
 

Explicit symplectic integrator for particle tracking in s-dependent static
electric and magnetic fields with curved reference trajectory
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We describe a method for symplectic tracking of charged particles through static electric and magnetic
fields. The method can be applied to cases where the fields have a dependence on the longitudinal as well as
transverse position and where the reference trajectory may have nonzero curvature. Application of the
method requires analytical expressions for the scalar and vector potentials: We show how suitable
expressions, in the form of series analogous to multipole expansions, can be constructed from numerical
field data, allowing the method to be used in cases where only numerical field data are available.
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I. INTRODUCTION

The magnetic and (in some cases) electric fields used to
guide particles in an accelerator are often arranged so that
particles ideally follow a curved trajectory. In simple cases,
for example, a magnetic dipole field, standard expressions
can be used to calculate the path of a particle through both
the main field and the fringe-field regions of the relevant
element. However, in more complex cases, calculating
particle trajectories can be challenging: Such cases include,
for example, situations where quadrupole or higher-order
multipole fields are included by design within a dipole field
or where account needs to be taken of multipole compo-
nents occurring from systematic or random errors within
the element. In general, the problem of particle tracking can
be broken down into two parts. First, an accurate descrip-
tion of the field is needed; second, the equations of motion
through the field must be integrated to find the path
followed by a given particle. It is often possible to use a
numerical field map to describe the field; then, standard
integration algorithms (for example, Runge-Kutta algo-
rithms) can be used to integrate the equations of motion.
However, an approach such as this can be computationally
expensive, both in terms of the memory needed to store the
field data and in terms of the processing involved in
integrating the equations of motion. Furthermore, if there
are specific constraints or requirements for the trajectories,
then additional challenges can occur. For example, if the
tracking must obey the symplectic condition, then an

explicit Runge-Kutta integration algorithm cannot be used.
Symplectic Runge-Kutta algorithms do exist but are
implicit in the sense that each step requires the solution
of a set of algebraic equations that can add significantly to
the computation time.
Regarding the description of the field, an alternative

approach to a numerical field map is to represent the field as
a superposition of a number of “modes.” Given a set of
coefficients, the field can be calculated at any position by
summing the functions describing the different modes. This
is the approach generally taken for multipole fields, for
example, where the horizontal and vertical magnetic field
components Bx and By (respectively) are given by

By þ iBx ¼
Xmmax

m¼0

Cmðxþ iyÞm: ð1Þ

The upper limit of the sum, mmax, is chosen to provide the
accuracy required for the field. The advantages of this
approach over a numerical field map are first that the data
describing the field are contained in a relatively small set of
coefficients and second that the calculation of the field at an
arbitrary point does not need interpolation between grid
points, which can be an issue in some circumstances for a
numerical field map. The field represented by the multipole
expansion (1) is independent of the distance along the
reference trajectory and so is appropriate for the main field
region within an accelerator element. Depending on the
situation being considered, fringe fields may be neglected
altogether (as in the “hard edge” approximation) or may be
represented using appropriate expressions based, for exam-
ple, on generalized gradients [1] or formulas representing
solutions to Maxwell’s equations with appropriate limiting
behavior [2].
A semianalytical field description such as (1) has a

further advantage over a purely numerical description in the
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context of particle tracking. In some cases, it is possible to
construct explicit transfer maps parameterized, for exam-
ple, in terms of the mode coefficients and element length:
The transfer maps then offer the possibility of greater
computational efficiency over numerical integration tech-
niques, such as Runge-Kutta algorithms. Furthermore, if
the transfer maps are constructed in an appropriate way,
then the tracking can satisfy requirements such as sym-
plecticity. An explicit symplectic integrator for general s-
dependent static magnetic fields, in systems with a straight
reference trajectory, has been presented by Wu, Forest, and
Robin [3]. The application of the integrator requires the
derivatives of the vector potential; it is therefore convenient
to have a semianalytical field description, which allows the
derivatives to be expressed in terms of appropriate modes in
the same way as the potential itself, thus avoiding the need
for taking derivatives numerically.
In elements designed to bend the beam trajectory, it is

usually convenient to use a reference trajectory that
follows the intended curvature of the path followed by
the beam. In such cases, the standard multipole expansion
(1) must be modified to give a field that satisfies

Maxwell’s equations. For completeness, we would like
to have a set of modes that can be used to describe three-
dimensional electric and magnetic fields in a coordinate
system based on a curved reference trajectory and an
efficient method for integrating the equations of motion
for particles moving through these fields. In this paper, we
present a suitable set of modes for static electric and
magnetic fields and an explicit symplectic integrator for
tracking particles through a given field (i.e., a field
represented by a certain set of coefficients). The mode
decomposition that we use is based on solutions to
Laplace’s equation in toroidal coordinates; the explicit
symplectic integrator is developed following the method
of Wu, Forest, and Robin [3].

II. DEFINITIONS

We consider a particle of charge q moving (at a
relativistic velocity v) through a static electromagnetic
field described by a scalar potentialΦ and a vector potential
A ¼ ðAx; Ay; AsÞ. The Hamiltonian for the motion of the
particle is [4]

H ¼ δ

β0
− ð1þ hxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
δþ 1

β0
−

qΦ
cP0

�
2

− ðpx − axÞ2 − ðpy − ayÞ2 −
1

β20γ
2
0

s
− ð1þ hxÞas; ð2Þ

where a particle with the chosen reference momentum P0

has velocity β0c and relativistic factor γ0 ¼ ð1 − β20Þ−1=2
and the scaled vector potential a ¼ ðax; ay; asÞ ¼ qA=P0.
The independent variable for the system is s, corresponding
to distance along a reference trajectory. The reference
trajectory follows the arc of a circle (in the plane
perpendicular to y) with radius ρ ¼ 1=h. At any point
along the reference trajectory, the coordinates x and y
describe (respectively) the horizontal and vertical position
of the particle in a plane perpendicular to the reference
trajectory. The longitudinal coordinate is defined as

z ¼ s
β0

− ct; ð3Þ

where the particle arrives at position s along the reference
trajectory at time t (and we can assume that, for the
reference particle, s ¼ 0 at time t ¼ 0).
The momenta conjugate to the coordinates x and y are

px ¼
γmvx
P0

þ ax; py ¼
γmvy
P0

þ ay; ð4Þ

where γ is the relativistic factor of the particle, m is the
mass, and vx and vy are the components of the velocity

parallel to the x and y axes, respectively. The longitudinal
conjugate momentum is

δ ¼ E
cP0

−
1

β0
; ð5Þ

where E ¼ γmc2 þ qΦ is the total energy of the particle.
To simplify some of the formulas, we introduce the
“scaled” scalar potential ϕ, defined by

ϕ ¼ qΦ
cP0

: ð6Þ

III. DERIVATION OF THE
SYMPLECTIC INTEGRATOR

Our method follows the technique of Wu, Forest, and
Robin [3]. We first extend the phase space by introducing a
new independent variable σ so that s is now a dynamical
variable with conjugate momentum ps. The Hamiltonian
describing the motion of a particle through an electrostatic
field with scaled potential ϕ ¼ ϕðx; y; sÞ and magnetic field
described by a scaled potential a ¼ ðax; ay; asÞ is now
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H0 ¼ ps þ
δ

β0
− ð1þ hxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
δþ 1

β0
− ϕ

�
2

− ðpx − axÞ2 − ðpy − ayÞ2 −
1

β20γ
2
0

s
− ð1þ hxÞas: ð7Þ

We shall consider the special case where the magnetic
field has a uniform vertical field component, which can be
represented by a component of the vector potential:

as ¼ −k0xþ
k0hx2

2ð1þ hxÞ ; ð8Þ

where k0 ¼ qB0=P0 for a magnetic field of strength B0. If
the field is correctly matched to the curvature of the
reference trajectory (so that the reference trajectory is a
possible physical trajectory of a particle with momentum
P0), then h ¼ k0. Other components of the magnetic field
can be included in the components ax and ay of the vector
potential.
We assume that the dynamical variables take small

values so that we can approximate the Hamiltonian by
expanding the square root to some order in the dynamical
variables. In the conventional paraxial approximation, the
expansion is made to second order. Here, we expand to
third order and obtain

H0 ≈H1s þH1y þH1x þH2 þH3 − 1; ð9Þ

where

H1s ¼ ps þ ðk0 − hÞxþ 1

2
hk0x2; ð10Þ

H1y ¼
1

2

�
1þ hx −

δ

β0

�
ðpy − ayÞ2; ð11Þ

H1x ¼
1

2

�
1þ hx −

δ

β0

�
ðpx − axÞ2; ð12Þ

H2 ¼
ϕ

β0
þ ðδ − ϕÞ2

2β20γ
2
0

�
1þ hx −

δ − ϕ

β0

�
−
δ − ϕ

β0
hx; ð13Þ

H3 ¼
ϕ

2β0
½ðpx − axÞ2 þ ðpy − ayÞ2�: ð14Þ

It should be noted that the values of the dynamical variables
depend on the choice of gauge for the electromagnetic
potentials: It should be borne in mind, therefore, that the
choice of gauge may affect the accuracy of the expansion
given in Eqs. (10)–(14). Also, the expansion and splitting
of the Hamiltonian may be done in different ways. For
example, in cases where the energy E of a particle is
constant, then δ may be treated as a parameter rather than a
variable so a more accurate dependence on δ may be
retained in the expansion.

Viewed as a Hamiltonian in its own right, the termH1s is
integrable, but this is not the case for the other terms, H1y,
H1x,H2, orH3. However, by making appropriate canonical
transformations to new variables, we can express H1y, H1x,
and H2 in integrable form. Assuming that the choice of
gauge is such that the potential ϕ has no zeroth-order
(constant) term, then H3 is of the order of 3 (or higher) in
the dynamical variables; we assume we can drop this term
(with some loss of accuracy in the solution to the equations
of motion). We can then construct an explicit symplectic
integrator as follows. The map for a step corresponding to a
change Δσ in the independent variable σ is represented by

e−Δσ∶H∶ ≈ e−ðΔσ=2Þ∶H1∶e−Δσ∶H2∶e−ðΔσ=2Þ∶H1∶; ð15Þ

where

H1 ¼ H1s þH1y þH1x: ð16Þ

Continuing the process,

e−ðΔσ=2Þ∶H1∶

≈ e−ðΔσ=4Þ∶H1sþH1y∶e−ðΔσ=2Þ∶H1x∶e−ðΔσ=4Þ∶H1sþH1y∶; ð17Þ

and finally

e−ðΔσ=4Þ∶H1sþH1y∶ ≈ e−ðΔσ=8Þ∶H1s∶e−ðΔσ=4Þ∶H1y∶e−ðΔσ=8Þ∶H1s∶:

ð18Þ

The transformations associated with the generator H1s
are

e−ðΔσ=8Þ∶H1s∶s ¼ sþ Δσ
8

; ð19Þ

e−ðΔσ=8Þ∶H1s∶px ¼ px −
Δσ
8

ðk0 − hþ k0hxÞ; ð20Þ

with the transformations of all other variables (not shown
explicitly) corresponding to the identity.
Now consider H1y. To find an explicit form for the

transformation generated by H1y, we first consider a
transformation to new variables, defined by a mixed-
variable generating function:

FyðXi; pi; σÞ ¼ IY − Xpx − Ypy − Zδ − Sps; ð21Þ

where Xi ¼ ðX; Y; Z; SÞ are the new coordinates, pi ¼
ðpx; py; δ; psÞ are the originalmomenta, and IY is defined by
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IY ¼
Z

Y

0

ayðX; Ȳ; SÞdȲ: ð22Þ

In Goldstein’s nomenclature [5], FyðXi; pi; σÞ is a mixed-
variable generating function of the third kind. The new
coordinates ðX; Y; Z; SÞ are identical to the original coor-
dinates ðx; y; z; sÞ, since

x ¼ −
∂Fy

∂px
¼ X; ð23Þ

and similarly for y, z, and s. The new momenta are

PX ¼ −
∂Fy

∂X ¼ px −
∂IY
∂X ; ð24Þ

PY ¼ −
∂Fy

∂Y ¼ py − ay; ð25Þ

PS ¼ −
∂Fy

∂S ¼ ps −
∂IY
∂S ; ð26Þ

and

PZ ¼ δ: ð27Þ

In terms of the new variables, H1y can be written

H1y ¼
1

2

�
1þ hX −

PZ

β0

�
P2
Y: ð28Þ

Viewed as a Hamiltonian, H1y is integrable. The trans-
formations (generated byH1y) of the dynamical variables are

e−ðΔσ=4Þ∶H1y∶PX ¼ PX −
Δσ
8

hP2
Y; ð29Þ

e−ðΔσ=4Þ∶H1y∶Y ¼ Y þ Δσ
4

�
1þ hX −

PZ

β0

�
PY; ð30Þ

e−ðΔσ=4Þ∶H1y∶Z ¼ Z −
Δσ
8β0

P2
Y: ð31Þ

Again, the transformations of all other variables (i.e., for
those variables not shown explicitly above) are given by
the identity transformation. To apply the transformation
e−ðΔσ=4Þ∶H1y∶, we first transform from the original variables
to a set of new variables using (24)–(26); we then apply the
transformations (29)–(31) and finally transform back to the
original variables using the inverse of the transformations
(24)–(26). Note that, although the new momenta PY and PZ
do not change under the transformation generated by H1y,
there will be changes in the original momenta py and ps

because of the change in the coordinate Y. The change in Y
means that the inverse of transformations (24)–(26) have
to be calculated at a different point from the original
transformations. Thus,

e−ðΔσ=4Þ∶H1y∶px ¼ px −
Δσ
8

h½py − ayðx; y0; sÞ�2

þ
Z

y1

y0

∂
∂x ayðx; ȳ; sÞdȳ; ð32Þ

e−ðΔσ=4Þ∶H1y∶py ¼ py þ ayðx; y1; sÞ − ayðx; y0; sÞ; ð33Þ

where y0 and y1 correspond to the initial and final values,
respectively, of the coordinate y under the transformation
e−ðΔσ=4Þ∶H1y∶. There is also a change in ps, but this has no
effect on the dynamics. In summary, to apply the trans-
formation e−ðΔσ=4Þ∶H1y∶, we need to evaluate ay (at the initial
value of the coordinate y ¼ y0 and at the final value of the
coordinate y ¼ y1) and the integral (with respect to y) of the
derivative of ay (with respect to x).
In Sec. IV B, we give analytical expressions for the

components of the vector potential, based on a three-
dimensional “multipole” decomposition of a magnetic field
in a region with a curved reference trajectory. It is also
possible to write down expressions for the derivatives of the
vector potential; however, the integral in (32) needs to be
performed numerically. Although this will make a signifi-
cant contribution to the computational cost for each step in
the tracking calculation, in most cases the integral should
converge reasonably quickly given that the derivative of the
potential (which is related to the field strength) should vary
slowly over the range of the integral (corresponding to the
change in the y coordinate over the tracking step).
The transformation with generator H1x may be handled

in a similar way to that generated by H1y, by first trans-
forming to new variables. For the case of H1x, we use the
mixed-variable generating function

FxðXi; pi; σÞ ¼ IX − Xpx − Ypy − Zδ − Sps; ð34Þ

where

IX ¼
Z

X

0

axðX̄; Y; SÞdX̄: ð35Þ

Note that the new variables in this case (coordinates X, Y,
Z, and S and momenta PX, PY , PZ, and PS) are formally
different from the variables in the previous case; but, to
avoid introducing further notation, we use the same
symbols. The transformations (generated by H1x) of the
dynamical variables are

e−ðΔσ=2Þ∶H1x∶x ¼ Δσ
2

�
1 −

δ

β0

��
1þ Δσ

8
hPX

�
PX

þ
�
1þ Δσ

4
hPX

�
2

x; ð36Þ

e−ðΔσ=2Þ∶H1x∶px ¼
PX

1þ Δσ
4
hPX

þ axðx1; y; sÞ; ð37Þ
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e−ðΔσ=2Þ∶H1x∶py ¼ py þ
Z

x1

x0

∂
∂y axðx̄; y; sÞdx̄; ð38Þ

e−ðΔσ=2Þ∶H1x∶z ¼ z −
Δσ
4β0

P2
X

ð1þ Δσ
4
hPXÞ

; ð39Þ

where

PX ¼ px − axðx0; y; sÞ ð40Þ

and x0 and x1 are the values of x before and after the
transformation e−ðΔσ=2Þ∶H1x∶, respectively. The variables y
and δ are unchanged by the transformation.
Finally, we find explicit expressions for the transforma-

tion with generator H2 by again first transforming to new
variables. In this case, we use a mixed-variable generating
function:

F0
3ðX0

i; pi;σÞ ¼ ϕðX0; Y 0; S0ÞZ0 −X0px − Y 0py −Z0δ− S0ps;

ð41Þ

where X0
i ¼ ðX0; Y 0; Z0; S0Þ are the new coordinates and

pi ¼ ðpx; py; δ; psÞ are the original momenta. The new
coordinates are identical to the original coordinates, since

x ¼ −
∂F0

3

∂px
¼ X0; ð42Þ

and similarly for y, z, and s. The new momenta are

P0
X ¼ −

∂F0
3

∂X0 ¼ px −
∂ϕ
∂X0 Z

0; ð43Þ

P0
Y ¼ −

∂F0
3

∂Y 0 ¼ py −
∂ϕ
∂Y 0 Z

0; ð44Þ

P0
S ¼ −

∂F0
3

∂S0 ¼ ps −
∂ϕ
∂S0 Z

0; ð45Þ

and

P0
Z ¼ δ − ϕ: ð46Þ

In terms of the new variables, H2 can be written

H2 ¼
ϕ

β0
þ P02

Z

2β20γ
2
0

�
1þ hX0 −

P0
Z

β0

�
−

h
β0

X0P0
Z; ð47Þ

which is an integrable Hamiltonian, leading to the trans-
formations

e−Δσ∶H2∶P0
X ¼P0

X−
Δσ
β0

∂ϕ
∂X0−Δσ

hP02
Z

2β20γ
2
0

þΔσ
h
β0

P0
Z; ð48Þ

e−Δσ∶H2∶P0
Y ¼ P0

Y −
Δσ
β0

∂ϕ
∂Y 0 ; ð49Þ

e−Δσ∶H2∶P0
S ¼ P0

S −
Δσ
β0

∂ϕ
∂S0 ; ð50Þ

e−Δσ∶H2∶Z0 ¼ Z0 −
Δσ
β0

hX0

þ Δσ
P0
Z

β20γ
2
0

�
1þ hX0 −

3P0
Z

2β0

�
: ð51Þ

Again, transformations of the variables not given
explicitly above are equal to the identity.

IV. s-DEPENDENT FIELDS IN
TOROIDAL COORDINATES

Applying the symplectic integrator described in Sec. III
involves derivatives of the scalar potential and derivatives
and integrals of the vector potential. It is therefore helpful to
have analytic representations of the scalar and vector
potentials, from which expressions for the derivatives
and integrals may be found. In practice, however, only a
purely numerical representation of the potentials may be
available (giving, for example, the values of the potentials
on a grid of discrete points over some region of space).
With a straight reference trajectory (h ¼ 0), it is possible to
fit the coefficients of series representations of the poten-
tials, for example, using generalized gradients [1]; the
series representation gives the functional dependence of the
potential on the coordinates, and this therefore provides a
suitable representation for applying the integrator.
A similar approach is possible in the case that the reference

trajectory has some nonzero curvature. Expressions for
“curvilinear multipoles” (multipole fields around curved
reference trajectories) have been given by McMillan and
others [6–10] and have been implemented in the tracking
code Bmad [11]. However, the available expressions are not
ideal for usewhere the potential is given in a purely numerical
form. In much of the previous work, the multipoles are
expressed in terms of the transverse Cartesian coordinates x
and y: Obtaining the multipole coefficients then involves
fitting polynomials to the numerical data along either the x or
the y axis [12]. The nature of the potential (which satisfies
Laplace’s equation) is such that residuals to the fit will grow
exponentially with distance from the line along which the fit
is performed. A more robust approach is based on fitting
to a surface bounding some region of space enclosing the
reference trajectory: Within the surface, the residuals
decrease exponentially with distance from the surface.
Although the residuals will still grow exponentially outside
the region enclosed by the surface, if the surface is chosen
appropriately, then the enclosed regionwill cover the volume
of interest for particle tracking.
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To obtain a multipole decomposition based on fitting
numerical data on a surface, it is convenient in the case of a
curved reference trajectory to work in toroidal coordinates
[9,13,14]. The coordinates in the transverse plane are
illustrated in Fig. 1. The toroidal coordinates u and v
are related to the accelerator coordinates x and y (Cartesian
coordinates in a plane perpendicular to the reference
trajectory) by

x ¼ ρ

�
sinhðuÞ

coshðuÞ − cosðvÞ − 1

�
; ð52Þ

y ¼ ρ sinðvÞ
coshðuÞ − cosðvÞ ; ð53Þ

where ρ ¼ 1=h is the radius of curvature of the reference
trajectory. The longitudinal coordinate s (the distance
along the reference trajectory) is related to the toroidal
coordinate θ by

s ¼ ρθ: ð54Þ

A surface enclosing the reference trajectory can be defined
by specifying a fixed value uref for the coordinate u: A
surface defined by u ¼ uref for 0 ≤ v < 2π and 0 ≤ θ < 2π
resembles a torus. If numerical field data are available for
the scalar and vector potentials on such a surface, then it is
possible to fit the coefficients of series expansions for the

scalar and vector potentials (up to some desired order) to
the data. This produces expressions that are suitable for use
in the explicit symplectic integrator described in Sec. III.
We first discuss the case of the scalar potential and then
extend the results to the vector potential.
A potential drawback of the use of toroidal coordinates is

the fact that a point on the reference trajectory (which has,
by definition, x ¼ y ¼ 0) is described in toroidal coordi-
nates by the limit u → ∞. This raises the possibility of
numerical instabilities when calculating the potentials or
tracking particles close to the reference trajectory, and some
care may be needed in the practical implementation of the
relevant formulas. However, in realistic cases the expres-
sions for the potentials are well behaved in the limit
u → ∞, as should be expected for physical quantities.
The examples given in Sec. V are based on an implemen-
tation of the formulas for calculating the potentials and
tracking particles inMathematica 5.0 [15], and we have not
encountered any problems from numerical instabilities
when using this code.

A. Scalar potential in toroidal coordinates

In terms of the toroidal coordinates, an harmonic
potential (such that ∇2ϕ ¼ 0) may be written [13,16]

ϕ ¼
X∞

m;n¼−∞
fmnϕmn; ð55Þ

where the fmn are coefficients representing the strength of a
multipole component ϕmn. The multipole components are
given by

ϕmn ¼ ð−iÞmCðu; vÞP−jmj
n−ð1=2ÞðcothðuÞÞeimveinθ; ð56Þ

where Pμ
νðξÞ is an associated Legendre polynomial of the

first kind and

Cðu; vÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coshðuÞ − cosðvÞ

sinhðuÞ

s
¼

ffiffiffiffiffiffiffiffiffiffiffi
ρ

xþ ρ

r
: ð57Þ

An algorithm for the computation of the associated
Legendre polynomials with positive μ has been presented
by Segura and Gil [17]; values for negative μ are readily
obtained using [18]

P−μ
ν ðξÞ ¼ Γðν − μþ 1Þ

Γðνþ μþ 1Þ
�
Pμ
νðξÞ − 2

π
e−iμπ sinðμπÞQμ

νðξÞ
�
;

ð58Þ

where Qμ
νðξÞ is an associated Legendre polynomial of the

second kind. Note that, for integer μ (which is the case of
interest here), the term in Qμ

νðξÞ in (58) vanishes.

FIG. 1. Toroidal coordinates. The red curves show lines of
constant v from 0 to 2π. The blue curves show lines of constant
value for the coordinate u in the range 0.5–4 in steps of 0.5, with
0 ≤ v < 2π. Larger values of u give circles of smaller diameter;
in the limit u → ∞, the circles converge towards the reference
trajectory x ¼ y ¼ 0.
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We shall show in Sec. IV C that each component ϕmn has
properties that may be expected of a multipole of the order
of m, with m ¼ 1 corresponding to a dipole, m ¼ 2
a quadrupole, and so on. Note that a normal dipole deflects
a particle horizontally, whereas a skew dipole deflects a
particle vertically.
Given numerical data for a potential ϕðu; v; θÞ, the

coefficients fmn may be obtained from

fmn ¼
1

Nmn

Z
2π

0

dv
Z

2π

0

dθ
e−imve−inθϕðuref ; v; θÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

coshðurefÞ − cosðvÞp ; ð59Þ

where uref is a fixed value of u that defines the surface
(enclosing the reference trajectory, x ¼ y ¼ 0) on which
the fit to the numerical data is performed and Nmn is a
normalizing factor:

Nmn ¼ ð−iÞm4π2
P−jmj
n−ð1=2ÞðcothðurefÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sinhðurefÞ
p : ð60Þ

As an alternative to calculating the coefficients fmn from
the scalar potential, they may be calculated from the electric
field components. The electric field is derived from the
potential by

E ¼ ðEu; Ev; EθÞ ¼ −∇Φ ¼ −
cP0

q
∇ϕ: ð61Þ

The Ev component of the field (tangential to a line defined
by fixed values of u and θ) is given by

Ev ¼ −
cP0

q

X
m;n

fmn
ð−iÞm
ρ

�
1

2
sinðvÞ þ im½coshðuÞ − cosðvÞ�

�
Cðu; vÞP−jmj

n−ð1=2ÞðcothðuÞÞeimveinθ: ð62Þ

The coefficients fmn can then be found from the values of Ev on a surface u ¼ uref :

fmn ¼
1

N0
mn

Z
2π

0

dv
Z

2π

0

dθ
e−imve−inθEvðuref ; v; θÞ�

1
2
sinðvÞ þ im½coshðurefÞ − cosðvÞ�

�
Cðuref ; vÞ

; ð63Þ

where

N0
mn ¼ −

ð−iÞm
ρ

4π2P−jmj
n−ð1=2ÞðcothðurefÞÞ: ð64Þ

To apply the symplectic integrator described in Sec. III,
we need the derivatives of the potential with respect to the
Cartesian coordinates. The derivates can be obtained from

∂ϕ
∂x ¼ ∂ϕ

∂u
∂u
∂x þ

∂ϕ
∂v

∂v
∂x ; ð65Þ

∂ϕ
∂y ¼ ∂ϕ

∂u
∂u
∂y þ

∂ϕ
∂v

∂v
∂y ; ð66Þ

and

∂ϕ
∂s ¼ ∂ϕ

∂θ
∂θ
∂s ¼

1

ρ

∂ϕ
∂θ : ð67Þ

For a given multipole component (56), the derivatives with
respect to the toroidal coordinates u and v are

∂ϕmn

∂u ¼ ð−iÞm
��

n cothðuÞ þ 1

2Cðu; vÞ
�
P−jmj
n−ð1=2ÞðcothðuÞÞ

−
�
jmj þ nþ 1

2

�
Cðu; vÞP−jmj

nþð1=2ÞðcothðuÞÞ
�

× eimveinθ ð68Þ

and

∂ϕmn

∂v ¼ ð−iÞm
�

sinðvÞ
2 sinhðuÞCðu; vÞ þ imCðu; vÞ

�

× P−jmj
n−ð1=2ÞðcothðuÞÞeimveinθ: ð69Þ

Finally, we need the derivatives of the toroidal coordinates
ðu; vÞ with respect to the Cartesian coordinates ðx; yÞ. The
toroidal coordinates can be expressed in terms of the
Cartesian coordinates as follows:

u − iv ¼ 2coth−1
�
1þ xþ iy

ρ

�
: ð70Þ

We then find
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∂u
∂x ¼ ∂v

∂y ¼ −2ρ½ð2ρþ xÞx − y2�
ðx2 þ y2Þ½ð2ρþ xÞ2 þ y2�

¼ 1

ρ
½1 − coshðuÞ cosðvÞ� ð71Þ

and

∂u
∂y ¼ −

∂v
∂x ¼ −4ρðρþ xÞy

ðx2 þ y2Þ½ð2ρþ xÞ2 þ y2�
¼ 1

ρ
sinhðuÞ sinðvÞ: ð72Þ

The derivatives of the potential with respect to the Cartesian
coordinates can be found by using Eqs. (68), (69), (71), and
(72) in Eqs. (65) and (66). Tracking a particle through a
field described by a scalar potential can then be achieved by
using the potential and its derivatives (with respect to x and
y) in the symplectic integrator described in Sec. III.

B. Vector potential in toroidal coordinates

To apply the explicit symplectic integrator to a particle
moving through a magnetic field, we need expressions for
the components of the vector potential. Since we address
the case of a curved reference trajectory, we assume that the
magnetic field has a (normal) dipole component derived
from the longitudinal component as of the vector potential
(8). Other components of the magnetic field (corresponding

to quadrupole or higher-order multipole components) may
be derived from the transverse components of the vector
potential. In toroidal coordinates, these components may be
expressed as follows:

au ¼ i sinhðuÞ
X∞

m;n¼−∞

αmn

n
∂ϕmn

∂v ; ð73Þ

av ¼ −i sinhðuÞ
X∞

m;n¼−∞

αmn

n
∂ϕmn

∂u ; ð74Þ

where the functions ϕmn are given by (56). In the case that
aθ ¼ 0 [i.e., the longitudinal component of the vector
potential is zero so that k0 ¼ 0 in (8)] and αmn ¼ fmn
for all m, n, it is found that

∇ × a ¼ −∇ϕ; ð75Þ

with ϕ given by (55). Hence, the magnetic field derived
from the vector potential a ¼ ðau; av; 0Þ with components
(in toroidal coordinates) given by (73) and (74) has the
same form as the electric field derived from the scalar
potential ϕ given by (55).
To apply the symplectic integrator described in Sec. III,

we require the components of the vector potential in
Cartesian coordinates and their derivatives. Given the
components ðau; avÞ in toroidal coordinates, the compo-
nents ðax; ayÞ in Cartesian coordinates are obtained from

ax ¼
1

N
∂x
∂u au þ

1

N
∂x
∂v av ¼

½1 − coshðuÞ cosðvÞ�au − sinhðuÞ sinðvÞav
coshðuÞ − cosðvÞ ; ð76Þ

ay ¼
1

N
∂y
∂u au þ

1

N
∂y
∂v av ¼ −

½1 − coshðuÞ cosðvÞ�av þ sinhðuÞ sinðvÞau
coshðuÞ − cosðvÞ ; ð77Þ

where the normalizing factor N is

N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�∂x
∂u

�
2

þ
�∂y
∂u

�
2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�∂x
∂v

�
2

þ
�∂y
∂v

�
2

s

¼ ρ

coshðuÞ − cosðvÞ : ð78Þ

The derivatives of ax and ay with respect to the Cartesian
coordinates x and y can be expressed in terms of the
derivatives with respect to the toroidal coordinates u and v:

∂ax
∂y ¼ ∂u

∂y
∂ax
∂u þ ∂v

∂y
∂ax
∂v ; ð79Þ

∂ay
∂x ¼ ∂u

∂x
∂ay
∂u þ ∂v

∂x
∂ay
∂v : ð80Þ

Given (73) and (74), the derivatives of ax and ay with
respect to the toroidal coordinates may be found from the
second derivatives of the scalar potential:

∂2ϕmn

∂u2 ¼ ð−iÞm
�

c1
16sinh4ðuÞCðu; vÞ3 P

−jmj
n−ð1=2ÞðcothðuÞÞþ

c2
sinh2ðuÞCðu; vÞ

�
jmj þ nþ 1

2

�
P−jmj
nþð1=2ÞðcothðuÞÞ

þ Cðu; vÞ
�
jmj þ nþ 1

2

��
jmj þ nþ 3

2

�
P−jmj
nþð3=2ÞðcothðuÞÞ

�
eimveinθ; ð81Þ
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∂2ϕmn

∂u∂v ¼ð−iÞm−1
�

c3
4sinh3ðuÞCðu; vÞ3 P

−jmj
n−ð1=2ÞðcothðuÞÞ þ

c4
2 sinhðuÞCðu; vÞ

�
jmj þ nþ 1

2

�
P−jmj
nþð1=2ÞðcothðuÞÞ

�
eimveinθ;

ð82Þ

∂2ϕmn

∂v2 ¼ð−iÞm c5
sinhðuÞCðu; vÞP

−jmj
n−ð1=2ÞðcothðuÞÞeimveinθ; ð83Þ

where

c1 ¼ 4½1 − 2nð2n − 5Þ − ð1þ 2nþ 4n2Þ coshð2uÞ� cosðvÞ coshðuÞ þ 4nf6ðn − 1Þ þ ½n coshð2uÞ þ n − 2� cosð2vÞg
þ ½5þ 4nð7n − 3Þ� sinhðuÞ2 þ ð1þ 2nÞ2 sinhðuÞ sinhð3uÞ; ð84Þ

c2 ¼ 1þ ð1þ 2nÞ cosðvÞ coshðuÞ − 2ð1þ nÞcosh2ðuÞ; ð85Þ

c3 ¼ 2m cosðvÞ − i sinðvÞ þ in coshðuÞ sinð2vÞ þm½4n − 1þ 2n cosð2vÞ þ ð1þ 2nÞ coshð2uÞ�Þ coshðuÞ
þ ½ið1 − 2nÞ sinðvÞ − 2mð1þ 4nÞ cosðvÞ�cosh2ðuÞ; ð86Þ

c4 ¼ i sinðvÞ − 2m½coshðuÞ − cosðvÞ�; ð87Þ

c5 ¼
1

2
cosðvÞ −m2½coshðuÞ − cosðvÞ� þ

�
im −

sinðvÞ
4½coshðuÞ − cosðvÞ�

�
sinðvÞ: ð88Þ

C. Examples of multipole potentials
in toroidal coordinates

To illustrate the scalar potential given by (55), we
consider the case that the potential is independent of the
longitudinal coordinate θ: As a consequence, we need to
include only a single longitudinal mode n ¼ 0 in the
summation in (55). With a straight reference trajectory
(h ¼ 0), we expect a multipole potential to take the form

ϕm ¼ Re½Cmðxþ iyÞm�; ð89Þ

where the real and imaginary parts of the coefficient Cm
determine the strengths of the normal and skew compo-
nents of the field. Hence, in a normal multipole field of the
order of m, the potential varies along the x axis as

ϕm ¼ ReðCmÞxm ð90Þ

and along the y axis as

ϕm ¼
�
ImðCmÞym odd m;

ReðCmÞym even m:
ð91Þ

With a curved reference trajectory, we expect to see
similar behavior in the dependence of the potential for a
given order of multipole on the x and y coordinates but with

some difference from the dependence given in (89) arising
from the curvature. One way to show a similarity between
multipoles with straight and curved reference trajectories
would be to expand the potential in the case of a multipole
with a curved reference trajectory as a series in x and y;
unfortunately, the fact that the limit x → 0, y → 0 corre-
sponds to u → ∞ makes it problematic to obtain the
appropriate series. However, we can plot the potential
for a given order of (normal or skew) multipole as a
function of x and y: Plots for dipoles, quadrupoles, and
sextupoles are shown in Figs. 2 (normal multipoles) and 3
(skew multipoles).
From Fig. 2(top), for example, we see that for a normal

dipole the potential has an approximately linear depend-
ence on x. With a straight reference trajectory, we would
expect the potential to be independent of y; however, the
curvature of the reference trajectory introduces a second-
order dependence of the potential on y. In the case of a
normal quadrupole (Fig. 2, middle), the potential has a
(roughly) quadratic dependence on both x and y: This again
corresponds to the behavior that we would expect in the
case of a straight reference trajectory. Because the curvature
of the reference trajectory breaks the symmetry between
positive and negative values of x, the effect of the curvature
is more evident in the dependence of the potential on x than
in the dependence of the potential on y. For a skew
quadrupole (Fig. 3, middle), the potential with a straight
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reference trajectory is exactly zero along the x and y axes.
With a curved reference trajectory, the potential is zero
along the x axis (as required by symmetry), but there is a
relatively weak fourth-order dependence of the potential on
y (with x ¼ 0). Other cases demonstrate the general
behavior we would expect for a multipole potential in a
straight coordinate system but with some differences
arising from the curvature of the reference trajectory.

V. TEST CASES

To illustrate application of the explicit symplectic
integrator presented in Sec. III, we consider three test

cases: a curvilinear magnetic skew sextupole, a curvilinear
electrostatic quadrupole, and the fringe-field region of an
electrostatic quadrupole in the g − 2 storage ring [19–22].
The first two cases are “artificial” in the sense that they are
based on fields described by a small number of compo-
nents; the third case is more realistic and uses field
component coefficients fitted to numerical data obtained
from a modeling code. In each case, we track a particle
with some chosen initial conditions through the field
using the explicit symplectic integrator. For comparison,
we also integrate numerically the (Hamiltonian) equations
of motion derived from the exact Hamiltonian (2). All
calculations are performed in Mathematica 5.0 [15]; for

FIG. 2. Scalar potential in normal multipoles with a curved reference trajectory. Each row shows (top to bottom) the potential in a
multipole of the order of n ¼ 1 (dipole), the order of n ¼ 2 (quadrupole), and the order of n ¼ 3 (sextupole). The left-hand and middle
plots in each row show, respectively, the potential (black line) as a function of horizontal position x, with y ¼ 0, and as a function of
vertical position y, with x ¼ 0. The red lines in the left-hand plots show curves ϕ ∝ xn. The red lines in the middle plots show curves
ϕ ∝ ynþ1 for odd n and ϕ ∝ yn for even n. The right-hand plot in each row shows contours of constant potential in the plane
perpendicular to the reference trajectory.
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numerical integration of the equations of motion derived
from the Hamiltonian (2), we use the NDSolve function
with default settings; although this provides a nonsym-
plectic integration, it should achieve good accuracy.

A. Curvilinear magnetic skew sextupole

As a first illustration of the explicit symplectic integrator
presented in Sec. III, we consider the motion of a particle in
an electric field with a (scaled) magnetic scalar potential
given by

ϕ ¼ ϕ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coshðuÞ − cosðvÞ

sinhðuÞ

s �
1

12
P−3
12−ð1=2ÞðcothðuÞÞ sinð12θÞ

−P−3
1−ð1=2ÞðcothðuÞÞ sinðθÞ

�
cosð3vÞ: ð92Þ

The field derived from this potential has the characteristics
of a skew sextupole field, as shown in Fig. 4. We choose the
field strength such that ϕ0 ¼ 5 × 104 and use a radius of
curvature for the reference trajectory ρ ¼ 5 m. A dipole

FIG. 3. Scalar potential in skew multipoles with a curved reference trajectory. Each row shows (top to bottom) the potential in a
multipole of the order of n ¼ 1 (dipole), the order of n ¼ 2 (quadrupole), and the order of n ¼ 3 (sextupole). The left-hand and middle
plots in the top row (dipole) show, respectively, the potential as a function of x, with y ¼ 0, and as a function of y, with x ¼ 0 (black
line). In the middle and bottom rows (quadrupole and sextupole), the left-hand and middle plots show, respectively, the potential as a
function of x, with y ¼ x tanðπ=2nÞ, and as a function of x, with y ¼ −x tanðπ=2nÞ (black lines). The red lines in the left-hand and
middle plots show curves ϕ ∝ xn (or ϕ ∝ yn in the top row, middle plot). The right-hand plot in each row shows contours of constant
potential in the plane perpendicular to the reference trajectory.
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magnetic field is included, represented by the longitudinal
component of the vector potential (8), but with k0 ¼ 1.05=ρ
so that there is a slight mismatch between the field and the
curvature of the reference trajectory.
For the reference particle, we choose β0 ¼ 0.8, and the

initial conditions for the particle to be tracked are

ðx;px;y;py; z;δÞ
¼ ð1 mm;4×10−3;1 mm;−0.1× 10−3;0;0.02Þ: ð93Þ

We track the particle using the explicit symplectic inte-
grator presented in Sec. III, from s ¼ 0 to s ¼ smax ¼ π

6
ρ,

with a step size of Δσ ¼ smax=10. The integration required
in (32) is approximated by Simpson’s rule:

Z
y1

y0

∂ay
∂x

				
y¼ȳ

dȳ ≈
y1 − y0

6

×

�∂ay
∂x

				
y¼y0

þ 4
∂ay
∂x

				
y¼ð1=2Þðy0þy1Þ

þ ∂ay
∂x

				
y¼y1

�
; ð94Þ

where the derivative is evaluated in each case at the
appropriate (fixed) values of x and s and at the indicated
value of y. A similar approximation is made for the
integration in (38). Although these approximations will
lead to some symplectic error, this should be small for a
small step size. In cases where symplecticity is important,
more accurate integration routines can be used, though at a
greater computational cost.

The tracking results are shown in Fig. 5. There is good
agreement between the two integration methods.

B. Curvilinear electrostatic quadrupole

As a second illustration of the explicit symplectic
integrator presented in Sec. III, we consider the motion
of a particle in an electric field with (scaled) scalar potential
given by

ϕ ¼ ϕ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coshðuÞ − cosðvÞ

sinhðuÞ

s �
P−2
12−ð1=2ÞðcothðuÞÞ cosð12θÞ

−P−2
−ð1=2ÞðcothðuÞÞ

�
cosð2vÞ: ð95Þ

This represents the potential for a “curvilinear” electrostatic
quadrupole, with a strength that varies with the longitudinal
position along the reference trajectory. The transverse and
longitudinal variation of the field are described by m ¼ 2
and n ¼ 12 (respectively) in Eq. (55). The potential is
illustrated in Fig. 6. We choose the field strength ϕ0 ¼ 200
and use a radius of curvature for the reference trajectory
ρ ¼ 5 m. We include a magnetic field, represented by the
vector potential (8), but we introduce a small mismatch
between the field and the curvature of the reference
trajectory by setting k0 ¼ 1.05=ρ.
For the reference particle, we choose β0 ¼ 0.8, and the

initial conditions for the particle to be tracked are

FIG. 4. Magnetic field in a curvilinear skew sextupole, derived from the scalar potential (92). Top left: Bx as a function of s for
x ¼ 10 mm and y ¼ 0. Top right: Bx as a function of x for y ¼ 0 and s ¼ π

12
ρ. Bottom left: Bx as a function of y for x ¼ 0, s ¼ π

12
ρ.

Bottom right: By along the line x ¼ y, for s ¼ π
12
ρ. In each plot, the field is scaled by the beam rigidity.
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ðx;px; y;py; z;δÞ ¼ ð2 mm;0;1 mm;−1.1× 10−3;0;0.02Þ:
ð96Þ

We track the particle using the explicit symplectic inte-
grator presented in Sec. III, from s ¼ 0 to s ¼ smax ¼ π

6
ρ,

with a step size of Δσ ¼ smax=40. For comparison, we also
integrate numerically the (Hamiltonian) equations of
motion derived from the exact Hamiltonian (2). The
tracking results are shown in Fig. 7, and again we see
good agreement between the two integration methods.

FIG. 6. Variation of the electrostatic potential (95) in a curvilinear quadrupole, as a function of the coordinates s (left-hand plot, for
x ¼ 10 mm and y ¼ 0), x (middle plot, for y ¼ 0 and s ¼ π

12
ρ), and y (right-hand plot, for x ¼ 0 and s ¼ π

12
ρ).

FIG. 5. Results of tracking a particle through a magnetic curvilinear skew sextupole, described by the magnetic scalar potential given
in Eq. (92). The black points show the results from the explicit symplectic integrator presented in Sec. III. The red lines show the results
of numerical integration of the equations of motion derived from the Hamiltonian (2).
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C. g− 2 storage ring electrostatic quadrupole

As a final example of application of the symplectic
integrator, we consider the fringe-field regions of the
electrostatic quadrupoles in the g − 2 storage ring [19–22].
Values for the potential were calculated (using an finite
element analysis code) at points on a uniform Cartesian
grid; the values of the potential on a surface defined (in
toroidal coordinates) by u ¼ uref ¼ 5.76 were then
obtained by (spline) interpolation. On the surface
u ¼ uref , we used 120 grid points in v, with 0 ≤ v < 2π,
and 80 grid points in θ, with 0 < θ ≤ 2° (such that the ends
of the quadrupole electrodes are at approximately θ ¼ 1°).
The reference radius for the coordinate system is taken to
be the radius of curvature of the reference trajectory in
the g − 2 storage ring, ρ ¼ 7.112 m: This is the radius of
the closed orbit for muons with momentum 3.094 GeV=c.
The value of u ¼ 5.76 then corresponds, for v ¼ 0, to a

point with x ¼ 0.045 m and y ¼ 0, in the conventional
accelerator coordinate system, with the origin for the x and
y coordinates on the reference trajectory.
Based on Eq. (55), coefficients fmn were calculated so

that the potential on any grid point can be found from

ϕ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coshðuÞ− cosðvÞ

sinhðuÞ

s

×
X
m;n

fmnimP−m
n0−ð1=2ÞðcothðuÞÞcosðmvÞsinðn0θÞ; ð97Þ

where n0 ¼ n0ð2nþ 1Þ, with n0 ¼ 45 (so that n ¼ 0
corresponds to a sine function with the quarter period
equal to 2°, i.e., the range of θ over which values for the
potential are given). The values of fmn are obtained
essentially by a discrete Fourier transform of the potential

FIG. 7. Results of tracking a particle through the field of a curvilinear electrostatic quadrupole. The potential is given by Eq. (95). The
black points show the results from the explicit symplectic integrator described in Sec. III. The red lines show the results from numerical
integration of the equations of motion derived from the Hamiltonian (2).
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on the given grid points. Mode numbers 0 ≤ m ≤ 10 and
0 ≤ n ≤ 79 are used. The truncation in the azimuthal mode
number m (compared to the number of data points
available) means that the data are not fitted perfectly;
however, the contribution of modes (multipoles) of the
order of m > 10 is found to be small. Note that the
dominant multipole is the quadrupole component, m ¼ 2.
The potential as a function of θ (at u ¼ uref and v ¼ 0) is

shown in Fig. 8 and as a function of v (at θ ¼ 2° and at
θ ¼ 0.25°, with u ¼ uref in both cases) in Fig. 9. In the
right-hand plot in Fig. 9, we see that the variation of the
potential with the “azimuthal” coordinate v in the fringe-
field region (about 30 mm from the ends of the electrodes)
is significantly distorted from a simple sine wave, indicat-
ing the presence of higher-order multipoles.
Using the coefficients fmn, we can calculate the potential

at any point within the surface on which the fit is
performed. As an example, Fig. 10 shows the potential

FIG. 10. Scalar potential in an electrostatic quadrupole in the g − 2 storage ring. The potential is plotted as a function of toroidal
coordinate θ at v ¼ 0 (left) and as a function of v at θ ¼ 2° (right). In each plot, the black line shows the potential at u ¼ uref ¼ 5.76, and
the red line shows the potential at u ¼ 6.11. At the larger value of u, the value of the coordinate x is reduced by a factor of

ffiffiffi
2

p
compared

to the value of x at u ¼ uref ; the potential is a factor of 2 smaller at the larger value of u, as expected for a quadrupole field.

FIG. 9. Scalar potential in an electrostatic quadrupole in the g − 2 storage ring. The potential is plotted as a function of toroidal
coordinate v at θ ¼ 2° (left) and at θ ¼ 0.25° (right), with u ¼ uref in both cases. The black points show the original data points; the red
lines show fits using Eq. (97).

FIG. 8. Scalar potential in an electrostatic quadrupole in the
g − 2 storage ring. The potential is plotted as a function of
toroidal coordinate θ at u ¼ uref and v ¼ 0. The black points
show the original data points; the red line shows a fit using
Eq. (97).
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as a function of θ (for v ¼ 0) and as a function of v (for
θ ¼ 2°). In each plot, the black line shows the potential at
u ¼ uref ¼ 5.76, and the red line shows the potential at
u ¼ 6.11: The larger value of u corresponds to a value of x
that is a factor of

ffiffiffi
2

p
smaller than the value of x at u ¼ uref

so that the potential (for a pure quadrupole) is expected to
be smaller by a factor of 2. The expected behavior of the
potential (as a function of u) is indeed what we observe.
Tracking a particle through the fringe field of an

electrostatic quadrupole using the symplectic integrator
described in Sec. III requires the derivatives of the potential
with respect to the accelerator coordinates, x, y, and s. The
derivatives can be calculated (at any point within the
surface used to fit the coefficients fmn for the given
potential) using Eq. (97), together with (71) and (72).

Some example results from tracking a muon through the
fringe field are shown in Fig. 11. The black points in
Fig. 11 show the muon trajectory calculated using the
symplectic integrator for the detailed fringe-field model,
i.e., the model based on the numerical data for the scalar
potential. The red line shows the results of an integration
using a (nonsymplectic) adaptive Runge-Kutta integration
of the equations of motion in the same field. The blue line
shows the results of a Runge-Kutta integration of the
equations of motion through a region with the same
magnetic field but with a “hard-edge”model for the electric
field. The hard-edge model is constructed so that the scalar
potential is zero up to a point s ¼ s1 and is given simply by
ϕ ¼ 1

2
k1ðx2 − y2Þ for s > s1. The value of k1 is chosen to

correspond to the focusing potential in the body of the

FIG. 11. Trajectory of a muon through the fringe-field region of an electrostatic quadrupole in the g − 2 storage ring. The electrostatic
potential is shown in Figs. 8 and 9. The reference momentum is 3.094 GeV=c, and the reference trajectory is the arc of a circle with a
radius of 7.112 m, determined by the magnetic field strength B ≈ 1.45 T. The initial coordinates ðx; px; y; py; z; δÞ of the muon are
ð10 mm; 5 × 10−4; 10 mm;−2 × 10−6; 0;−0.02Þ. The black points show the results from the symplectic integrator, with a step size of
12.4 mm, i.e., a total of 20 steps. The red line shows the results of an integration using a (nonsymplectic) adaptive Runge-Kutta
integration of the equations of motion in the same field. The blue line shows the results of a Runge-Kutta integration of the equations of
motion through a region with the same magnetic field but with a hard-edge model for the electric field.
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quadrupole found from the numerical data for the scalar
potential. The point s1 is chosen so that the integrated
gradient

R smax
0 k1ds in the hard-edge model is equal to the

integrated gradient in the fringe-field model.
There is good agreement between the symplectic integrator

and the Runge-Kutta integrator for the detailed fringe-field
model. The horizontal motion is dominated by the magnetic
field, which is the same for both the detailed fringe-field
model and the hard-edge model of the quadrupole, so the
results from the two models show no significant difference in
this case. There is some small but observable difference
between the detailed fringe-field model and the hard-edge
model for the vertical motion. The change in the vertical
momentum after integrating through the full region is
approximately the same in both cases: This is expected,
since the length of the quadrupole field in the hard-edge
model was chosen to give the same integrated focusing
strength as the detailed fringe-field model. However, the fact
that the change in the vertical momentum occurs at a discrete
point in the hard-edge model leads to a slightly larger
difference between the models in the vertical coordinate at
the end of the integration. It is unclear what impact this may
have on the beam dynamics in the storage ring, but it is
possible that it may lead to an observable effect over a
sufficiently large number of turns.
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