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The beam-beam interaction is one of the most severe limitations on the performance of circular colliders,
as it is an unavoidable strong nonlinear effect. As one aspires for greater luminosity in future colliders, one
will simultaneously achieve stronger beam-beam interactions. We study the limitations caused by strong
incoherent head-on beam-beam interactions, using a new code (CABIN) that calculates on a graphics
processing unit (GPU), allowing for a detailed description of the long-term particle trajectories in 6D phase
space. The evolution of the beam emittance and beam intensity has been monitored to study the impact
quantitatively, while frequency map analysis has been performed to understand the impact qualitatively.
Results from CABIN have shown good quantitative agreement with dedicated experiments in the Large
Hadron Collider (LHC). For large beam-beam tune shifts, alternatives to the LHC tunes have been found to
improve the beam quality. Schemes devised to cancel beam-beam driven resonances, by use of specific
intermediate phase advances between the interaction points, work very well with zero crossing angle, and
the accuracy required is achievable. Due to lack of symmetry, these schemes have an almost negligible
impact with a significant crossing angle. The hourglass effect has been found to reduce the detrimental
effects caused by the chromaticity and vice versa. The optimal level of the hourglass effect has been
achieved when β� ¼ 1.5σs. The ultimate parameters of the Future Circular Hadron Collider (FCC-hh) seem
within reach, in absence of residual odd resonances.
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I. INTRODUCTION

Concurrently with the hard collisions at an interaction
point in a circular collider, multiple small angle deflections
occur. This phenomenon, known as the beam-beam inter-
action, is caused by the electromagnetic fields from the
opposing beam [1]. The interaction force is strongly non-
linear, resulting in the possibility of betatron resonances
[2]. These resonances can cause a strong diffusion of the
particles, or even make the beam unstable and lost within a
short amount of time. The beam-beam interactions cause
one of the most important limits on the performance
of circular colliders, and they will possibly become even
more important with the envisaged upgrades in the future,
including the high-luminosity upgrade of the Large Hadron
Collider (HL-LHC) and the larger Future Circular Hadron
Collider (FCC-hh) [3–5].

In the FCC-hh the emittance will decrease during the
fill, causing gradually stronger head-on beam-beam inter-
actions [6]. The usage of crab cavities is envisaged in order
to mitigate the luminosity reduction due to the crossing
angle, while keeping the impact of long-range beam-beam
interactions under control [7]. This paper therefore studies
the impact of strong head-on beam-beam interactions with a
crossing angle.
Although some effects of the beam-beam interaction can

be derived analytically, numerical tools are necessary to
assess the complete impact of the beam-beam interaction
on the motion of incoherent particles, in particular their
long-term behavior. The use of simulations has been an
important tool in the understanding of the effects that cause
instabilities [8–10]. The design of new machines and
optimization of existing ones requires a detailed knowledge
of all mechanisms involved in the deterioration of the
beam quality in the presence of strong beam-beam inter-
actions. The weak-strong approach assumes that the bunch
generating the electromagnetic fields stays unaltered [11].
In previous studies, it has been applied to study single-
particle stability, and the impact of the strength of the beam-
beam interaction [12,13]. While already advanced, several
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mechanisms and mitigation schemes were not detailed,
mainly due to the heavy computing load compared to the
available resources. Here we propose an efficient numerical
scheme to address these effects in a reliable way using
modern computational resources.
In this paper, the interaction is studied by the weak-

strong approach using a newly developed code (CABIN).
A full parametric study of relevant parameters has been
conducted. The discovered trends will be explained by the
underlying mechanisms through frequency analysis [14],
and compared to relevant previous studies [10,13,15].
A realistic limit on the beam-beam interaction will be
presented, relevant for the FCC-hh study.
Theoretical aspects of the beam-beam interaction are

detailed in Sec. II. The numerical implementation of the
physics model as well as the analysis tools are explained in
Sec. III. Numerical results are presented in Sec. IV, along
with a discussion of said results. Results from the LHC
will be compared to results acquired with CABIN in Sec. V.
The paper is concluded in Sec. VI.

II. THEORY

The beams in colliders as the LHC and the FCC-hh are
crossing at multiple interaction points (IPs) with a nonzero
full crossing angle θxing, as illustrated in Fig. 1. Head-on
(HO) electromagnetic interactions occur between the two
beams at the IPs. In this paper, HO denotes interactions
including a small crossing angle and a transverse separa-
tion. In an interaction region (IR) around each IP, each
bunch experiences multiple additional parasitic long-range
interactions with bunches from the opposing beam. The
crossing angle is nonzero to avoid production of luminosity
outside of the detector center and to reduce the effect of
these long-range interactions on the beam quality.
The suggested use of crab cavities may significantly alter

the interactions in the IR [7]. Crab cavities work by tilting
each bunch so that the two HO bunches in Fig. 1 overlap
better, without reducing the crossing angle. It is proposed
as a method to increase the event frequency without
increasing the strongly distorting effects of the long-range
interactions. In principle, the long-range interactions can be
made arbitrarily small by increasing the crossing angle,
limited eventually by the physical aperture of the final
focusing magnets. In a high energy collider profiting from
a significant radiation damping such as the FCC-hh, the
effect of long-range interactions tends to decrease with the

shrinking emittance, as opposed to the HO interactions
which become stronger. This is assuming a fixed crossing
angle. In such conditions it is clear that the HO interactions
will become the main limitation rather than the long-range
interactions.
The goal of a collider is to produce as many events as the

physicists can analyze. The luminosity, L, is defined as
the ratio of number of events detected per time per cross
section. For two beams of equal size, σi;1 ¼ σi;2, the
luminosity is [16]

L ¼ N1N2frevnb
4πσxσy

·H · S; ð1Þ

S ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
σs
σq
tan

�
θxing;q
2

��
2

r ; ð2Þ

where the subscript q denotes either transverse coordinate,
x or y. H is a correction factor for the hourglass effect [17],
being 1 for small σs=β�q, and decreasing towards zero as this
ratio increases. β�q is the transverse β function at the IP. S is
a correction factor for the crossing angle, being 1 for zero
crossing angle, and decreasing towards zero for increasing
angles. Ni is the number of particles per bunch in beam i.
frev is the revolution frequency. nb is the number of
bunches in each beam. σq is the rms transverse beam size,
and σs is the rms bunch length. Both an increase of beam
emittance and a loss of particles will reduce the event
frequency, assuming that the crossing angle remains fixed.
The dependence of luminosity on the crossing angle is

given by Eq. (2). From this equation, a more relevant value
is the Piwinski angle, ϕPIW;q, which is defined as

ϕPIW;q ¼
σs
σq

·
θxing;q
2

; ð3Þ

which is equal to the second term in the denominator in
Eq. (2) for small angles. The crossing angle is typically
small, θxing ∼ 300 μrad in the LHC.

A. Beam-beam interaction in 4D

The HO beam-beam interaction will be studied by
considering only one bunch per beam in the weak-strong
regime. Beam 1 is taken to be weak and beam 2 is strong.
The strong bunch will, in good agreement with real
bunches, be taken to be a 3D Gaussian charge distribution.
The distribution of the weak beam is not considered at
the moment, because the interaction modeled in the weak-
strong model is independent of it.
For nonzero crossing angle, θxing, the bunches travel

on different closed orbits around the IP. Furthermore, the
transverse beam sizes, σq, are dependent on the distance to
the IP due to the hourglass effect. These effects change the

FIG. 1. Illustration of the crossing of beam 1 and beam 2 at the
IPs in circular colliders (not to scale).
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beam-beam interaction as the bunches pass each other.
In such a scenario, a full 6D treatment of the interaction
is necessary. For θxing ¼ 0 and σs=β�q ≪ 1, the relation
between the opposing bunches changes negligibly close to
the IP, and the beam-beam interaction can be derived only
dependent on the transverse dimensions.
The kick can be found by calculating the fields from the

charge distribution, performing a Lorentz transformation of
the fields, and integrating over the longitudinal direction
[18]. Other approaches also exist [1]. Assuming round
beams colliding in the 4D regime, one reaches the
incoherent beam-beam kick

Δr0 ¼ 2Nr0
γ

�
1 − exp

�
−

r2

2σ2r

��
r
r2
; ð4Þ

where N is the number of particles in the strong beam, r0 is
the classical proton radius and γ is the Lorentz factor. At
small radii, the kick is approximately linear. At higher radii,
the force is strongly nonlinear.
If the bunches are flat, σx ≠ σy, the exponential function

is exchanged with the Faddeeva function, sometimes
referred to as the complex error function [1].

B. Beam-beam tune shift

The beam-beam parameter ξq is a measure of the strength
of the beam-beam interaction [16]. It is equal to the beam-
beam tune shift for particles of zero transverse amplitude,
jrj ¼ 0. For flat beams, the beam-beam parameter is
different for the two transverse planes:

ξq ¼ −
Nr0β�q

2πγσqðσx þ σyÞ
: ð5Þ

The beam-beam parameter and beam-beam tune shift are
negative for beams of the same charge. This paper refers to
the negative of both values after this section.
The combined tune shift from the machine tunes

ðQx0; Qy0Þ for particles oscillating with different ampli-
tudes, called the tune footprint, is displayed in Fig. 2. The
maximum tune shift in either plane is equivalent to ξq;Tot,
neglecting the effect of any resonances, and occurs for
particles of zero transverse amplitude. The tune shift then
decreases for particles oscillating at larger amplitudes [19].

C. Resonances and resonance canceling

Nonlinearities in the machine, due to field imperfections
of the magnets, misalignments between elements, vibra-
tions and the beam-beam interaction, cause resonances. A
general expression for transverse betatron resonances can
be written as [2]

k ·Qx þ l ·Qy ¼ p; k; l; p ∈ Z; ð6Þ

where Qq are the transverse tunes. In this paper, Qq refers
to the fractional tune. The tunes that fulfill this relation
make lines in tune space of resonance order

n ¼ jkj þ jlj: ð7Þ
The motion can also be coupled between the longitudinal

and transverse planes, named synchrobetatron motion. The
coupling enables additional resonances,

k ·Qx þ l ·Qy þm ·Qs ¼ p; k; l; m; p ∈ Z; ð8Þ
where Qs is the synchrotron tune. The additional reso-
nances appear as sidebands to the betatron resonances. This
makes it increasingly difficult to avoid all resonances in
tune space. As it is impossible to avoid all of them, it is of
interest to understand which of the resonances deteriorate
the beam the most.
There are multiple approaches to study the nonlinearity

of the beam-beam interaction quantitatively. The results
presented here are based on Lie transfer maps of a 2D
transverse phase space [1,10,20]. We first consider a single
IP in the ring. The potential of the beam-beam force can be
expanded in a Fourier series. Because the beam-beam force
is an odd function of the transverse position, only the even
coefficients of its potential are nonzero. This is not true if
there is a transverse separation or a nonzero crossing angle
between the beams, breaking the symmetry. Furthermore,
the coefficient strength increases with the action J, and it
decreases with increasing order n. Put differently, beam-
beam resonances of higher order n have smaller resonance
coefficients, and all nonzero resonance coefficients are
larger at larger transverse amplitudes.
Consider next a similar setting with two IPs instead of

one, splitting the lattice in two separate parts. In the LHC as
in the FCC-hh, the main experiments are diametrically

FIG. 2. Tune footprint caused by the beam-beam tune shift in
both transverse planes simultaneously. The lines correspond to
x=σx ∈ f0; 1; 2; 3; 4; 5; 6g and y=σy ∈ ½0; 6�, or vice versa. The
markers on the corners of the footprint correspond to the
normalized amplitude in horizontal and vertical phase space.
The red cross marks the working point.
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positioned. The beam performs betatron motion, with phase
advances μ1 and μ2 in the two parts of the lattice. In total
μ1 þ μ2 ¼ μ in the entire lattice combined. By carefully
adjusting the intermediate phase advance between the two
IPs, μ1, it is possible to cancel resonances of order n. This
can be achieved when [10]

μ1 ¼
2mþ 1

n
· π; m ∈ Z; n ∈ N: ð9Þ

The resonance coefficients are still zero for odd n.
Resonances of order n ¼ 2 · ð2mþ 1Þ, where m is an
integer, may be canceled if μ1 ¼ fπ=2; 3π=2;…g. That
is, resonances of order n ¼ f2; 6; 10;…g can be canceled
simultaneously. There is no initial phase advance that can
cancel resonances of order n ¼ 4 ·m.
Another suggestion for a phase advance that improves

the beam quality is

μ1 ¼
μ

2
¼ μ2; ð10Þ

splitting the phase advance equally between the two
separate parts of the lattice. This phase advance was found
from a symmetry perspective [10], and confirmed numeri-
cally through trial to give the best performance [13]. The
suggested intermediate phase advances in Eqs. (9) and (10)
will be tested in this paper.

III. NUMERICAL MODEL

CABIN (Cuda-accelerated beam-beam interaction) is a
code developed to track particles of a single bunch through
two interaction points, separated by two individual stretches
of the magnetic lattice [21]. The code is implemented using
PYCUDA, exploiting the massively parallel architecture

of a graphics processing unit (GPU). A comparison of the
code on a Central Processing Unit (CPU) vs a GPU, timing
of the different beam-beam implementations, and other
requirements are detailed in Appendices B and C of [18].
The GPU implementation has sped up the code by 3 orders
of magnitude, dependent on the chosen hardware. As all
particles are considered incoherently, the GPU is exploited
maximally. Despite the high performance of the GPU, the
numerical modeling of all effects impacting the beam
quality, such as field errors of all magnets around the lattice,
external noise sources, Coulomb scattering within the beam
and with the opposing beam and quantum excitations,
remains out of reach. The approximated physics models
are described in the following.
The relevant machine and beam parameters used in

the model are given in Table I, alongside the equivalent
parameters in the LHC (design) [3], LHC (2017) [22], HL-
LHC [23] and FCC-hh for bunches at 25 ns spacing [4,5],
which will be used in the following unless stated otherwise.
When performing beam-beam parameter scans, the inten-
sity of the strong bunch is adjusted to obtain the desired
beam-beam parameter using Eq. (5).

A. Lattice

A set of normalized coordinates with reduced units has
been applied in CABIN. A hat refers to normalized values,
as x̂ in comparison to x. The phase space coordinates are
given by

x̂q ¼
xq
σq

; p̂q ¼
1

σq
ðαqxq þ βqx0qÞ;

ŝ ¼ s
σs

; δ̂ ¼ δ

σδ
; ð11Þ

TABLE I. Values for parameters in present and future circular colliders, in addition to the default settings of
CABIN.

Parameter Symbol LHC (design) LHC (2017) HL-LHC FCC-hh CABIN
d

Particles per bunch N [1011] 1.15 1.2 2.2 1 NðξÞ
Number of bunches nb [1] 2808 2556 2738 10600 1
rms bunch length σs [cm] 7.55 8.2 7.55 8 8
rms energy spread σδ [10−4] 1.1 1.2 1.1 ∼1 1
Normalized emittance ϵn [μm] 3.75 2.5 2.5 2.2 3
IP beta functiona β�q [m] 0.55 0.4 0.15 0.3 0.4
Crossing angle θxing [μrad] 285 300 590b 175b 0
Piwinski angle ϕPIW [1] 0.65 1.02 3.14b 1.99b 0
Proton energy Ep [TeV] 7 6.5 7 50 6.5
Gamma factor γ [1] 7460.5 6927.6 7460.5 53289 6927.6
Max tune shiftc ΔQTot [1] 0.0063 0.0082 0.021 0.03e fðξÞ
Revolution frequency frev [kHz] 11.245 11.245 11.245 3.067 11.245

aAt the IPs of minimum beta function.
bMay be countered by use of crab cavities.
cAssumed collisions in two IPs, zero Piwinski angle in HL-LHC and FCC-hh.
dSet for each simulation separately. These are the default values.
eThe maximum beam-beam tune shift for the FCC-hh is not achieved with the initial parameters but rather once

the emittance has decreased due to synchrotron radiation [5,6].
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where σ is the initial rms beam size and momentum
variation of the weak beam. The transverse actions are

Ĵq ¼
1

2
ðx̂2q þ p̂2

qÞ ¼
Jq
ϵq;0

; ð12Þ

where ϵq;0 is the transverse beam emittance at t ¼ 0. The
beam emittance is calculated as ϵq ¼ 2 · hJqi.
In the normalized coordinates, ðx̂i; p̂iÞ, the transfer due

to the lattice from one IP to the next is modeled as a
rotation,

�
x̂i
p̂i

�
IP5

¼ R̂i

�
x̂i
p̂i

�
IP1

; R̂i ¼
�
cosðμ1iÞ sinðμ1iÞ
− sinðμ1iÞ cosðμ1iÞ

�
;

ð13Þ

where μ1i is the intermediate phase advance in the three
phase space planes through that part of the lattice. Going
from the second IP to the first is done equivalently using
μ2i to complete the turn. The zero chromaticity phase
advance is divided in any way desirable with the constraint
μ1q þ μ2q ¼ μq ¼ 2πQq, whereQq is the transverse tune in
that plane.
The tune of the particles depends on the momentum

deviation. The linear chromaticity, Q0, changes the tune of
the individual particles to Qq þQ0 · δ. The chromaticity
can be treated in a symplectic manner, where also the
longitudinal coordinates depend on the transverse oscil-
lation [24]. The symplectic approach is necessary for
simulations of lepton machines. This study is focused
solely on hadron machines that have a significantly smaller
synchrotron tune, and the use of the simpler implementa-
tion is considered sufficient. In CABIN, the linear chroma-
ticity is implemented and kept equal in the two transverse
planes, Q0

x ¼ Q0
y, and it is divided evenly over the two

sections asQ0
1 ¼ Q0

2 ¼ Q0=2. Since the synchrotron tune is
small in hadron colliders, the smooth approximation is used
in the longitudinal plane and therefore Qs is also divided
evenly over the two sections.

B. Noise

Intrabeam scattering (IBS) is the small angle Coulomb
scattering between particles in the same bunch. This effect
is therefore stronger for denser beams [25]. In a circular
accelerator, the emission of synchrotron radiation in bend-
ing magnets continuously leads to an exponential damping
of the emittances. The emission is however not smooth,
on the quantum level, this radiation is emitted as discrete
photons [26]. The number of photons emitted per turn is
high. Due to the large number of Coulomb scatterings as
well as the large number of photons emitted per turn, the
effect of both the IBS and quantum emission of the
synchrotron radiation can be approximated as a Gaussian
random noise on the momentum of the individual particles.

External sources of noise such as power converter ripple or
ground vibration contribute to the random motion of the
particles. Here we do not differentiate the internal and
external sources of noise, we rather model the overall effect
with a random variable. The damping due to synchrotron
radiation occurs on larger time scales and is therefore not
taken into account in the numerical model.
Consider one normally distributed kick per turn, κq, on

the normalized momentum p̂q,

p̂q ¼ p̂q þ κq; ð14Þ

with rms amplitude Δ̂ ¼ 1 × 10−4 as discussed in the
Appendix. Applying Eq. (A4), the diffusivity per turn is
D̂ ¼ 5 × 10−9. In result, the normalized beam emittance,
ϵ̂q, increases with 1 × 10−8=turn. This noise amplitude is
compatible with the observations in the LHC and is
dominated by external sources of noise [27]. The amplitude
is also comparable to the expected excitation amplitude due
to internal sources of noise in the FCC-hh configuration
when the large beam-beam parameters are reached [6].
Since for the FCC-hh the internal sources of noise are
unavoidable, the noise will be enabled with the amplitude
mentioned above in most of the following simulations. The
noise amplitude is not adjusted to the machine and beam
parameters, and in particular to the phase space density,
such as to improve the comparability of the different effects
of the beam-beam interaction in different configurations.

C. Beam-beam interaction

The 4D beam-beam interaction was justified in the limit
of zero crossing angle, θxing ¼ 0, and negligible hourglass
effect, σs=β�q ≪ 1. If either of these effects are present,
the longitudinal dependence of the beam-beam kick is no
longer negligible and a 6D kick is needed.
The 6D kick can be calculated stepwise: (i) Lorentz

transformation (L) to a boosted frame where two tilted
bunches collide head-on [18,28]; (ii) perform a symplectic
6D synchrobeam mapping (SBM) [11,18]; (iii) inverse
Lorentz transformation (L−1) back to the accelerator
coordinates [18].
The SBM is conducted by first splitting up the beam in

NS slices, whereupon the kicks from the individual slices in
the boosted frame are calculated as in the 4D approach,
with some additional modifications.
Because the beam-beam interaction is the most time-

consuming effect implemented, there is effectively a con-
straint on how many slices that can be used in the 6D
simulations. It was found that the number of slices required
to achieve a certain tolerance on the kicks depends on the
configuration that is being simulated [18]. For a small
crossing angle, θxing, and a negligible hourglass effect,
σs=β�q ≪ 1, the convergence is fast and a single slice may
be sufficient. The required number of slices grows without
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bound as θxing and σs=β�q increase. For a certain tolerance,
σs=β�q ¼ 0.2 and ϕPIW ¼ 0 requires NS ¼ 3. With a strong
hourglass effect σs=β�q ¼ 3.2 and ϕPIW ¼ 0, NS ¼ 37 is
required for the same tolerance. With σs=β�q ¼ 0.2 and a
large crossing angle ϕPIW ¼ 2, NS ¼ 48 is required [18].
The code finds for each simulation the required number of
slices to achieve a certain tolerance. No simulations for
round beams have been run with less than NS ¼ 15 slices.
Based on the mapping L in [28], one can already predict

a few effects of the crossing angle. The effective transverse
beam sizes in the boosted frame for a horizontal crossing
are given by

σ�x ¼ σx ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
σs
σx

tanðθhÞ
�

2

s
;

σ�y ¼ σy; ð15Þ

where the effective boosted horizontal beam size is divided
by the factor S in Eq. (2), which explains the luminosity
reduction for a nonzero crossing angle.
The maximum beam-beam tune shift for head-on colli-

sions was found to be equal to the beam-beam parameter ξq
in Eq. (5). By insertion of the effective head-on beam sizes
in Eq. (17) into that expression, one gets for a horizontal
crossing

ηx;h ¼ jξ�x;hj ¼
Nr0β�xS2

2πγσxðσx þ SσyÞ
;

ηy;h ¼ jξ�y;hj ¼
Nr0β�yS

2πγσyðσx þ SσyÞ
; ð16Þ

where the subscript h signifies the horizontal crossing
angle. Here ηq;h=v is introduced as the effective beam-beam
parameter, compared to the nominal jξqj. A common
crossing scheme in an accelerator is to have two IPs of
equal strength jξqj, with one horizontal and one vertical
crossing. For round beams, this leads to a total tune shift

ΔQq;Tot ¼ jξ�q;h þ ξ�q;vj ¼ jξTotj · S; ð17Þ

where ξTot ¼ 2ξ is the sum of the nominal beam-beam
parameters in the two independent IPs. A previous study
has followed a different approach and found the impact
of both the crossing angle and the hourglass effect on the
tune shift [29].

D. Macroparticle distributions

The number of particles per bunch, N, in circular
colliders like the LHC, is in the order of 1011. To reduce
computation time and storage requirements, CABIN models
the weak beam by a smaller number of macroparticles,
Nmp, of which each is tracked in six dimensions, at double

precision. We require that the Nmp macroparticles manage
to represent well a Gaussian distribution, at low transverse
amplitudes in the core to measure emittance growth, and at
high transverse amplitudes in the tail to measure losses. It
has been required that the bunch can represent the dis-
tribution up to 6σ, because the LHC collimation, which is
usually set at 6σ, is set as a basis [3]. The σ’s in this section
refer to the weak beam.
Multiple initial conditions (ICs) for distributing the

macroparticles have been attempted. The distributions have
been compared on how well they fill 6D phase space evenly
through histograms of each coordinate separately, and the
convergence of measurements of emittance growth rate and
beam loss rate with Nmp. The chi-squared distribution is
defined as

χ2k ¼
Xk
j¼1

N2
j ; ð18Þ

where Nj are independently normally distributed variables,
as the components of ðx̂; p̂x; ŷ; p̂y; ŝ; δ̂Þ. The normalized 6D
radius of a macroparticle will be referred to as

χ6 ¼
ffiffiffiffiffi
χ26

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̂2 þ p̂2

x þ ŷ2 þ p̂2
y þ ŝ2 þ δ̂2

q
: ð19Þ

How well the sums of the square of the coordinates of the
tested ICs fit to the χ26 distribution is visualized in Fig. 3.
The Gaussian distribution is most equal to how the

particles are distributed in a true bunch. Each macroparticle
is weighted equally to represent N=Nmp real particles. The
core is modeled well, but the tail is not.
In the hollow Gaussian distribution, one half of the

macroparticles have been distributed normally below 4σ
in the 4D transverse phase space, and the second half have
been distributed normally, requiring that they are above 4σ in
the 4D transverse phase space [30]. This has been done to
achieve a better representation of the transverse tail. The
longitudinal coordinates have been distributed as in the
regular Gaussian distribution. The Nreg macroparticles in
each region separately are weighted equally, but the weight-
ing is different between the different regions. The weight of
all macroparticles in a given region depends on the cumu-
lative density function (cdf) for the χ24 distribution as

Wreg ¼ ðcdf½χ24;max� − cdf½χ24;min�Þ ·
N
Nreg

; ð20Þ

where the limits on the 4D normalized radius are as
mentioned above, f0; 4;∞g. The core is modeled well.
The tail is still less accurately represented than required for
correct modeling of the beam losses.
In the 6D grid, the macroparticles are distributed linearly

in each coordinate, whereupon these are meshed together
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in a grid. If the sixth root of Nmp is not an integer, this value
is rounded up to the closest integer, and the Nmp macro-
particles of lowest normalized 6D amplitude are kept.
Macroparticle j is weighted individually based on its
coordinates as

Wj ∝ exp

�
−
χ26
2

�
; ð21Þ

whereupon the weights are normalized to give a total
weight of N. This distribution does manage to represent
particles in the tail, but it is far from smooth, causing
multiple problems [18]. The grid concept works well in
lower dimensions, and a 2D grid in ðx; yÞ space will be used
to perform frequency analysis.
The uniform distribution is made by uniformly distrib-

uting each coordinate separately to a maximum amplitude
of 6σ, and demanding that χ6 ≤ 6. The individual macro-
particles are then weighted by Eq. (21), making each
macroparticle in the core represent more real particles than
the macroparticles in the tail. The tail is much better
modeled than with the previous distributions. The core is

however not modeled accurately by this distribution,
emphasized by the linear-scaled plot, which results in
inaccurate modeling of the emittance growth.
The regionally uniform distribution is a modification of

the uniform distribution, attempting to improve the modeling
of the core of the bunch. The number of macroparticles is
divided into three approximately equally large groups. The
macroparticles in each group are distributed uniformly,
requiring that they have a 6D radius within a given interval.
The intervals are limited by the radii χ6 ∈ f0; 2; 4; 6g. The
number and size of the intervals were obtained by measuring
the convergence of the observables of the code [18]. Each
macroparticle within a group is weighted as in Eq. (21). In
addition, the macroparticles in each group are weighted
proportional to the volume of the region, Vreg, and to the
inverse of the number of macroparticles in the region, Nreg,
making the weight of macroparticle j proportional to

Wj ∝
Vreg

Nreg
· exp

�
−
χ26
2

�
; ð22Þ

whereupon the weights are normalized to give a total
weight of N. The good representation of the tail at high
amplitudes is preserved from the uniform distribution. The
core is much better modeled. The regionally uniform ICwith
Nmp ¼ 1 × 105 macroparticles will be applied to study the
evolution of the beam distribution, unless stated otherwise.

E. Beam quality simulations

This section provides information on how the beam
quality is monitored, based on the modeled physics and
initial conditions presented earlier. All values necessary to
describe the individual particles are stored in snapshots
every Tmid ¼ 2 × 104 turns. This interval can be changed.
The stored values are the six dynamical degrees of freedom
(d.o.f.), whether a particle is lost or not, and the horizontal,
vertical and longitudinal actions. The action of each particle
is averaged over the next Tϵ ¼ 2048 turns, to avoid the
angle dependent fluctuations.
During a normal physics fill in a high-energy circular

hadron collider, the beam can circulate for hours. In the
LHC, a fill time of 20 h equals TTot ¼ 8 × 108 turns. In the
FCC-hh, an estimated 3 h of run-time would equal TTot ¼
3 × 107 turns. Multiple reasons make tracking for that long
using the weak-strong model inappropriate. The results
presented later have been acquired from tracking particles
in the weak beam through usually TTot ¼ 2 × 106 turns,
equivalent to 3 min in the LHC.
For ease of notation, the hats (^) will no longer be included.

Both outputs will be represented by an example simulation
at the LHC working point, ðQx;QyÞ ¼ ð0.31; 0.32Þ, with
large beam-beam parameter ξTot ¼ 0.03, large chromaticity
Q0 ¼ 15, regular normalized noise Δ ¼ 1 × 10−4, and zero
crossing angle θxing ¼ 0.

FIG. 3. Comparison of initial distributions of Nmp ¼ 1 × 105

macroparticles, with the actual χ26 distribution. The sum of the
weight of all macroparticles is N ¼ 1 × 1011. The bottom right
plot displays the same distribution as the plot above, but with a
linear scale.
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1. Emittance growth

We distinguish between two types of emittance growth
mechanisms. Close to resonances, the effective Hamiltonian
diverges, and subsequently the actions are strongly per-
turbed. This leads to an almost immediate and possibly large
emittance growth. A different important measure is the long-
term emittance growth rate, _ϵ, after the initial readjustment.
To monitor the long-term growth rate, a linear regression
curve of the beam emittance is computed, starting at turn
Tsim ¼ 5 × 105. The evolution of the emittance for the
example configuration is displayed in Fig. 4. The initial
emittance growth of a few percent is visible, and the
regression curve for each transverse emittance growth rate
is plotted on top of the evolution. The emittance growth rates
in both planes are larger than _ϵ0 ¼ 1 × 10−8=turn, expected
from the noise alone. The average transverse emittance
growth rate will be referred to as

_ϵ⊥ ¼ _ϵx þ _ϵy
2

: ð23Þ

The convergence of the emittance growth rate with Nmp

has been calculated for the Gaussian IC and the regionally
uniform IC with noise only. The average and the standard
deviation from _ϵ0 has been calculated based on 40
independent growth rates for each Nmp. A 1σ trend line
for the relative errors has been calculated. For Nmp ¼
1 × 105 particles, the Gaussian distribution has a 1σ relative
error of 5%, while the regionally uniform distribution has
a 1σ relative error of 15% [18].
The convergence study was repeated for a configuration

at the LHC working point ðQx;QyÞ ¼ ð0.31; 0.32Þ, also
including a large beam-beam parameter ξTot ¼ 0.03
divided over two IPs, and a large chromaticity, Q0 ¼ 15,
in addition to the noise. The emittance growth rate is larger
in this configuration. The relative errors of the emittance

growth rates are for this configuration calculated relative
to the average emittance growth rate calculated with
Nmp ¼ 1 × 106 particles. For Nmp ¼ 1 × 105 particles,
the Gaussian distribution has a 1σ relative error of
approximately 16%, while the regionally uniform distri-
bution has a 1σ relative error of 5%. Both ICs are
reasonably accurate in calculating the emittance growth
rate for both considered configurations.

2. Beam loss

One unavoidable source of particle losses is the lumi-
nosity burn-off, which CABIN does not take into account.
The other main source of beam losses is particles that
drift to large transverse amplitudes, whereupon they are
extracted by the collimation system of the accelerator [31].
Some particles are transported beyond the limit within a
few couple of turns, following the same process as the
initial emittance growth. After the initial losses, the long-
term diffusion can also make particles drift out. These
losses are partly unavoidable without any damping mech-
anisms, and keeping them low is a main objective in the
design and operation of a collider. The long-term loss rate
of particles is calculated based on the conserved intensity
for each snapshot. The loss rates are calculated as the
relative decrease from the initial intensity, by a linear
regression starting at turn T ¼ 5 × 105.
A particle in a real machine is lost at large amplitudes

because it hits the collimation system. In the LHC, this is
typically at a transverse radius of RM ¼ 6σϵ, where σϵ is the
transverse sigma corresponding to the operational emit-
tance of the beams. In CABIN, the transverse radius is
checked once per turn, and if it is ever beyond a given limit
R, it is considered lost forever. The particle is still tracked
to study the emittance growth to larger amplitudes. The
intensity below the machine limit, RM, and a beam limit,
RB ¼ 5σΣ, are displayed in Fig. 5. Here σΣ is the beam
size of the strong beam in the simulation. Many particles
are lost beyond RB that appear to stop between the two

FIG. 4. Example of evolution of beam emittance in both
transverse planes, ϵx and ϵy. The beam emittances are given
based on normalized coordinates, being ϵ ¼ 2 for a perfect initial
Gaussian distribution. The straight lines represent the linear
regressions giving the emittance growth rates.

FIG. 5. Example of evolution of bunch intensity, relative to
the initial intensity, N0. The straight lines represent the linear
regressions giving the loss rates.
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limits. This is due to the fact that the strength of the beam-
beam interaction decreases fast for larger amplitudes. It has
been assumed that particles being transported to RB are
likely to be lost within a small number of turns due to other
effects such as the lattice nonlinearities which, as opposed
to head-on beam-beam interactions, become stronger at
higher amplitudes. Hence, the results presented later refer
to the loss rate from the beam (LRBeam) beyond RB. The
values are scaled to represent loss rates per hour in a ring
with revolution frequency frev ¼ 11.245 kHz, such as the
LHC. If the beams are flat, the limits are taken proportional
to the relevant σ, giving an elliptical collimation. In order to
fully describe the diffusion of the particles from RB to the
actual collimator position, a complete nonlinear model of
the magnetic lattice should be implemented, but that is
beyond the scope of this study.
The beam loss rate is mostly dependent on the particles

in the tail of the bunch. The convergence of the beam loss
rate with Nmp has been calculated for the Gaussian IC and
the regionally uniform IC, for a configuration only includ-
ing a noise of rms amplitude Δ ¼ 1 × 10−4. The average
loss rates have been calculated based on 20 independent
values for each Nmp. The standard deviations have been
calculated relative to the average loss rate calculated for
Nmp ¼ 1 × 106 particles. For Nmp ¼ 1 × 105 particles, the
Gaussian distribution has a 1σ relative error of approx-
imately 86%, while the regionally uniform distribution
has a 1σ relative error of 8%.
The convergence of the beam loss rate was repeated for

a configuration at the LHC working point ðQx;QyÞ ¼
ð0.31; 0.32Þ, also including a large beam-beam parameter,
ξTot ¼ 0.03, divided over two IPs, and a large chromaticity,
Q0 ¼ 15, in addition to the noise. The error was also for this
configuration calculated relative to the average loss rate for
Nmp ¼ 1 × 106 particles. For Nmp ¼ 1 × 105 particles, the
Gaussian distribution has a 1σ relative error of 8%, while
the regionally uniform distribution has a 1σ relative error
of 5%. The Gaussian IC is strongly inaccurate for con-
figurations that would give small loss rates. That is the main
reason why the regionally uniform distribution is used for
the beam quality simulations in this paper.

F. Frequency map analysis

The beam quality simulations introduced in Sec. III E
enable CABIN to quantitatively study the evolution of
measurable quantities. Frequency map analysis (FMA) is
implemented in CABIN to study the underlying mechanisms
driving the beam quality degradation. FMA is a method that
can qualitatively visualize the detrimental effects of beam-
beam interactions, based on the evolution of the tunes of
individual particles [14].
For a configuration only including the linear lattice for

zero chromaticity, all particles have tunes ðQx;QyÞ. Due to
the nonlinear beam-beam interaction, the tunes of each

particle j are shifted to ðQxj;QyjÞ separately, as was
detailed in Fig. 2. The action of a particle may increase
close to a resonance, leading to a change of the tune. Hence,
it is of interest to monitor the tunes of individual particles
closely, both to know which resonances may be excited,
and because the change in tune can indicate the severity of
the diffusion close to a given resonance. One can calculate a
tune diffusivity, Dj, for each particle, based on how much
the tunes change per turn

Dj ¼ log10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dQxj

dT

2

þ dQyj

dT

2
r

; ð24Þ

where T is the turn number. The change per turn can be
calculated as a linear regression based on the different tune
measurements. The tune diffusivity is then used as a color
scale for each particle, presented as a footprint in tune
space, ðQx;QyÞ, or in initial amplitude space, ðAx; AyÞ. In
the results that will be presented later, the diffusivity
constant, Dj in Eq. (24), is calculated for Nmp ¼ 4 × 104

particles. These are initially distributed in a quadratic,
linear IC in the first quadrant of the ðx; yÞ plane, with
sðT ¼ 0Þ ¼ 1, unless stated otherwise. The FMA simu-
lations will be run with zero noise.
The tunes may be drifting, or they may oscillate around a

mean, as would be expected e.g. for a nonzero chromaticity.
The tune oscillation with chromaticity has a period of 1=Qs
turns. By measuring each tune based on data from more than
1=Qs turns, the periodic tune variations due to the chroma-
ticity will be reduced. By calculating the diffusivity based on
multiple tunes, the calculation is less sensitive to periodic
variations caused by either chromaticity or other sources.
On the other hand, the tune calculations are slow, favoring
less points. As a compromise, the tune diffusivity will be
calculated as the slope of a linear regression of nQ ¼ 10

tunes spaced by Tmid ¼ 1 × 104 turns. This combination has
been found through a convergence study [18].
A FFT can only calculate tunes of resolution 1=TQ

where TQ is the number of turns used for the calculation.
For the FMAs presented later, the tunes are calculated
based on TQ ¼ 4096 turns. The individual tunes are
calculated using an interpolated FFT method implemented
in the code HARPY [32].

IV. NUMERICAL RESULTS

The beam-beam interaction is calculated in the weak-
strong approach, assuming that the beam distributions
change negligibly during the simulation. Self-consistent
models overcome this limitation, usually at the cost of a
large increase of the computing load [8,9]. Nevertheless,
the simulation results showing only a weak distortion of the
beam, corresponding to potential operational configurations,
remain well approximated by the weak-strong model [33].
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A. Search for working point

The total beam-beam tune shift is relatively small in
the LHC today, and a working point close to the nominal
ðQx;QyÞ ¼ ð0.31; 0.32Þ preserves the beam quality suffi-
ciently well. Future upgrades will have a larger beam-
beam tune shift, as this is necessary to achieve a higher
luminosity.
To look for other working points that are possibly more

suitable for larger beam-beam tune shifts, a working point
scan is performed in ðQx;QyÞ space. The scans are
performed with a tune resolution of 0.0025. Because there
is complete symmetry between the tracking of horizontal
and vertical phase space in CABIN, only the upper half of the
diagonal has been calculated. All simulations are run for a
total beam-beam tune shift of ΔQTotðϕPIWÞ ¼ 0.03, com-
bined with a large chromaticity, Q0 ¼ 15, and a consid-
erable Piwinski angle, ϕPIW ¼ 0.9, corresponding to a full
crossing angle of θxing ¼ 300 μrad. This is considered
similar to the worst-case scenario for the FCC-hh, based
on the values presented in Table I. The crossing angle is
chosen nonzero to also include odd resonances in order to
remain in a pessimistic scenario.
The tune scan on the interval Qq ∈ ½0.255; 0.345�, in

both transverse tunes, is presented in Fig. 6. There is

generally better preservation of the beam quality with a
working point on or close to the coupling resonance,
Qx ¼ Qy. While it is not excluded that such working
points can be used, a proper demonstration is required,
since for example coherent instabilities [34] and skew
magnetic errors are not included in the numerical model. To
be conservative, it is assumed in the following that a finite
tune separation of jQx −Qyj ≥ 0.01 is needed, as for the
LHC. The working point with the lowest beam loss rate and
emittance growth rate in this tune area, at least this far from
the diagonal in tune space, is ðQx;QyÞ ¼ ð0.315; 0.325Þ.
The tune scan on the interval Qq ∈ ½0.45; 0.505�, in both

transverse tunes, is presented in Fig. 7. The working point
with best preservation of beam quality in this tune area,
requiring again that jQx −Qyj ≥ 0.01, is ðQx;QyÞ ¼
ð0.475; 0.485Þ. Close to the half-integer resonance, it can
be difficult to correct for dipole errors and nonideal optics.
However, modern correction techniques suggest that such
working points may be attainable [35].
The footprint of the bunch in ðQx;QyÞ space is wider, in

addition to longer, with a larger beam-beam parameter.
It could therefore be argued that the difference between
the tunes in the alternative working points should be larger

FIG. 6. Scan in ðQx;QyÞ space, for ΔQTotðϕPIWÞ ¼ 0.03,
β�q ¼ 40 cm, ϕPIW ¼ 0.9 and Q0 ¼ 15. The black cross (×)
marks the LHC working point, ðQx;QyÞ ¼ ð0.31; 0.32Þ. The
green diamond ( ) marks the suggested working point for this
configuration, ðQx;QyÞ ¼ ð0.315; 0.325Þ.

FIG. 7. Scan in ðQx;QyÞ space, for ΔQTotðϕPIWÞ ¼ 0.03,
β�q ¼ 40 cm, ϕPIW ¼ 0.9 and Q0 ¼ 15. At the working points
marked by blue squares with white crosses, the entire beam was
lost before the long-term loss rate could be calculated. The green
diamond ( ) marks a suggested working point in this tune area,
ðQx;QyÞ ¼ ð0.475; 0.485Þ.
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than jQx −Qyj ¼ 0.01. To compare to the LHC working
point, we keep the tune separation equal.

B. Crossing angle

This section studies the effect of varying the crossing
angle for the main head-on interaction. Beam quality

simulations for round beams have been run for each of
the following studies, with Piwinski angles ϕPIW ∈ f0; 0.1;
0.3; 0.6; 1; 1.5; 2g, and beam-beam parameters ξTot ∈
f0.01; 0.02; 0.03; 0.04; 0.05g, from which the effective
maximum beam-beam tune shifts can be calculated
by Eq. (19).
The results from a crossing angle scan for the machine

tunes of ðQx;QyÞ ¼ ð0.31; 0.32Þ, and zero chromaticity,
are presented in Fig. 8(a). As the angle increases from
ϕPIW ¼ 0 to 0.6, the detrimental effects gradually become
stronger, strongly dependent on ξTot. This behavior is
qualitatively predictable, because the beam-beam inter-
action with a crossing angle drives odd resonances as
well. For ξTot ¼ 0.03 and ϕPIW ¼ 0, the particle trajecto-
ries are affected by the tenth order resonances and weakly
by the 16th order, as seen in the FMA in Fig. 9(a). There
is only weak overlap between different resonances. The
13th order resonance is active with ϕPIW ¼ 0.1, as
displayed in the FMA in Fig. 9(b), and it affects
predominantly particles at large transverse amplitudes.
This resonance may contribute to the large loss rates
combined with the moderate emittance growth rates. This
FMA was produced for a small angle, ϕPIW ¼ 0.1,
because the picture became distorted beyond clear under-
standing for larger angles. The additional detrimental
effects caused by the crossing angle saturates around
ϕPIW ≈ 1. For larger angles, the beam quality preservation
begins to improve as the crossing angle increases further.
This improvement is due to the reduction of the effective
beam-beam tune shift.
Chromaticity is often needed in modern colliders to

mitigate collective instabilities. The crossing angle scan for
the machine tunes of ðQx;QyÞ ¼ ð0.31; 0.32Þwas therefore
repeated with a large chromaticity, Q0 ¼ 15, as is currently
needed in the LHC [36], and the results are presented as
functions of ΔQTotðϕPIWÞ in Fig. 8(b). The most evident
effect is that the beam quality is worse preserved for small
angles, ϕPIW ≤ 0.1, and large beam-beam tune shifts,
ΔQTotðϕPIWÞ ≥ 0.02, and that the emittance growth rate

FIG. 8. Beam quality reduction for different combinations of
ϕPIW and ξTot with different chromaticities, when Qx ¼ 0.31,
Qy ¼ 0.32, and β�q ¼ 0.4 m.

(a) (b) (c)

FIG. 9. FMAs showing effects of nonzero Piwinski angle and chromaticity for a working point of ðQx;QyÞ ¼ ð0.31; 0.32Þ, related to
the beam quality study in Fig. 8. Possible resonance lines up to the 16th order have been plotted on top of the tune footprint in each
figure. A few labels were added to guide the reader.
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has increased substantially. The chromaticity has the
effect that the tune of a particle oscillates in tune space,
parallel to the diagonal, Qx ¼ Qy, as Q0 is kept equal in
both planes. Effectively, particles far from resonance lines
become affected by resonances, visible in the FMA in
Fig. 9(c). This oscillation is dependent on the energy
variation, causing a mixing between the longitudinal and
transverse planes, activating synchrobetatron resonances.
The introduction of the longitudinal d.o.f. is able to
increase the diffusion rate through e.g. Arnold diffusion
[37]. The chromaticity does not activate odd resonances,
since it does not introduce a transverse asymmetry to the
interaction. Therefore, there still is an increase in detri-
mental effects towards a saturation as the angle increases
towards ϕPIW ≈ 1.
The crossing angle scan with a nonzero chromaticity

was repeated at the shifted working point, (0.315,0.325),
and the results are presented as functions of ΔQTotðϕPIWÞ
in Fig. 10(a). Both outputs support that this working
point might be better than the LHC working point,
except for the configurations with ΔQTotðϕPIWÞ ≤ 0.02
and ϕPIW ≥ 0.3, which indeed are the most relevant to
describe the configurations in the LHC today. With the

shift of working point, other resonances are important
to understand the dynamics. The FMA for ξTot ¼ 0.03,
Q0 ¼ 15 and ϕPIW ¼ 0.3 is presented in Fig. 11(a). The
odd and even resonances overlap for particles at large
transverse amplitude. This explains the clear distinction
between the cases of zero and nonzero crossing angle,
based on the loss rate. The overlap is close to the working
point, and will affect the footprint also for smaller
ΔQTotðϕPIWÞ. This explains why this working point
appears slightly worse than the LHC working point,
for small ξTot and large ϕPIW.
The results from a crossing angle scan for the machine

tunes of ðQx;QyÞ ¼ ð0.475; 0.485Þ, for nonzero chroma-
ticity, Q0 ¼ 15, are presented in Fig. 10(b) as functions of
ΔQTotðϕPIWÞ. A strange effect is that, for ϕPIW ¼ 0, the
beam quality seems better preserved for a stronger beam-
beam interaction. This was identified as an artifact of the
numerical model, due to the fact that the noise amplitude is
input relatively to the unperturbed optics functions, which
are actually significantly affected by the beam-beam inter-
action in the vicinity of the half-integer resonances [18]. The
extraordinary good behavior for ξTot ¼ 0.05 and zero cross-
ing angle can be understood by the FMA in Fig. 11(b). There

(a)

(b)

FIG. 10. Beam quality reduction for different combinations of
ϕPIW and ξTot at different working points, when Q0 ¼ 15 and
β�q ¼ 0.4 m.

(a)

(b)

FIG. 11. FMAs illustrating activation of synchrobetatron res-
onances at the alternative working points, related to the beam
quality study in Fig. 10. Possible resonance lines up to the
16th order have been plotted on top of the tune footprint. A few
labels were added to guide the reader.
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are only a few resonance lines that affect the footprint, and
there is no overlap between resonances. The maximum
beam-beam tune shift is smaller than ξTot because of the half
integer resonance. For a nonzero crossing angle, odd higher
order resonances overlap with the even resonances already
present with zero crossing angle. This working point gives
by far the best long-term preservation of beam quality for the
considered configurations.

C. Separation

By separating the beams at the IP in the plane
transverse to the crossing angle, the luminosity can be
reduced intentionally. The crossing scheme in these
simulations is both with and without crossing angle
HV (horizontal in the first IP, vertical in the other), and
the separation scheme is thus VH. Because the beam-
beam interaction is weaker at larger amplitudes, one
could naively assume that the beam quality would be
preserved better with a nonzero separation. To not
reduce the luminosity to zero, the relevant separations
are of only a few σΣ, which changes the nonlinear force
completely. It is therefore necessary to do numerical
simulations to find out if the separation has a beneficial
impact on the beam quality. At larger separations, it is
assumed that the impact of the beam-beam interaction
will decrease. Beam quality simulations for round beams
have been run for each of the following studies, with
separations Δx⊥ ∈ f0; 0.25;…; 2; 3;…; 10g · σΣ, large
chromaticity, Q0 ¼ 15, and nominal beam-beam param-
eters ξTot ∈ f0.01; 0.02; 0.03; 0.04; 0.05g, at the LHC
working point.
The results for a separation scan with zero crossing

angle are presented as functions of the separation Δx⊥ in
Fig. 12(a). For a separation of 6σΣ, the beam loss rate has
converged to good values. For a separation of 4σΣ, the
emittance growth rate has converged to the value expected
from noise alone. At lower amplitudes, the loss rate and
emittance growth rate both oscillate with local peaks at
separations of approximately 0.5σΣ and 1.5σΣ. This is in
agreement with an earlier study [15]. The worse behavior at
small separations is due to the activation of odd resonances,
as visualized by the FMA in Fig. 13.
The same scan was repeated with a nonzero Piwinski

angle, ϕPIW ¼ 1, and the results are presented as functions
of the separation in Fig. 12(b). The loss rate and emittance
growth rate converges again at 6σΣ and 4σΣ respectively.
The worst beam quality preservation occurs on the interval
Δx⊥ ∈ ½0.25; 1.5� · σΣ. The behavior in this interval is
smoother with a nonzero crossing angle, and the increased
deterioration is smaller. That is because the odd resonances
are already activated by the nonzero Piwinski angle.
For a transverse separation of 5σr, the particles of

approximately zero transverse amplitude always experi-
ence the weak beam-beam force at 5σr, independent of the
betatron phase. The particles at large transverse amplitudes

up to 5σr will oscillate between 0 and 10σr, experiencing at
times the strongly nonlinear force in the core of the strong
beam. This explains the convergence of emittance growth
rate at a lower transverse separation than the convergence
of the loss rate.

(a)

(b)

FIG. 12. Beam quality reduction for multiple combinations of a
transverse separation at the IPs, Δx⊥, and ξTot, when Qx ¼ 0.31,
Qy ¼ 0.32, β�q ¼ 40 cm and Q0 ¼ 15.

FIG. 13. FMA illustrating the effect of a small transverse
separation, Δx⊥ ¼ 0.25σΣ, for a working point of ðQx;QyÞ ¼
ð0.31; 0.32Þ, Q0 ¼ 0, ϕPIW ¼ 0 and ξTot ¼ 0.04. Possible reso-
nance lines up to the 16th order have been plotted on top of the
tune footprints. A few resonance labels were added to guide the
reader.
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D. Intermediate phase advance

The focus in this section is the impact of the
intermediate phase advance between the two IPs in
the model, further explained in Sec. II C. A previous
study has found that certain resonances can be canceled
by setting μ1 ¼ π=2 or μ1 ¼ μ=2 [10]. In this analytical
model, a phase error of more than 0.001 could be
sufficient to lose the cancellation effect. Since those
constraints were not compatible with realistic optics
tolerances, no conditions on the phase advance between
IPs were considered for the LHC. However, the theo-
retical model does not allow for an estimation of the gain
in terms of beam quality for a partial cancellation of the
resonances, which could allow for more relaxed toler-
ances on the optics control.
Beam quality simulations have been run for configura-

tions with different intermediate phase advances, Δμ1 ∈
½−0.03; 0.03� · 2π, close to the phase advances introduced
above, nominal beam-beam parameters ξTot ∈ f0.03; 0.04;
0.05g, and large chromaticity, Q0 ¼ 15. The difference,
Δμ1, from the design phase advance, π=2 or μ=2, is kept
equal in the horizontal and vertical plane. Because the
goal is to study how much the beam quality preservation
improves, and how accurately the intermediate phase
advance must be set, only the largest beam-beam param-
eters have been simulated. Only the results at the LHC
working point, (0.31,0.32), will be presented. Similar
behaviors have been found at the alternative working
points (0.315,0.325) and (0.475,0.485).
The results from a scan in intermediate phase advance

close to μ=2 for zero crossing angle are presented as
functions of μ1 − μ=2 in Fig. 14(a). The best preservation
of beam quality is achieved when μ1 ¼ μ2. This is
supported by the FMA in Fig. 15(a). The improvement
can be understood from a symmetry argument. With
equal phase advances, and equal modeling of the beam-
beam interaction in the two IPs, the model represents
effectively a collider with a single IP at a working point
of ðQx;QyÞ ¼ ð0.155; 0.16Þ. The total beam-beam tune
shift would then be half of what it is in the original
configuration. The required accuracy in μ1 seems depen-
dent on the beam-beam parameter, larger ξTot requires a
more accurate intermediate phase advance to achieve
the full improvement. The beam quality simulations are
less sensitive to the phase error than what the resonance
coefficients are.
The scan in intermediate phase advance close to μ=2 has

been repeated with a nonzero crossing angle, ϕPIW ¼ 1.
The results are presented as functions of μ1 − μ=2 in
Fig. 14(b). With one horizontal and one vertical crossing,
the symmetry is broken and therefore the lattice is no longer
equivalent to a shorter lattice with a single IP. The
resonances are not canceled, and the improvement from
the use of this intermediate phase advance is limited. This
argumentation is supported by the FMA in Fig. 15(b).

(a)

(b)

FIG. 14. Beam quality improvement for intermediate phase
advance close to μ=2, for different values of ξTot, when
Qx ¼ 0.31, Qy ¼ 0.32, and Q0 ¼ 15.

(a)

(b)

FIG. 15. FMA illustrating canceling of resonances using an
intermediate phase advance μ1 ¼ μ=2, for a working point of
ðQx;QyÞ ¼ ð0.31; 0.32Þ, Q0 ¼ 0 and ξTot ¼ 0.03. Possible reso-
nance lines up to the 16th order have been added, in addition to a
few labels meant to guide the reader.
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The results from a scan in intermediate phase advance
close to π=2, for zero crossing angle, are presented as
functions of μ1 − π=2 in Fig. 16(a). The best preservation
of beam quality is achieved when μ1 ¼ 0.512 · π, not when
μ1 ¼ π=2. The optimum phase advance has been found to
be dependent on the working point. The theory applied to
achieve the resonance canceling condition, μ1 ¼ π=2, was
for a 2D transverse phase space, and assumed that the
beam-beam interaction was weak. This assumption has
possibly been broken. For resonances dependent on both
transverse phase space planes, it seems that π=2 is not the
optimal choice. This is supported by FMAs. As seen in
Fig. 17(a), the cancellation of the resonances is not as
good as with the symmetric phase advance. The FMA can
however only give a qualitative understanding of the beam
dynamics. The beam quality simulations did show an
equally good improvement in preservation of beam quality,
and similar required accuracy in maintaining μ1.
The scan in intermediate phase advance close to π=2 has

been repeated with a nonzero crossing angle, ϕPIW ¼ 1.
The results are presented as functions of μ1 − π=2 in
Fig. 16(b). The improvement is modest at best. The choice
μ1 ¼ π=2 was only supposed to cancel resonances of
order f2; 6; 10; 14; 18;…g, not the 7th, 13th or 16th.
This is supported by the FMAs for a small crossing angle
in Fig. 17(b). Even if there is an improvement compared to
Fig. 9(b), there is no improvement according to the beam
quality simulations.

E. Hourglass effect

The β function varies as a parabola close to the IPs,
causing the transverse beam size to vary as well. This
variation is weak for configurations where σs=β�q ≪ 1. β�q is
squeezed to small values in all modern colliders to increase
the luminosity, making the hourglass effect important as a
side effect. Beam quality simulations for round beams have
been run for the following studies with β�q ∈ f2.5; 4; 8; 10;
12; 14; 20; 30; 40; 60; 80; 160; 400g cm, and ξTot ∈ f0.01;
0.02; 0.03; 0.04; 0.05g. The simulations are run with
σs ¼ 8 cm and zero crossing angle.
The results from a β�q scan at the LHC working point,

ðQx;QyÞ ¼ ð0.31; 0.32Þ, with zero chromaticity, are pre-
sented as functions of σs=β�q in Fig. 18(a). A change occurs
for σs=β�q ≥ 1, for which the loss rates and emittance
growth rates are increasing. The strong hourglass effect
causes significant mixing with the longitudinal d.o.f.,
activating and driving the synchrobetatron resonances.
This is supported by the FMA for β�q ¼ 2.5 cm in
Fig. 19(a). The effect is similar to the one caused by
chromaticity.
The β�q scan for the LHC working point, ðQx;QyÞ ¼

ð0.31; 0.32Þ, has been redone with a large chromaticity,
Q0 ¼ 15, and the results are presented in Fig. 18(b). The

(a)

(b)

FIG. 16. Beam quality improvement for intermediate phase
advance close to π=2, for different values of ξTot, when
Qx ¼ 0.31, Qy ¼ 0.32, and Q0 ¼ 15.

(a)

(b)

FIG. 17. FMAs illustrating canceling of resonances using an
intermediate phase advance μ1 ¼ 0.512 · π, for a working point of
ðQx;QyÞ ¼ ð0.31; 0.32Þ, Q0 ¼ 0 and ξTot ¼ 0.03. Possible reso-
nance lines up to the 16th order have been added, in addition
to a few labels meant to guide the reader.
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chromaticity activates synchrobetatron resonances visual-
ized by the FMA for β�q ¼ 4 m and Q0 ¼ 5 in Fig. 19(b).
That is why the beam quality is worse preserved for
nonzero chromaticity and σs=β�q ≪ 1. This behavior was
also expected for the more significant hourglass effect.
Instead, there appears an optimum σs=β�q of approximately
2=3, limited by the chromaticity from below and the

hourglass effect from above. It seems that when the
hourglass effect becomes significant, it reduces the strength
of some resonances that strongly affect the dynamics in
the presence of chromaticity, visualized by the FMA for
β�q ¼ 12 cm and Q0 ¼ 5 in Fig. 19(c). The hypothesis is
supported by both the beam quality simulations and FMAs.
At the first alternative working point, ðQx;QyÞ ¼

ð0.315; 0.325Þ, we observe the same behavior, with a
wider optimal interval of β�q ∈ ½10; 30� cm. The beam
quality is preserved better for all tested configurations at
this working point. At the second alternative working point,
ðQx;QyÞ ¼ ð0.475; 0.485Þ, there is no noticeable impact of
the chromaticity for zero crossing angle, as was found in
Sec. IV B. The loss rate increases fast for σs=β�q ≥ 0.4 [18].

F. Chromaticity

The quantitative dependence on chromaticity will be
tested for negligible and moderate hourglass effect with
zero and nonzero crossing angle. Beam quality simulations
for round beams have been run for each of the following
studies at the LHC working point, ðQx;QyÞ ¼ ð0.31; 0.32Þ,
with Q0 ∈ f0; 1.25;…; 5; 7.5;…; 20g, and nominal beam-
beam parameters ξTot ∈ f0.01; 0.02; 0.03; 0.04; 0.05g.
The results from a chromaticity scan with negligible

hourglass effect, σs=β�q ¼ 0.02, and zero crossing angle,
ϕPIW ¼ 0, are presented as functions of Q0 in Fig. 20(a).
The scan was repeated with a significant hourglass effect,
σs=β�q ¼ 2=3, and the results are presented in Fig. 20(b).
The most important difference is that the onset of detri-
mental effects begins at a larger chromaticity with the
significant hourglass effect. For the largest beam-beam
parameter, ξTot ¼ 0.05, there seems to be a cancellation of
the detrimental effects caused by the hourglass effect at
Q0 ¼ 0, for a small nonzero chromaticity. This behavior
produces an optimum chromaticity, being approximately
Q0 ¼ 3.75 for this configuration.
The chromaticity scans have been repeated with a

significant crossing angle, ϕPIW ¼ 1. The results from a

(a)

(b)

FIG. 18. Beam quality reduction for different combinations of
β�q and ξTot, when Qx ¼ 0.31, Qy ¼ 0.32, and ϕPIW ¼ 0.

(a) (b) (c)

FIG. 19. FMAs illustrating the effect of synchrobetatron resonances due to the hourglass effect, for a working point of ðQx;QyÞ ¼
ð0.31; 0.32Þ and ξTot ¼ 0.05, related to the beam quality study in Fig. 18. Possible resonance lines up to the 16th order have been added,
including a few labels meant to guide the reader.
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scan with negligible hourglass effect, σs=β�q ¼ 0.02, is
presented as functions of Q0 in Fig. 21(a). The scan with
a significant hourglass effect, σs=β�q ¼ 2=3, is presented
in Fig. 21(b). Note that this Piwinski angle for a smaller
value of β�q corresponds to a smaller actual crossing angle.
For the largest beam-beam parameters, ξTot ≥ 0.04, the
detrimental effects caused by the hourglass effect and
crossing angle when Q0 ¼ 0, is reduced when a small
nonzero chromaticity is included. This behavior produces
an optimum chromaticity, being approximately Q0 ¼ 2.5
for this configuration.
The optimum balance between chromaticity and

hourglass effect, observed both here and in Sec. IV E,
is assumed to be linked to how the two effects alternate
in affecting the incoherent particles. The hourglass
effect is felt more strongly for a large longitudinal
displacement, s, while the chromaticity affects the
particles more strongly for a large energy deviation, δ.
This alternation with the synchrotron motion is assumed
to disturb the resonances from building up periodically
over time. Exactly how this mechanism works remains
to be understood. Unlike the smart choice of phase

advance, the improvement from this effect has been
found to remain after activation of odd resonances with a
crossing angle.

G. Maximum beam-beam tune shift

In lepton colliders, a limit in the beam-beam tune shift is
usually observed [1]. Having studied individually the
different beam quality deterioration mechanisms in a
hadron collider, we now ask ourselves whether a realistic
beam-beam limit exists also there. Beam quality simula-
tions have been run for different configurations at the LHC
working point, (0.31, 0.32), and the alternative working
points, (0.315, 0.325) and (0.475, 0.485), in search of a
maximum acceptable beam-beam tune shift. The limit will
be taken where there appears to be a distinct threshold on
the preservation of beam quality, and not linked to a hard
limit on either output. Pessimistically, the chromaticity will
be set to Q0 ¼ 15 in these simulations, assumed necessary
to prevent coherent instabilities. The beta function will be
set to β�q ¼ 12 cm, as have been found optimal to reduce
the problems caused by this level of chromaticity at the

(a)

(b)

FIG. 20. Beam quality reduction for multiple combinations of
the chromaticity, Q0, and the beam-beam parameter, ξTot, when
Qx¼0.31, Qy¼0.32. (a) β�q ¼ 4m, ϕPIW ¼ 0. (b) β�q ¼ 12 cm,
ϕPIW ¼ 0.

(a)

(b)

FIG. 21. Beam quality reduction for multiple combinations of
the chromaticity, Q0, and the beam-beam parameter, ξTot, when
Qx¼0.31, Qy¼0.32. (a) β�q ¼ 4m, ϕPIW ¼ 1. (b) β�q ¼ 12 cm,
ϕPIW ¼ 1.
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LHC working point. This β�q is similar to the design value
for the HL-LHC.
The first configuration that will be considered has round

beams colliding head-on with zero crossing angle. The
intermediate phase advance is set to μ1 ¼ μ=2. This is
similar to the configuration considered in [13], and the
results presented as functions of ΔQTotðϕPIWÞ in Fig. 22(a)
are in good agreement. Indeed, in this configuration, the
maximum acceptable beam-beam tune shift from the LHC
working point is approximately ΔQTot ¼ 0.26. The limits
are slightly larger for the alternative working points. This
configuration is however quite unrealistic. First of all, it is
not possible to keep exactly the smart intermediate phase
advance μ1 ¼ μ=2. The acceptable phase error has been
found to decrease for increasing ξTot, and was approaching
zero for a beam-beam parameter of ξTot ¼ 0.05. Second
of all, it was assumed that the nonlinearities of the lattice,
and in particular the corresponding resonance driving
terms, could be reduced arbitrarily, and were consequently
neglected in the numerical model. It is obvious that this
cannot be achieved for low order resonances such as the
fourth order that is strongly excited for example by the
sextupoles necessary for chromatic corrections. This res-
onance would limit the beam-beam tune shift to at least
0.06 with the LHC working point. Similarly the absence
of odd resonance in this configuration seems difficult to
realize in practice.
The required accuracy in the intermediate phase advance

is perhaps impossible to achieve for large beam-beam
parameters, ξTot > 0.05. The scan for zero crossing angle
has therefore been repeated with zero intermediate phase
advance, and the results are presented as functions of
ΔQTotðϕPIWÞ in Fig. 22(b). Without the improvement from
the intermediate phase advance, the maximum acceptable
beam-beam tune shift from the LHC working point is
reduced significantly to approximately ΔQTot ¼ 0.043.
Above this limit the loss rate increases rapidly. The limit
for the first alternative working point is approximately
0.067. The limit is similar for the second alternative
working point, although it is less abrupt.
In future colliders, the strength of long-range interactions

might be weaker and the Piwinski angle might be canceled
by use of crab cavities. Nevertheless, it is possible that odd
resonances cannot be fully suppressed due to the imper-
fections of the crabbing system and the remaining long-
range interactions. Therefore, the beam-beam parameter
scan has been repeated for a configuration with a significant
Piwinski angle, ϕPIW ¼ 1, and zero intermediate phase
advance. The results of this scan are presented in Fig. 22(c).
The limit at the LHC working point is approximately
ΔQTot ¼ 0.028. For the first alternative working point,
there is a slight decrease in preservation of beam quality for
small beam-beam tune shifts, as discussed in Sec. IV B.
The general behavior is acceptable until ΔQTot ¼ 0.036.

For the second alternative working point, the limit is
approximately ΔQTot ¼ 0.06.
The last two studies have been rerun with β�q ¼ 30 cm,

the design value for the FCC-hh. This choice reduced the
limit on the tune shift further. The limits for the LHC

(a)

(b)

(c)

FIG. 22. Beam quality reduction for increasing beam-beam
parameter, ξTot, until a threshold is found. Simulations are run for
a large chromaticity, Q0 ¼ 15, and a significant hourglass effect,
β�q ¼ 12 cm, changing the crossing angle, intermediate phase
advance and working point. The outputs are presented as
functions of ΔQTotðϕPIWÞ calculated by Eq. (17).
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working point, (0.31, 0.32), and the first alternative work-
ing point, (0.315, 0.325), are collected in Table II.

V. EXPERIMENTAL RESULTS

A dedicated experiment was performed in the LHC to
study the limitations due to strong head-on beam-beam
interactions [38,39]. The experiment tested collisions at
different working points between individual bunches of
higher intensity and smaller normalized emittance than the
ones produced for regular operation with bunch trains, but
close to the bunch brightness expected for the HL-LHC
project. The resulting total beam-beam tune shift was
just below 0.02. The experiment found that the loss rate
depended strongly on the working point, which was moved
along the diagonal close to the LHC working point. The
parameters of the LHC were fixed with the standard setup
of the 2017 run, except for the different working points.
The particles were colliding in IP1 and IP5 only, with
alternating full crossing angle of θxing ¼ 280 μrad with
β�q ¼ 0.4 m. The chromaticity was moderate, Q0 ¼ 7.
The configurations of the bunches that were acted upon

by the strongest beam-beam interactions have been simu-
lated by CABIN. Each working point was tested in a limited
window, making the emittance measurements erroneous.
Therefore, only the loss rates will be compared. This
experiment was run over two fills in the LHC. The first
fill began at (0.311,0.318), whereupon the tunes of both
beams were decreased simultaneously parallel to the
diagonal. The second fill began at (0.311,0.319), where-
upon the tunes of only beam 1 where increased one at a
time. To use the implementations for the round beam-beam
interaction, the average of the horizontal and vertical
emittances has been used. To use the 4D implementation,
the beam-beam parameter has been reduced by a factor S as
in Eq. (17). The loss rates in the LHC and calculated with
CABIN are visualized in Fig. 23.
In the LHC, the loss rate is large for working points close

to the tenth order resonance, Qx ≤ 0.302. The loss rate is
also large in the opposite end, for the working point
(0.317,0.328). This is possibly caused by the 14th order
resonance, 4Qx þ 10Qy ¼ 2. Because there is a nonzero
crossing angle, it could also be caused by the 7th order
resonance 2Qx þ 5Qy ¼ 1. There are also quite large loss

rates close to (0.309,0.316). This might be caused by a
combination of the 13th and 16th order resonances. The
smallest loss rate was measured at a working point of
(0.315,0.324).
The configurations were simulated with the round 4D

beam-beam implementation in CABIN. For the working
points close to the tenth order resonance, Qx ≤ 0.305, the
calculated loss rates are high, comparable to the exper-
imental values. The code calculates high loss rates for
working points further from the tenth order resonance than
what was measured in the experiment. For larger horizontal
tunes, Qx > 0.305, the round 4D beam-beam implementa-
tion does not calculate high loss rates for any configuration.
The configurations were also simulated with the round

6D beam-beam implementation. For the working points
close to the tenth order resonance at Qx ≤ 0.305, the
calculated loss rates are high, as they were for the 4D
implementation. For larger horizontal tunes, Qx > 0.305,
the round 6D beam-beam implementation calculates loss
rates similar to the experimental values.
The configurations were also simulated with the flat

6D beam-beam implementation. With this implementation,
the large loss rates close to the tenth order resonance are
measured for even larger horizontal tunes, Qx ≤ 0.306. For
larger horizontal tunes, Qx > 0.306, the dependence on the
working point is similar to the values calculated by the

FIG. 23. Loss rates measured in the LHC, subtracted the
estimated luminosity burn-off of 5% h−1, and loss rates
(LRBeam) calculated by CABIN for the same configurations using
the different implementations of the beam-beam interaction. The
circles and stars correspond to the first and second fill respec-
tively. Even resonance lines up to 14th order are plotted on top of
the LHC measurements, with width proportional to the strength
of the resonance coefficient [40].

TABLE II. Maximum acceptable beam-beam tune shift, for
pessimistic, realistic configurations.

ΔQTot ΔQTot
ðQx;QyÞ β�q [cm] (ϕPIW ¼ 0) (ϕPIW ¼ 1)

(0.31, 0.32) 12 0.043 0.028
(0.31, 0.32) 30 0.035 0.018

(0.315, 0.325) 12 0.067 0.036
(0.315, 0.325) 30 0.060 0.026
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round 6D implementation, and thus also similar to the
experimental values. The loss rates for large vertical tunes,
Qy ≥ 0.327, are larger for the flat implementation than for
the round 6D implementation and the experimental values.
The simulations are affected by the detrimental effects

from the tenth order resonances close to Qx ¼ 0.3 at larger
horizontal tunes than are measured in the LHC. The code
counts particles as lost at lower amplitudes than where they
actually are lost. Particles at 5σΣ have tunes further from the
working point than particles at 6σΣ, as was detailed in
Fig. 2. This difference could explain the discrepancy in the
loss rates for Qx ∈ ½0.303; 0.305�. Collimating at the larger
amplitude has been found to push the limit for large loss
rates down to Qx ¼ 0.303, but this also reduces the loss
rates in the configurations far from the tenth order reso-
nance significantly. Another possible cause is that the
measured emittances in the machine during the experiment
were erroneous. The beam-beam tune shift was also
measured, and it suggested that the emittances of the
strong beam were underestimated by 20% to 30%, which
leads to an overestimation of the beam-beam tune shifts of
beam 1 [38].
The loss rates calculated with the 4D implementation

stand out for the working points with Qx > 0.306. The
difference comes from the inability of the 4D implementa-
tion to model the effect of the crossing angle and the mixing
with the longitudinal d.o.f. The reduction of the beam-beam
parameter for the 4D model does reduce the length of the
tune footprint, but it also reduces the width of the footprint,
as the crossing angle does not do to the same extent. More
importantly, the seventh and ninth order resonance lines
with a nonzero crossing angle are replaced by the 14th and
18th order resonance lines with the 4D model. The 4D
model is not able to correctly model the behavior at these
working points, for which the beams can be affected
strongly by odd resonances.
There are small differences between the round and the flat

6D simulations as well. Some of these differences are within
the ∼10% deviation in the simulation results. The possibly
most crucial difference is in the limit on Qx for large loss
rates close to the tenth order resonance. The strong beam
has a smaller vertical than horizontal normalized emittance,
ϵn;x2 > ϵn;y2, making the beam squeezed in the vertical
direction and the beam-beam tune shift larger in the vertical
tune than in the horizontal tune, in agreement with Eq. (5).
In effect, the tune footprint with the flat implementation is
shifted towards the coupling resonance. The total tune shift is
also slightly larger for the flat implementation than the round
implementation. This is caused by taking an average of the
emittances when modifying the values of the strong bunch to
be able to use a round beam-beam implementation. If the
measured emittances were correct, the flat beam implemen-
tation would model the physics most accurately. It is possible
that the values used for the round 6D implementation are
closer to the actual values.

VI. CONCLUSION

The object of this paper has been to study the parametric
dependence of detrimental mechanisms related to beam-
beam interactions. This has been done extensively by use of
new beam quality simulations and FMAs.
In order to accurately quantify the impact on the beam

quality, a high-performance tracking code named CABIN

has been developed. It is designed to study the beam-beam
interaction, which has been implemented by the weak-
strong approach for both round and flat beams in both 4D
and 6D. The modeling of the beam-beam interaction
consumes in general more than 95% of the computation
time of the simulations. The implementation using a GPU
has reduced the tracking time by approximately 3 orders of
magnitude, compared to a single CPU. A new regionally
uniform initial distribution has been designed to model the
evolution of both the core and the tail of the bunch
accurately, while maintaining realistic computing require-
ments. It represents a 6D Gaussian bunch up to 6σ with
the required accuracy, using only Nmp ¼ 1 × 105 macro-
particles. Especially the relative error of the loss rate
measurement has been reduced from 86% to 8%, compared
to a Gaussian distribution of the same number of macro-
particles. Simulation results produced with this code
showed good quantitative agreement with a dedicated
experiment done at the LHC, and allowed to identify the
role of the crossing angle in the observed loss mechanism.
Some effects have been shown to improve the beam

quality for a given total beam-beam parameter. The best
beam performance has been found for zero crossing
angle, as the odd resonances are not activated. The crossing
angle is generally nonzero in modern circular colliders, but
may be forced zero for the head-on interactions by crab
cavities in the HL-LHC and FCC-hh. Thus, the odd
synchrobetatron resonances due to the head-on interactions
could be suppressed. Increasing the crossing angle further
past ϕPIW ¼ 1 also reduces the detrimental effects. This
improvement has been found to be caused by the decrease
of the beam-beam tune shift and spread. As a result, the
particles in the beams are affected by fewer strong
resonances. Nevertheless, this regime is not preferable
for operation, since the luminosity is also decreasing for
larger crossing angles.
A transverse separation of more than 2σ also improves

the beam quality by reducing the beam-beam tune shift.
This is done to intentionally reduce the luminosity in a
single experiment. However, for a nonzero separation of
less than 2σ, the altered nonlinearities can deteriorate the
beam quality faster than with zero separation. Using such
separations to reduce the luminosity is therefore not an
optimal strategy to minimize the impact of the beam-beam
interaction on the beam quality.
A few specific configurations were also found to

improve the beam quality without reducing the luminosity.
It has been found that a significant hourglass effect reduces
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the detrimental effects caused by chromaticity, and vice
versa. With a large chromaticity, Q0 ¼ 15 at the LHC
working point, (0.31,0.32), the optimal strength of the
hourglass effect is when σs=β�q ≈ 2=3, corresponding to
β�q ¼ 12 cm in the FCC-hh, which is smaller than the
current design value. This effect is only weakly dependent
on the crossing angle.
Enforcing intermediate phase advances of μ1 ¼ μ=2 or

π=2 were expected from first order theory to reduce the
effect of resonances. The symmetric phase advance, μ=2,
improved the performance for all working points. An
optimal intermediate phase advance was also found close
to π=2, but it was different from the predicted value and
found to depend on the working point. Both phase advances
improved the beam quality best for zero crossing angle.
The effect was marginal for a significant crossing angle,
ϕPIW ¼ 1. It was found that the accuracy required to keep
the resonance coefficients suppressed was high. However,
the effect on the beam quality remained under control with
a reduced accuracy of order Δμ1 ∼ 0.01, which is within
reach using modern optics correction methods.
The LHC working point, (0.31,0.32), has been found

to work well for small beam-beam parameters. With a
Piwinski angle of ϕPIW ¼ 1, a significant chromaticity,
Q0 ¼ 15, and a beam-beam tune shift equal to the maxi-
mum tune shift in the FCC-hh, ΔQTot ¼ 0.03, two alter-
native working points were found to better preserve the
beam quality, (0.315,0.325) and (0.475,0.485). The beam
quality was generally also found to be better closer to
the coupling resonance. A realistic, pessimistic maximum
beam-beam tune shift from the LHC working point, is
found to be ΔQTot ¼ 0.043 with zero crossing angle. With
a Piwinski angle of ϕPIW ¼ 1, this limit is reduced to
ΔQTot ¼ 0.028. The limits are larger for the alternative
working point, (0.315,0.325), being ΔQTot ¼ 0.067 and
0.036 respectively. These values correspond to the opti-
mum hourglass effect with β�q ¼ 12 cm. For the FCC-hh
design parameters, β�q ¼ 30 cm at the LHC working
point, the limits for zero and nonzero crossing angle
are reduced to ΔQTot ¼ 0.035 and 0.018 respectively.
While the ultimate beam-beam tune shift of 0.03 con-
sidered for the FCC-hh baseline with crab cavities seems
within reach, the limit for nonzero crossing angle is
significantly smaller indicating that the presence of odd
resonances could be highly detrimental to its performance
and should be taken into consideration. In particular,
other sources of odd resonances, such as the imperfec-
tions of the magnetic lattice or long-range beam-beam
interactions, have to be kept under control in order to
avoid a further decrease of the maximum acceptable
beam-beam tune shift. Further extensions of the numeri-
cal model have to be envisaged to evaluate quantitatively
those effects. The assessment of the effect of the lattice
nonlinearities is particularly challenging due to the extra
numerical load of the lattice model.

Consistently with past studies, a working point close to
the half integer was found to allow for significantly larger
beam-beam tune shifts, supporting further investigations of
the difficulties such as the optics correctability in this area
of the tune diagram.
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APPENDIX: DIFFUSION

Consider a 1D diffusion of the normalized momentum
density nðpx; tÞ with constant diffusivity, D. Fick’s law
reads in this case [41]

dn
dt

¼ D
d2n
dp2

x
: ðA1Þ

Through insertion one can see that this is solved for a
Gaussian initial condition (IC) by

nðpx; tÞ ¼
Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πDðkþ tÞp exp

�
−

p2
x

4Dðkþ tÞ
�
; ðA2Þ

where k is a constant defined by the IC. Integrating this
distribution over all momentum gives the total number of
particles N. Through comparison with a 1D Gaussian, or
from performing the calculation, one gets that the second
moment hp2

xi increases linearly with time,

hp2
xi ¼ 2Dðkþ tÞ ¼ σ2px

; ðA3Þ

where 2Dk ¼ σ2px;0
is the variation at time t ¼ 0.

Diffusion can be achieved with a normally distributed
kick κ with rms amplitude Δ, on the momentum px of
each particle in nðpx; tÞ. The relation between Δ and the
diffusivity, D in Eq. (A1), can be expressed as [42]

D ¼
Z

∞

−∞
dκ

κ2

2δt
1ffiffiffiffiffiffi
2π

p
Δ
exp

�
−

κ2

2Δ2

�
¼ Δ2

2δt
; ðA4Þ

where δt is the time interval between each kick. The
amplitude of noise Δ can thus be set to produce a given
expected growth rate caused by noise alone.
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Consider an example relevant for simulations done
in CABIN [21]. Set the rms amplitude of the kick to be
Δ ¼ σpx;0 × 10−4, and assume that the momentum of each
particle is kicked once per turn, δt ¼ 1=frev, where frev is
the revolution frequency. The evolution of the second
moment of px is then

σ2px
¼ σ2px;0

· ð1þ T × 10−8Þ; ðA5Þ

where T is the turn number, equal to t · frev. For the
normalized Gaussian distribution considered in this paper,
σpx;0 ¼ 1. The growth rate of the second moment of px

is equivalent to the emittance growth rate expected from
noise alone, _ϵ0 ¼ 1 × 108=turn. ϵ0 is the emittance based
on normalized coordinates, equal to 2 for a perfect
Gaussian distribution.
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