq. (6.188)
in Ref. [12].

APPENDIX B: EQUIVALENCE OF DISPERSION
RELATION TO EXISTING THEORY
BY SCOTT BERG AND RUGGIERO

This section demonstrates that the stability diagram
theory developed by Scott Berg and Ruggiero in
Ref. [8] for detuning with longitudinal action (which
corresponds to a detuning from second-order chromaticity
as explained in [7]) is a special solution of Eq. (29) derived
in this paper. Scott Berg and Ruggiero’s dispersion relation
reads [8]

ðΔΩðlÞ
linÞ−1 ¼

1eN
Z

∞

0

Jjljz λðJzÞ
ΩðlÞ − ωβðJzÞ − lωs

dJz;

eN ¼
Z

∞

0

Jjljz λðJzÞdJz: ðB1Þ

l is the azimuthal mode number of the instability under
consideration, and λ represents the unperturbed, stationary
particle distribution in the longitudinal phase space.
ωβðJzÞ ¼ ωβ;0 þ ΔωβðJzÞ describes the betatron frequency
dependence on the longitudinal action Jz. The latter is
related to the longitudinal amplitude r via r ¼ ffiffiffiffiffiffiffiffiffiffiffi

2Jzβz
p

.
Note that in their paper, Scott Berg and Ruggiero also
include a dependence of ωs on Jz. This has been ignored
here, but could be easily included also in our formalism.
Scott Berg and Ruggiero assume in their derivations that:
(i) the frequency of the impedance is much smaller than the
beam spectrum, and (ii) that the longitudinal wakefield
term induced by the transverse wakefield can be ignored.
The first approximation basically means that the impedance
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drops out of the equation, similarly to Sec. III B, where a
strongly peaked impedance was assumed. The second
approximation has also been made in this study when
deriving the Vlasov equation in Sec. II A. It is valid as
long as synchro-betatron resonance conditions are avoided
(ωβ;0 � lωs ¼ nω0; for l ∈ Z), and given that the trans-
verse beam sizes are small enough [12].
The derivations made in this paper led to the dispersion

relation [Eq. (31)]

ðΔΩðlÞ
linÞ−1 ¼

1

N

Z
∞

0

rg0ðrÞjHp0

l ðrÞj2
ΩðlÞ − ωβðrÞ − lωs

dr;

N ¼
Z

∞

0

rg0ðrÞjHp0

l ðrÞj2dr; ðB2Þ

where all the functions have been defined in the main text.
To demonstrate that this equation is equivalent to Eq. (B1),
we start off by approximating the Hp0

l ðrÞ function.
Assuming that the second-order effects from chromaticity
accounted for by the phase terms in Hp0

l ðrÞ can be
neglected, and using Eq. (A1), one obtains

Hp0

l ≈ i−le−iξ
ð1Þωβ;0

ηc rJl

�
ω0 − ωξ

c
r

�
; ðB3Þ

jHp0

l j2 ≈ jJl
�
ω0 − ωξ

c
r

�����2 ðB4Þ

By assumption (i), there is a contribution from the
impedance only at low frequencies, meaning that the
argument of the Bessel function in the previous equation
is small. Hence, JlðxÞ can be expanded around x ¼ 0

JlðxÞ ≈ i−lþjlj
�

xjlj

2−jljΓð1þ jljÞ

�

¼ i−lþjlj
�

xjlj

2−jljjlj!

�
;

jJlðxÞj2 ≈
x2jlj

2−2jljjlj!2 ; ðB5Þ

since the Gamma function Γ is defined as

Γð1þ jljÞ ¼ jlj!; for jlj ∈ N0: ðB6Þ

After changing the integration variable r → Jz, using
r ¼ ffiffiffiffiffiffiffiffiffiffiffi

2Jzβz
p

, one finds

ðΔΩðlÞ
linÞ−1 ¼

Cl

N

Z
∞

0

dJz
g0ðJzÞJjljz

ΩðlÞ − ωβðJzÞ − lωs
;

N ¼ Cl

Z
∞

0

g0ðJzÞJjljz dJz; ðB7Þ

with

Cl ¼
β1þjlj
z ½ω0−ωξ

c r�2
4jlj!2 : ðB8Þ

The constant Cl drops out of the equation. After
redefining N accordingly, one indeed reveals Scott Berg
and Ruggiero’s dispersion relation

ðΔΩðlÞ
linÞ−1 ¼

1

N

Z
∞

0

Jjljz g0ðJzÞ
ΩðlÞ − ωβðJzÞ − lωs

dJz;

N ¼
Z

∞

0

Jjljz g0ðJzÞdJz; ðB9Þ

with g0ðJzÞ≡ λðJzÞ.

[1] A. Grudiev, Radio frequency quadrupole for Landau
damping in accelerators, Phys. Rev. Accel. Beams 17,
011001 (2014).

[2] M. Schenk, A. Grudiev, K. Li, and K. Papke, Analysis of
transverse beam stabilization with radio frequency quadru-
poles, Phys. Rev. Accel. Beams 20, 104402 (2017).

[3] M. Benedikt and F. Zimmermann, Future Circular Col-
liders, CERN Technical Report No. CERN-ACC-2015-
0164, 2015.

[4] J. Gareyte, J. P. Koutchouk, and F. Ruggiero, Landau
damping, dynamic aperture and octupoles in LHC, CERN
Technical Report No. CERN-LHC-Project-Report-91,
1997.

[5] M. Schenk, X. Buffat, L. Carver, A. Grudiev, K. Li, A.
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