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Betatron phase measured from excited oscillation can be used to correct the beta function and the
nonlinear lattice. With an improved algorithm the measurement precision has achieved 1 mrad (rms), or
equivalently, 0.3% of beta beat at NSLS-II. The beta beating can be corrected to 1% in less than half an
hour. This precise technique can be applied to the nonlinear lattice correction as well. The betatron phase
probed by an off-axis beam provides information on the sextupole strength. In comparison with the model
the nominal strength can be restored. It was shown that the proposed scheme treated all the leading order
resonance driving terms generated by sextupoles, as well as the detuning terms and the nonlinear
chromaticity. At NSLS-II a half percent sextupole correction led to a 15% increase of the dynamic aperture.
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I. INTRODUCTION

The initial magnet currents in an accelerator are calcu-
lated based on magnetic measurements; due to practical
errors the settings must be fine-tuned after beam is estab-
lished. Similar tuning is required routinely during oper-
ations to compensate for environmental variation or
magnetic hysteresis effects. Many methods have been
developed for lattice tuning. Common practice is to min-
imize the difference between the model prediction and the
beam response to a perturbation. Two types of perturbations
are commonly used. The first type is oscillatory. The beam
oscillation can be excited at a fixed frequency by an AC
dipole[1–4] or a fast corrector [5,6] or, the intrinsic betatron
oscillation can be triggered by a pulsed kicker. In contrast to
the oscillatory perturbation, a static trajectory deflection or
orbit distortion can be induced by an orbit corrector.
In the synchrotron light source community LOCO is a

widely adopted approach [7]. The method collects the orbit
change in response to the variation of correctors and
identifies the magnet errors by fitting all the relevant
parameters such as the quadrupole and skew quadrupole
strength, the beam position monitor (BPM) gain and roll,
and the corrector gain and roll. LOCO has proven suc-
cessful in correcting the beta function, dispersion and
coupling at many facilities [8] however the final accuracy

is affected by cross-talk of the errors and change of the
machine condition, such as variation on the beam orbit,
intensity and bunch pattern.
The beta function can be restored via betatron phase

correction. The phase is obtained from the BPM turn-by-turn
signal generated by an oscillating beam. This direct meas-
urement is fast, precise, and independent of the BPM
calibration. It was studied by Castro and applied at CERN
in the early 1990s [9], and followed by many other facilities
[2,10–15]. The drawback of the approach is that the phase
alone cannot be used to correct dispersion and coupling. By
fitting dispersion and coupling to the oscillation amplitude
these lattice properties can be restored, but it is beyond the
scope of the paper. Interested readers can refer to [16] for a
comprehensive review of the variousmethods. AtNSLS-II the
beta-beat was corrected to several percent at commissioning
using the turn-by-turn data [17,18]. So far the measurement
precision is determined to beΔβ=β ≈ 1% [14], and the residue
being a few percent, which is significantly higher than LOCO
and the other methods [8]. In this paper we will examine the
algorithm and present a method to improve its accuracy.
In contrast to the success of linear lattice correction,

online nonlinear characterization remains a challenge. The
reason is two fold. First the multipole (>4 poles) effects are
small in comparison to the quadrupole focusing effect. For
example, the parasitic motion induced by the sextupole
driving terms is 2–3 orders of magnitude smaller than the
betatron oscillation [19]. In such a situation it is difficult to
obtain precise measurement. The second obstacle is the
complexity of nonlinear optimization constraints. So far
most of the nonlinear tuning methods have focused on part
of the nonlinear constraints, such as the resonance driving
terms [20,21], the tune dependence on the amplitude [22],
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and either the beam lifetime [23] or the injection efficiency
[24]. Dynamic aperture optimization requires controlling at
least all the leading order terms, i.e., the leading order
driving terms and the detuning terms. Partial correction of
these parameters might not result in a best solution. A
scheme will be proposed in the second half of the paper to
treat all the leading order terms simultaneously. It is
realized by correcting the focusing effect of the sextupoles
while the beam orbit is offset by a corrector or by changing
the rf frequency. The method has been confirmed exper-
imentally at NSLS-II.
The theme of the paper is to correct the betatron phase

and to characterize the linear and the nonlinear lattice. The
paper is expanded as follows. In Sec. II the phase correction
is examined by simulation and equivalence is shown to the
beta function correction. It is followed by an algorithmic
improvement which results in better accuracy. The dem-
onstration of 1 mrad of the measurement precision of the
betatron phase and the application to the NSLS-II linear
lattice are presented in Sec. III. The sextupole correction
scheme and the experimental confirmation are described in
Sec. IV. The conclusion is drawn in Sec. V. We put all the
derivations in the Appendices, particularly, the error analy-
sis of the Fourier transform, and the phase dependence on
the nonlinear driving terms, as well as the proof of many
statements in the main text.

II. EXAMINATION AND IMPROVEMENT
OF THE APPROACH

A. The phase correction approach

The betatron phase advance between two BPMs indexed
i and j, is defined as

ψði; jÞ ¼
Z

sj

si

ds
βðsÞ ; ð1Þ

where βðsÞ is the beta function at location s, and si and sj are
the locations corresponding to the BPMs. For convenience a
reference point can be defined, such as the injection point,
then only one index is needed. In this case ψðiÞ means the
phase advance from the reference point to the BPM i.
Betatron phase can be obtained from the turn-by-turn

signal of the BPMs synchronized to the same turn. The
motion of an electron bunch differs from a single particle
due to the spread in momentum and energy [25]. A parasitic
orbit oscillation can also be excited [26]. However, if the
chromaticity and the oscillation amplitude are small the
motion detected by BPM i can be approximated as

xðnÞ ¼ gxx½Ax;i cosð2πnνx þ ψx;iÞ þ xcoðnÞ�
þ gx;y½Ay;i cosð2πnνy þ ψy;iÞ þ ycoðnÞ�;

yðnÞ ¼ gyx½Ax;i cosð2πnνx þ ψx;iÞ þ xcoðnÞ�
þ gy;y½Ay;i cosð2πnνy þ ψy;iÞ þ ycoðnÞ�; ð2Þ

where xðnÞ, yðnÞ are the horizontal and vertical offsets seen
by the BPM, n is the turn number, xcoðnÞ; ycoðnÞ are the
closed orbit offsets that can oscillate at synchrotron tune
due to the kick, νx;y are the betatron tunes and Ax;y;i;ψx;y;i

are the initial amplitudes and phases, gxx; gxy; gyx; gyy are
functions of linear coupling and BPM gain and rotation.
The oscillation amplitude and phase at each BPM can be

calculated by Fourier transform (FT). For example, if the
averaged horizontal tune νx is obtained from the Fourier
spectrum, the Fourier coefficients are calculated as

ai ¼
2

N

XN
n¼1

xðnÞ sinð2πνxnÞ

¼ 2

N

XN
n¼1

gxxAx;i cosð2πnνx þ ψx;iÞ sinð2πνxnÞ;

bi ¼
2

N

XN
n¼1

xðnÞ cosð2πνxnÞ

¼ 2

N

XN
n¼1

gxxAx;i cosð2πnνx þ ψx;iÞ cosð2πνxnÞ; ð3Þ

where the other frequencies have been filtered by FT in the
second step.
Applying the approximations

P
N
n¼1cosð2πνxnÞ×

sinð2πνxnÞ≈0 and
P

N
n¼1cos

2ð2πνxnÞ≈
P

N
n¼1sin

2ð2πνxnÞ≈
N=2, one obtains

ψx;i ¼ arctanð−ai=biÞ: ð4Þ

gxxAx;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2i þ b2i

q
: ð5Þ

Where Ax;i is the oscillation amplitude. The gxx factor is
canceled in Eq. (4) therefore the phase ψx;i does not depend
on the g factors and BPM calibration is not necessary.
The absolute phase given by Eq. (4) depends on the

starting turn. However the phase advance between BPM i
and iþ 1, or ψði; iþ 1Þ, depends only on the magnet
settings. The phase deviation from the model is defined
as [10]

ϕi ¼ ψði; iþ 1Þmeas − ψði; iþ 1Þmod; ð6Þ

where the superscript stands for “measurement” or
“model.” For N BPMs we obtain the phase vector ϕ⃗ ¼
ðϕ1;ϕ2;…;ϕNÞ. In the definition ψðN þ 1Þ is needed in
order to calculate ϕN . Here ψðN þ 1Þ refers to the first
BPM but the data starts from the next turn. Apparently
ϕ⃗ ¼ 0⃗ corresponds to the ideal lattice. The phase error can
be corrected using a response matrix calculated from the
model. The turn-by-turn data can be collected within
seconds hence the correction is fast.
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B. Equivalence between betatron phase and amplitude

If there are sufficient number of BPMs and the lattice is
uniquely constrained, correcting ϕ or Δβ=β is equivalent.
In order to form a local bump of β functions, β and α
(α ¼ −β0ðsÞ=2) must be matched in two transverse planes
at the two ends, which requires a minimum of four
quadrupoles; therefore if the number of quadrupoles
between two adjacent BPMs is less than four, correcting
either ϕ or Δβ=β at the discrete BPM locations restores the
lattice.
In this section we show three simulation examples to

support the conclusion. At NSLS-II there are 180 BPMs
and 300 quadrupoles, and the number of quadrupoles in
between two adjacent BPMs is less than three. Therefore
the lattice is uniquely constrained in the ideal case.
In the first example a lattice was corrected via betatron

phase. The test lattice was initialized with misalignment
and quadrupole strength error. The orbit was corrected.
However, due to the residual magnet offset, the sextupoles
contributed to the focusing error too. A response matrix of
betatron phase versus individual quadrupole strength K1

was generated, the phase error obtained from ELEGANT [27]
simulation was multiplied by the inverse response matrix,
and the quadrupole adjustments were obtained. Figure 1
shows the convergence of the phase and beta beat in two
iterations in the horizontal plane. Similar results were
obtained in the vertical plane. This example demonstrates
that phase correction is as effective as beta-beat correction
in a practical setup.

The second demonstration of the equivalence is the
unique conversion between the phase error and the beta
beat. The beta function of an error lattice can be calculated
from the measured phase advance [9]. For three consecu-
tive BPMs 1, 2, and 3,

βe1 ≈ β1
cotψe

12 − cotψe
13

cotψ12 − cotψ13

ð7Þ

where βe1 and ψe
mn are the beta function and phase of the

error lattice, and β1 and ψmn are for the unperturbed lattice.
Here the superscript “ e” indicates the error lattice, and ψmn,
m, n ¼ 1, 2, 3, signifies the phase advance fromm to n. The
assumption of Eq. (7) is that the quadrupole error source is
outside the considered region, i.e., from location 1 to 3.
Equation (7) is a good approximation even if there is local
error between 1 and 3 as long as the error contribution is
small compared to the total. In order to test Eq. (7) an error
lattice was created with distributed quadrupole errors. The
beta beat can be calculated either from the given beta
function, or from the phase advance using Eq. (7). Figure 2
shows the comparison of the two approaches. The good
agreement indicates the unique correspondence between
the phase error and the beta beat. As proposed in [9],
Eq. (7) can be used to calculate and correct the beta
functions. While experimenting at NSLS-II Eq. (7) was
found effective in correcting large beta beat, however, it
gives unreasonable results when beta beat reaches a few
percent. In simulation the agreement is always good, no
matter the beta beat is large or small.
Another interesting phenomenon is that the beta beat

scales linearly with the phase beat. Figure 3 shows the
relation obtained from simulation. Quadrupole strength and
misalignment errors were added to the NSLS-II lattice, then
the standard deviations of the beta beat and phase beat were
calculated while the error was increased in steps. In the plot
all the BPMs were sampled for statistical calculation. The
linear relations found at NSLS-II are

Δβx
βx

¼ 2.5σϕ;x;
Δβy
βy

¼ 2.8σϕ;y: ð8Þ

FIG. 1. Top: The horizontal phase error was corrected after two
iterations for a test lattice. Bottom: The reduction of the
horizontal beta beat while the phase was corrected.

FIG. 2. The beta beat calculated from the given beta function
(black) and from the phase error (red).
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The ratio was different if the sampling included other
elements even though the relation remained linear. But this
is not a problem because during experiment the sampling is
always taken only at the BPMs. A similar linear relation-
ship was reported at another facility [10].

C. Improved Fourier transform

In this section the improvement of the phase analysis
algorithm will be discussed. The uncertainty of Eq. (4) can
be calculated as

Δψ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�∂ψ
∂a Δa

�
2 þ

�∂ψ
∂b Δb

�
2

r

¼ a=b
1þ ða=bÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔa=aÞ2 þ ðΔb=bÞ2

q
: ð9Þ

The uncertainty due to the signal noise is given by,

hΔa2i ¼ 4

N2

XN
n¼1

hΔx2ihsin2νxni ¼
2

N
hΔx2i; ð10Þ

However a2 ≈ hx2i, therefore ðΔaa Þ2 ≈ 2
N
hΔx2i
hx2i . The same is

true for ðΔb=bÞ2.
The fitting frequency error contributes to the calculation

of the amplitude and phase and is analyzed in Appendix A.
The contributions are Δa=a ¼ Δb=b ≈ fðν;Δν;ψÞ and
Δψ ¼ ðN þ 1ÞπjΔνj. Here we use ν to represent νx or
νy. Derivation of these two terms can be found in
Appendix A. The ðN þ 1ÞπjΔνj term can reach π=2 in a
Fourier transform since the intrinsic frequency error is
1=ð2NÞ. This error is the same for all the BPMs and it is
canceled in Eq. (6). fðν;Δν;ψÞ induces a phase error of
several milliradians and is not canceled. In summary, the
total error is given by

Δψ ¼ 1

1þ ða=bÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

N
a2

b2
σ2x

x̄2
þ 2f2ðν;Δν;ψÞ

s

þ ðN þ 1ÞπjΔνj; ð11Þ

where σx=x̄ is the BPM noise to signal ratio. The last term is
systematic error therefore is presented separately. The error
contribution from the other sources will be discussed later.
The algorithm is to be improved in two steps. The first

step is to finely analyze the tune so the Δν related terms can
be minimized in Eq. (11). We found NAFF [28] is the most
accurate method for this purpose. The idea is to search for
the frequency of the maximum amplitude that fits the
oscillation data. A Hann window significantly improves
the precision. With NAFF Δν is reduced to 1=N2 or even
1=N3 [28].
Once the tune is determined, the phase can be obtained

by a similar search, i.e., scanning the phase ψ to minimize
the function

P
N
n xn sinð2πνnþ ψÞ. The phase correction

can also be found analytically. Assume the signal can be
fitted by the following function

fn ¼ Ae−αTθn cosðνθn þ ψ þ ϵÞ; ð12Þ

where θn ¼ 2πn, A and αT are the amplitude and the
damping coefficient, which are pre-determined from fitting
the oscillation amplitude. ϵ is the correction to the phase
obtained from Eq. (4). A least square fit to the signal xn
gives

ϵ ¼ e1 − e2
e3 − e4

ð13Þ

where

e1 ¼
X
n

A
2
expð2αTθnÞ sin 2ðνθn þ ψÞ;

e2 ¼
X
n

xn expðαTθnÞ sinðνθn þ ψÞ;

e3 ¼
X
n

xn expðαTθnÞ cosðνθn þ ψÞ;

e4 ¼
X
n

A expð2αTθnÞ cos 2ðνθn þ ψÞ:

The result from Eq. (13) is very close to the numerical
search if the signal is regular. ϵ is not sensitive to the pre-
cision of A and αT hence iteration of fitting is not necessary.
The amplitude of ϵ is on the order of 1 milliradian.
Therefore the correction is critical for our purpose.
A simple simulation was carried out to test the algorithm.

In this case a noise signal of the amplitude A · RðnÞ is added
to Eq. (12). Here RðnÞ is random noise uniformly distrib-
uted in ð−jRj; jRjÞ. The amplitude, frequency and phase

FIG. 3. The linear relation between σϕ and Δβ=β of NSLS-II.
The fitted line gives Δβx=βx ¼ 2.5σϕ;x. All the BPMs were
sampled for statistics.
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were analyzed and compared with the input values.
Figure 4 shows the difference versus the noise ratio R.
At NSLS-II the BPM turn-by-turn noise for a 10 mA

100-bunch train is about 10 μm [29], or 1% if the
oscillation amplitude is 1 mm. This corresponds to Δν ∼
10−7 in Fig. 4. The order of magnitude agrees with the
frequency deviation found from the statistics of 180 BPM
signals collected during one excitation event. The phase
correction given by Eq. (13) is about 0.5 mrad in this case.

III. LINEAR LATTICE CORRECTION

A. Accuracy and application to NSLS-II

The phase correction method was applied on NSLS-II.
First we studied the measurement accuracy. The phase
vector was measured while the strength of a quadrupole
(QH1G2C02A) was varied in steps. Figure 5 shows the
comparison of the measured and calculated phase vector for
a magnet current change of 0.5 A. The agreement is best
achieved if the measured value is multiplied by a fitting
factor of fx ¼ 1.015 to account for the beta function
deviation at the quadrupole, hysteresis, transfer-function
uncertainty, and inaccuracy of the hard-edge model. The
error bar of 1.7 mrad was determined from the standard
deviation of 10 repetitive measurements; however, the
difference from the model is calculated to be σϕ ¼
0.7 mrad (rms of 180 BPMs). The greater measurement
fluctuation is probably caused by orbit drifting, power
supply ripple, and rf jitter but averaging clearly reduces the
effects of these errors. The BPM gain and roll error are
on the order of 10−2 and were not corrected during the
analysis. The σϕ ∼ 1 mrad rms accuracy (∼10−3) indicates
the measurement is not affected by the BPM gain and
roll error.

The same measurement was repeated at ΔI ¼ 0.25 A,1
A, 2 A, and the deviation from the model is shown in Fig. 6
for both transverse planes. σϕ ranges from 0.3 to 1.2 mrad,
with vertical plane being slightly smaller. The same data
was analyzed by two methods: the standard Fourier trans-
form with tune read from Fourier spectrum, and the
improved algorithm, i.e., fit for the tune and the phase.
The improvement of accuracy is apparent in both planes.
We would like to point out that the phase deviation is partly
caused by the residual beta beat in the lattice [see Eq. (B2)].
In this case the error increases withΔI, which is seen on the
last two points of Fig. 6. From Eq. (8), 1 mrad phase error

FIG. 4. The tune error (Δν) and phase error (Δψ , mrad) grow
linearly with noise-to-signal ratio (R, %). Here ν and ψ are
obtained from fitting of 1000 points. 20 seeds were averaged for
each R value. The fitted lines are given by Δν ¼ 1.06 × 10−5 · R,
andΔψ ¼ 3.58×10−2 ·R (Radian). ThereforeΔψ¼πðN−1ÞΔνþ
0.08 2Rffiffiffi

N
p , in reasonable agreement with Eq. (11), which gives

Δψ¼πðN−1ÞΔνþ0.12 2Rffiffiffi
N

p . Here a=b ¼ 3.9 and fðν;Δν;ψÞ ¼ 0

were used.

FIG. 5. Top: Comparison of the horizontal phase change ob-
tained from measurement and calculation when the current of
QH1G2C02A is changed by 0.5 A, or, ΔK1 ¼ 8.4 × 10−4 m−2.
Bottom: The phase difference between measurement and
calculation.

FIG. 6. The standard deviation of the phase discrepancy when
the quadrupole current is changed by ΔI ¼ 0.25, 0.5, 1, 2 A.
Black: analyzed with standard FT, red: with the improved
algorithm.
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corresponds to about 0.3% of beta beat; therefore the
accuracy is satisfactory for NSLS-II when iteration is
applied.
The phase error of the lattice can be corrected using the

model response matrix. At NSLS-II the residual peak value
reduces to below 10 mrad after a few iterations [30]. The
process takes about 20–30 min due mostly to repetitive
measurements. The corrected lattice was once measured by
LOCO [7] and the residual beta beat was determined to be
about 0.9% (x) and 0.6% (y) rms. The residues are similar if
the formulas in Eq. (8) are applied. LOCO provides a fitted
lattice so the phase error can be calculated. The residual
phase error measured from the turn-by-turn signal and by
LOCO are compared in Fig. 7. The order of magnitude
agrees in the horizontal plane however not in the vertical
plane. The negative peaks in the vertical plane occurring at
the peak dispersion locations are not yet understood.
It is interesting to mention that the phase analysis method

has been successfully applied at ESRF [15] with a reference
to our conference paper. Similar results have been obtained.
The measurement precision, or the uncertainty among
measurements, was determined to be Δβ=β ¼ 0.2–0.4%,
which is close to the 0.3% obtained at NSLS-II. The
discrepancy of beta-beating is on the order of 1% between
the phase method and the orbit based method, which is
similar to our results.
Phase measurement can be used to eliminate aliasing.

Aliasing is a common problem in spectrum analysis. When
the Fourier transform is applied to a signal

xðθÞ ¼ A cosðνθ þ ϕÞ; ð14Þ

the amplitude is identical for the tune ν or 1 − ν. Therefore
the spectrum itself cannot distinguish the two cases.
However, if the phase is known, the situation is clarified.
One can verify that for the signal in Eq. (14), the phase is ϕ
or −ϕ if the fitting tune is ν or 1 − ν, respectively.
In an accelerator the tune can be determined if the turn-

by-turn data is collected at two adjacent BPMs. The
approximate phase advance between the two BPMs can
be obtained from the model. If the tune is correct (i.e., ν) the
phase advance should agree, otherwise (i.e., 1 − ν) the
calculated phase advance has an opposite sign.

B. Discussion of the errors

The betatron phase is affected by the sextupoles and
skew quadrupoles even if the beam orbit is on-axis. In order
to account for the sextupole contribution in the model,
tracking must be used for the model phase calculation. The
oscillation amplitude must be the same as that applied in the
experiment. The skew quadrupole contribution is difficult
to model because the error sources are unknown. In order to
minimize the error during the experiment, the linear
coupling was corrected; and the probing oscillation was
excited only in one plane at a time.
Many factors affect the analysis. The main error source

comes from the deformation of the sinusoidal oscillation,
which can be induced by decoherence, damping, non-
linearity, chromatic modulation, and interference from
other frequencies. The fitting loses precision when the
amplitude quickly damps or if it is heavily modulated.
At NSLS-II decoherence starts at very low single bunch
current. During the experiment a low beam current of 2 mA
was stored in a 100 bunch-train to avoid collective effects.
In order to mitigate nonlinear decoherence, 1 and 0.5 mm
kick amplitudes were used for the horizontal and the vertical
plane, respectively. These amplitudes were picked to
balance the noise ratio and the nonlinear deformation.
The precision is also affected by the companion oscil-

lations. For example, if synchrotron side bands are present
the betatron frequency calculated by NAFF shifts slightly.
This is artificial and can be verified in simulation. The error
becomes negligible if the frequencies are far apart. We
found that at peak dispersion location the phase error is
larger compared to the other locations if there is coherent
synchrotron oscillation.
BPM timing and alignment introduce error as well. The

BPMs must be synchronized to the same turn. Otherwise it
causes an error of 2nνπ, where n is the number of lapsed
turns, and ν is the tune. The beam arrival time jitter does
not affect the measurement because the signal is collected
and analyzed for the full turn by the electronics. The con-
tribution from BPM longitudinal misalignment is small.
For example, if the longitudinal shift is Δl ¼ 0.5 mm
and the beta function βp ¼ 10 m, the phase error is
Δl=βp ¼ 0.05 mrad, which is negligible.

FIG. 7. Typical residual phase error measured from the turn-by-
turn signal and by LOCO.
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So far the correction has been limited to the beta
functions. The method can be extended to include dis-
persion. In that case the amplitude must be included as well
as the phase. In principle if the beta functions are corrected
dispersion should depend on the dipole strength only. This
idea will be explored in the future. Coupling cannot be
corrected based on the phase measurement. Because of
these reasons, phase correction is not a stand-alone linear
lattice correction method. However, the method is a good
complement to the other methods, for example, in case a
quick beta function correction is needed.

IV. NONLINEAR LATTICE CORRECTION

A. Nonlinear correction method
and the target functions

Phase correction can be used to restore the nonlinear
lattice as well. The idea is to measure and correct the
focusing effect of the sextupoles while orbit is offset from
the magnet center. There are two ways to offset the beam in
the sextupoles. One way is to create an orbit wave by
altering a horizontal orbit corrector. However some of the
sextupoles might have close-to-zero offset; hence repetition
must be done at a minimum of two correctors that are
separated by π=2 phase advance. Similar to the LOCO
approach, adding more correctors improves precision and
minimizes degeneracy. The second way is to run the beam
off-momentum. In Appendix B it is shown that in the

first case phase advances are functions of the geometric
driving terms, and in the second case they depend on the
chromatic driving terms. Therefore both cases are needed
for a complete nonlinear characterization. The peak orbit
deviation must be large enough to excite measurable
focusing effects. The bending angle or the momentum
offset can be determined from fitting the orbit change at all
the BPMs. A study lattice can be created with the applied
bending angle or the momentum offset.
The phase vector must be measured for the perturbed and

unperturbed lattices. The phase change induced by the
sextupoles are given by

Δψ i ¼ ψði; iþ 1Þperturbed − ψði; iþ 1Þunperturbed ð15Þ

The difference between calculation and measurement is

ϕi ¼ Δψmeasurement
i − Δψ calculation

i ð16Þ

ϕi is the error to be corrected.
Dynamic aperture optimization requires the necessary

nonlinear constraints be: the leading order driving terms,
the amplitude dependent tune shift terms, and the first,
second and third order chromaticity [31]. As discussed
in Appendix B, the leading order driving terms are con-
strained by the phase correction. For completeness the
following terms are included into the penalty vector:

F⃗ ¼
�
ϕ1;ϕ2;…;ϕN;

dνx
dJx

;
dνx
dJy

;
dνy
dJy

; ξð1Þx ; ξð1Þy ; ξð2Þx ; ξð2Þy ; ξð3Þx ; ξð3Þy

�
T
: ð17Þ

The response matrix with elements mm;n ¼ ∂Fm∂K2;n
are calcu-

lated numerically. The phase (ϕi) related terms of the
response matrix is calculated from the study lattice with
orbit offset. The response matrix for the detuning terms and
the chromatic terms should be obtained from the original
lattice. This routine should be applied to all the study
lattices while switching correctors or changing momentum.
The response matrices and the phase error vectors must be
assembled together. Similar to the linear correction, the
error phase vector is multiplied by the inverse response
matrix and the correction is obtained.
We would like to emphasize that this method restores the

sextupole strength to the model value which differs from
online optimization methods such as the lifetime [23] or
injection efficiency [24] optimization. The objective of these
methods is to improve one aspect of the accelerator per-
formance, and the final lattice might deviate from the model.

B. Demonstration at NSLS-II

In the following section NSLS-II is used again to
illustrate the method. The first step is to create orbit

distortion. The phase vector must be measured with
or without the distortion so the difference caused by
the sextupoles can be obtained. Figure 8 shows the two
types of orbit changes and the fitting results. The fitted
angle or the momentum offset are used to generate study
lattices.
Once the study lattice is generated the phase difference

between the study lattice and the original lattice can be
calculated which gives the model value of the sextupole-
induced phase change. The phase error can be obtained
from comparison with measurement. Figure 9 shows the
measured phase change caused by the orbit offsets from
Fig. 8 and the model prediction.
The same measurement was repeated in 24 cases,

particularly, with 20 correctors and at 4 momentum-offsets.
Sextupole response matrices were calculated for all the
perturbed lattices. The assembled response matrix was used
to compute the sextupole correction. The calculated cor-
rection is shown in Fig. 10. The repeating pattern is due to
the sextupoles being powered in series in every 6 cells. The
nonzero average of 0.1 m−3, or, −0.27%, is probably
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caused by BPM or sextupole calibration error. The BPM
global gain error leads to an error in the bending angle and
must be corrected. The BPM gain correction was applied in
our analysis.

The correction of the phase error converged quickly
during the experiment. Figure 11 shows the error before
and after one iteration for one of the study lattices.
The rms phase errors before and after correction for the

study lattices are plotted in Fig. 12. Here the s axis
corresponds to the location of each horizontal corrector
that is used to generate orbit distortion. The residual error
shown in the plot is about 2.5 mrad. The horizontal residual
has similar amplitude. The off-momentum phase error
reduction is small, due probably to the large dispersion
deviation from the nominal value (see Fig. 8). It is worth
mentioning that the residual phase shows dependence onffiffiffiffiffi
βx

p
. This is because the same bending angle was applied

for all the correctors; however the beta functions differ at
the individual corrector families, which results in orbit
distortion proportional to

ffiffiffiffiffi
βx

p
. The phase deviation

depends on the orbit offset in the sextupole which explains
the pattern in Fig. 12.
The correction of the detuning terms was only partly

successful. Table I shows the comparison of the results. The
dνx=dJx and dνy=dJy terms were corrected very well,
however, there was almost no change to the 2nd order
chromaticity, and there was a blow-up on the 3rd order. The
correction of the nonlinear chromaticity probably needs
more iterations.

FIG. 9. The measured and the calculated phase change caused
by the sextupoles. Top: The corrector was changed by 0.18 mrad.
Bottom: The momentum offset was −0.6%. The error bar was
obtained from 6 measurements. Only one plane in part of the ring
is shown for better view.

FIG. 10. The calculated error of the sextupoles powered in 54
circuits. With several exceptions, each circuit connects 6 sextu-
poles; therefore the neighboring 6 points are of the same value.

FIG. 11. The initial and the residual phase error after one round
of correction. Only one plane is shown.

FIG. 8. The measured and the fitted orbit. Top: The fitted
bending angle is 0.18 mrad. Bottom: The fitted momentum offset
is −0.6%.
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The dynamic aperture (DA) was measured before and
after sextupole correction. The method to determine DA is
as follows. First a 200-bunch train (15% of full fill) of
20 mA current was stored, and the beam was kicked by a
one-turn half-sine-wave pulsed magnet (pinger). The
pinger timing was adjusted so the maximum is aligned
to the bunch train center to ensure a uniform kick-
amplitude to all the bunches. Then the beam was kicked
by the pinger with strength increased in steps. The stored
current was monitored by a high-precision DC current
transformer (DCCT) and the readings were used to calcu-
late the loss rate. The induced oscillation was recorded by
the BPMs and the amplitude was used to determine DA. In
principle a 2D dynamic aperture mapping can be obtained
with the horizontal and the vertical pingers. Due to time
limitation only the horizontal axis was scanned. The results
are compared in Fig. 13. The on-axis dynamic aperture is
clearly enlarged. As a result the injection efficiency was
improved. However we did not observe significant lifetime
change.
We tested the sextupole correction algorithm with a

known error. An error lattice was created by lowering one
sextupole power supply by 10 A (≈20%). The correspond-
ing sextupole strength change was ΔK2 ¼ 4.2 m−3.
Then the phase vector and the nonlinear detuning terms
were measured and compared to the original lattice.

The algorithm was used to identify the error, and the
results are plotted in Fig. 14. Among 54 power supplies the
algorithm clearly points to the changed one. The amplitude
also agrees very well with the input value. The background
error ofΔK2 ¼ 0.5 m−3 is due to the inversion algorithm. It
can be lowered if a smaller number of eigenvalues are
kept however the amplitude at index 39 will also be smaller.
The actual accuracy is ΔK2 < 0.1 m−3, as shown in
Fig. 10. This is a common problem of the inverse matrix
calculation. Iteration must be performed to reduce the
noise level.

C. Physical meaning of the correction
and error minimization

Even though it was claimed in the previous section that
correction of the phase of the perturbed lattice is to restore
the nonlinear driving terms, the approach can also be
understood as beta function or phase correction for the off-
momentum lattice or for the orbit-perturbed lattice. The
significance of the second case lies in the fact that the
closed orbit distorted by a single corrector is essentially a
betatron oscillation wave. Therefore the correction restores
the transfer matrix for the oscillating beam. In this case the
transfer matrix, which depends on the corrected beta
function and phase, differs from the linear transfer matrix

TABLE I. Comparison of the detuning terms.

dνx=dJx dνy=dJy dνy=dJx dν2x=dp2 dν2y=dp2 dν3x=dp3 dν3y=dp3

Initial −1624 −16831 1337 −126 22 489 −92
Corrected −4601 −8055 −890 −126 21 3116 −850
Nominal −4944 −9710 −1428 −157 28 1405 −76

FIG. 12. The vertical phase error before and after one correc-
tion. Each point corresponds to a study lattice which is perturbed
by one corrector at that location. The diamond and the plus sign
signify the initial and the residual error, respectively. The red lines
are fittings to the

ffiffiffiffiffi
βx

p
. The bending angle is about 0.2 mrad for all

the correctors.

FIG. 13. Loss occurs when the stored beam is kicked by the
pinger. The survival rate (In=In−1, with n as the step number) is
shown versus the oscillation amplitude measured by the BPMs.
The error bar is due to a few percent of the calibration error in the
BPM and the DCCT. The improvement of the on-axis DA is
about 2 mm, or 15%.
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in that it includes the focusing effect of the sextupoles.
Apparently the method is capable of correcting the feed-
down focusing effect of any higher-order multipoles.
The accuracy of the correction depends on many factors.

First the method corrects the focusing strength which is
proportional to βx;yK2Δxc:o. Therefore errors of β function
and closed orbit propagate to K2. For this reason it is
important to correct the β function to high precision.
Treating all sextupoles in one family as one variable
provides better precision because the β error is averaged
and minimized, even though it impinges on the correction
capability. In the model the closed orbit is defined by the
fitted kick angle (or momentum offset), of which the error
is approximately 1=

ffiffiffiffi
N

p
, with N being the number of

BPMs. This error can be minimized by repetition.
However, the amplitude of the orbit offset is affected by
the global gain factor of the BPMs, and the error cannot be
reduced by repetition. During the analysis the BPM gain
factors obtained from LOCO were applied.
While analyzing the simulated and the experimental data

it was found that including the oscillation amplitude in the
penalty function does not improve the precision. This is due
to the poor accuracy of the amplitude determination.

V. CONCLUSION

In this paper we showed that beta function and nonlinear
lattice can be corrected via betatron phase. Simulation
results were presented to show the equivalence between the
phase correction and the beta beat correction. An improve-
ment was made in the Fourier transform analysis and the
measurement accuracy of the phase was shown to be
1 mrad (rms) at NSLS-II which corresponds to about
0.3% of rms beta beat. The beta beat of the NSLS-II
storage ring can be corrected to approximately 1% in both
planes and the results were confirmed by the LOCO
measurement. The phase alone cannot be used to correct

dispersion and coupling, however, this fast method is a
good complement to the other lattice correction methods.
A scheme of nonlinear correction was proposed in the

paper. The beam orbit can be offset in the sextupoles by an
orbit corrector or by varying the rf frequency. By measuring
the betatron phase change the sextupole strength error can
be determined. It was shown in the paper that the phase
change was related to all the leading order driving terms
produced by sextupoles. By including the amplitude
detuning terms and the chromatic detuning terms, all the
necessary leading order terms are included for nonlinear
optimization. It was successfully demonstrated at NSLS-II
that a half percent sextupole correction led to a 15%
increase of the dynamic aperture. The approach was further
verified by experimentally identifying a known error.
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APPENDIX A: ERROR ANALYSIS
OF THE FOURIER TRANSFORM

In this section we study the error in the Fourier trans-
formation in the presence of a frequency offset. Assume the
signal is given by

xn ¼ A cos½ðνþ ΔνÞ2nπ þ ψ � ðA1Þ

where n ¼ 1; 2;…; N, νþ Δν is the actual tune, and ψ is
the initial phase. Apply a Fourier transform at frequency ν,

a ¼ 2

N

XN
n¼1

xn cosðν2nπÞ ðA2Þ

b ¼ 2

N

XN
n¼1

xn sinðν2nπÞ; ðA3Þ

where ν ¼ k=N is a regular harmonic with k as an integer.
Using the following identities,

XN
n¼1

cosðnθþψÞ¼ sinNθ=2
sinθ=2

cosðNθ=2þθ=2þψÞ ðA4Þ

XN
n¼1

sinðnθþψÞ¼ sinNθ=2
sinθ=2

sinðNθ=2þθ=2þψÞ ðA5Þ

we found

FIG. 14. The cross shows the changed sextupole power supply
(index 39, SL1C21) with ΔK2 ¼ 4.2 m−3, and the red curve is
the sextupole correction identified by the algorithm.
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a ¼ A sinðNΔνπÞ
N sinð2νþ ΔνÞπ cos½ψN þ 2νπ þ ψ �

þ A sinðNΔνπÞ
N sinΔνπ

cos½ψN þ ψ � ðA6Þ

b ¼ A sinðNΔνπÞ
N sinð2νþ ΔνÞπ sin½ψN þ 2νπ þ ψ �

−
A sinðNΔνπÞ
N sinΔνπ

sin½ψN þ ψ �; ðA7Þ

where ψN ¼ ðN þ 1ÞΔνπ. Since Δν ≪ 1, a and b are
dominated by the second term. Keeping the second term
only

a ≈
A sinðNΔνπÞ
N sinΔνπ

cos½ðN þ 1ÞΔνπ þ ψ � ðA8Þ

b ≈ −
A sinðNΔνπÞ
N sinΔνπ

sin½ðN þ 1ÞΔνπ þ ψ �: ðA9Þ

Therefore due to the frequency deviation the amplitude is

scaled by a factor of sinðNΔνπÞ
N sinðΔνÞπ, and the phase changes by

ðN þ 1ÞΔνπ. For the Fourier transform the maximum
frequency error is 1=ð2NÞ, which leads to a scale factor
of 2=π and a phase error of π=2. In other words, the Fourier
transform is very inaccurate in determining the amplitude
and phase. Fortunately in our application Eq. (6) defines the
relative phase. Therefore the ðN þ 1ÞΔνπ term is canceled
between two BPMs. However, reducing Δν still helps
because it reduces the first term in Eqs. (A6) and (A7). The
ratio of the first to the second term can be estimated from
the function

f2ðν;Δν;ψÞ≈ sin2Δνπ
sin2ð2νþΔνÞπ ≈ 2ðΔνπÞ2 ≈ 1

2

π2

N2
: ðA10Þ

This term shows up in Eq. (11) as a random error
contribution to the amplitude, and it leads to a phase error
of about 1 milliradians if N ∼ 1000.

APPENDIX B: THE DEPENDENCE OF
PHASE ON THE DRIVING TERMS

The beta beat introduced by quadrupolar errors can be
approximated as

ΔβðsÞ
βðsÞ ¼−

1

2sinð2πνÞ
X
n

ΔK1;nβnln cos2ðπν− jψðsÞ−ψnjÞ

ðB1Þ

The approximation is valid if ΔK1;nln is small.

From the definition the phase advance ψðsÞ ¼ R
ds
βðsÞ,

hence

ΔψðsÞ ¼
Z

ds
� 1

β þ Δβ
−
1

β

�

≈ −
Z

ΔβðsÞ
β2ðsÞ ds ¼ −

Z
ΔβðsÞ
βðsÞ dψ ðB2Þ

Define two step functions as follows

Q1ðxÞ ¼
�
1 if x ≥ 0;

0 if x < 0;
ðB3Þ

and

Q2ðxÞ ¼
�
0 if x ≥ 0;

1 if x < 0.
ðB4Þ

Apparently Q1ðxÞ þQ2ðxÞ ¼ 1. Then

ΔψðsÞ ¼ 1

4 sinð2πνÞ
X
n

ΔK1;nβnln

× ½sin 2ðπν − ψn þ ψðsÞÞQ1ðψn − ψðsÞÞ
− sin 2ðπν − ψðsÞ þ ψnÞQ2ðψn − ψðsÞÞ
þ 2 sin 2πν − sinð2πν − 2ψnÞ�: ðB5Þ

The last two terms are integration constants and are
determined from the tune change induced by the quad-
rupolar errors, i.e., Δν ¼ 1=ð4πÞPnΔK1;nβnln.
The horizontal orbit distortion generated by a bending

angle θ at ψx;0 is given by

ΔxðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βxðsÞβx;0

p
θ

2 sinðπνxÞ
cosðπνx − jψxðsÞ − ψx;0jÞ: ðB6Þ

In order to simplify the notation, we choose ψx;0 ¼ 0.
The focusing strength of a sextupole located at s is
ΔK1 ¼ K2ΔxðsÞ, hence the phase change
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ΔψxðsÞ ¼
X
n

β3=2x;n β
1=2
x;0

8 sinð2πνxÞ sinðπνxÞ
K2;nlnθ

× ½sin 2ðπνx þ ψxðsÞ − ψx;nÞQ1ðψx;n − ψxðsÞÞ − sin 2ðπνx þ ψx;n − ψxðsÞÞQ2ðψxn − ψxðsÞÞ
þ 2 sin 2πνx − sinð2πνx − 2ψx;nÞ� cosðπνx − ψx;nÞ:

¼
X
n

β3=2x;n β
1=2
x;0

8 sinð2πνxÞ sinðπνxÞ
K2;nlnθf½sinð3πνx − 3ψx;n þ 2ψxðsÞÞ þ sinðπνx − ψx;n þ 2ψxðsÞÞ�Q1ðψx;n − ψxðsÞÞ

− ½sinð3πνx þ ψx;n − 2ψxðsÞÞ þ sinðπνx − 2ψxðsÞ þ 3ψx;nÞ�Q2ðψx;n − ψxðsÞÞ
þ 2 sinð3πνx − ψx;nÞ þ 2 sinðπνx þ ψx;nÞ − sinð3πνx − 3ψx;nÞ − sinðπνx − ψx;nÞg

¼
X
n

β3=2x;n β
1=2
x;0

8 sinð2πνxÞ sinðπνxÞ
K2;nlnθImf½eið3πνxþ2ψxðsÞÞ−3iψx;n þ eiðπνxþ2ψxðsÞÞ−iψx;n �Q1ðψx;n − ψxðsÞÞ

− ½eið3πνx−2ψxðsÞÞþiψx;n þ eiðπνx−2ψxðsÞÞþ3iψx;n �Q2ðψx;n − ψxðsÞÞ
þ 2e3iπνx−iψx;n þ 2eiπνxþiψx;n − e3iπνx−3iψx;n − eiπνx−iψx;ng

¼ β1=2x;0 θ

8 sinð2πνxÞ sinðπνxÞ
Imf½eið3πνxþ2ψxðsÞÞh03000 þ eiðπνxþ2ψxðsÞÞh12000�Q1ðψx;n − ψxðsÞÞ

− ½eið3πνx−2ψxðsÞÞh21000 þ eiðπνx−2ψxðsÞÞh30000�Q2ðψx;n − ψxðsÞÞ
þ ð2e3iπνx − eiπνxÞh12000 þ 2eiπνxh21000 − e3iπνxh03000g: ðB7Þ

Similarly the vertical phase change due to the same horizontal orbit distortion reads

ΔψyðsÞ ¼
β1=2x;0 θ

8 sinð2πνyÞ sinðπνxÞ
Imf½eið2πνyþπνxþ2ψyðsÞÞh01020 þ eið2πνy−πνxþ2ψyðsÞÞh10020�Q1ðψx;n − ψxðsÞÞ

− ½eið2πνyþπνx−2ψyðsÞÞh01200 þ eið2πνy−πνx−2ψyðsÞÞh10200�Q2ðψx;n − ψxðsÞÞ
þ 2½eið2πνyþπνxÞh01110 þ eið2πνy−πνxÞh10110� − ½eið2πνyþπνxÞh01020 þ eið2πνy−πνxÞh10020�g: ðB8Þ

Here the geometric driving terms are defined as [31]

h21000 ¼ h�12000 ¼
X
n

K2;nlnβ
3=2
x;n eiψx;n

h30000 ¼ h�03000 ¼
X
n

K2;nlnβ
3=2
x;n ei3ψx;n

h10110 ¼ h�01110 ¼
X
n

K2;nlnβ
1=2
x;n βy;neiψx;n

h10020 ¼ h�01200 ¼
X
n

K2;nlnβ
1=2
x;n βy;neiðψx;n−2ψy;nÞ

h10200 ¼ h�01020 ¼
X
n

K2;nlnβ
1=2
x;n βy;neiðψx;nþ2ψy;nÞ: ðB9Þ

Now consider the phase change caused by a momentum offset δ ¼ Δp=p. The focusing strength becomes

ΔK1 ¼ K2D1ðsÞδ: ðB10Þ

Here only the first order dispersion D1ðsÞ is taken into account. The phase changes are

GUO, HIDAKA, WILLEKE, and YANG PHYS. REV. ACCEL. BEAMS 21, 081001 (2018)

081001-12



ΔψxðsÞ ¼
X
n

βx;n
4 sinð2πνxÞ

K2;nlnθfsin 2½πνx þ ψxðsÞ − ψx;n�Q1½ψx;n − ψxðsÞ� − sin 2½πνx þ ψx;n − ψxðsÞ�Q2½ψxn − ψxðsÞ�

þ 2 sin 2πνx − sinð2πνx − 2ψx;nÞgD1;nδ:

¼ θ

4 sinð2πνxÞ
Imfeið2πνxþ2ψxðsÞÞh02001Q1½ψx;n − ψxðsÞ� þ eið2πνx−2ψxðsÞÞh20001Q2½ψx;n − ψxðsÞ�

þ 2ei2πνxh11001 − ei2πνxh02001g ðB11Þ

ΔψyðsÞ ¼
X
n

βy;n
4 sinð2πνyÞ

K2;nlnθfsin 2½πνy þ ψyðsÞ − ψy;n�Q1½ψy;n − ψyðsÞ� − sin 2½πνy þ ψy;n − ψyðsÞ�Q2½ψyn − ψyðsÞ�

þ 2 sin 2πνy − sinð2πνy − 2ψy;nÞgD1;nδ:

¼ θ

4 sinð2πνxÞ
Imfeið2πνyþ2ψyðsÞÞh00021Q1½ψy;n − ψyðsÞ� þ ei½2πνy−2ψyðsÞ�h00201Q2½ψy;n − ψyðsÞ�

þ 2ei2πνyh00111 − ei2πνyh00021g: ðB12Þ

The chromatic driving terms are defined as

h11001 ¼
X
n

K2;nlnβx;nD1;n

h00111 ¼
X
n

K2;nlnβy;nD1;n

h20001 ¼ h�02001 ¼
X
n

K2;nlnβx;nD1;nei2ψx;n

h00201 ¼ h�00021 ¼
X
n

K2;nlnβy;nD1;nei2ψy;n :

We would like to point out that (1) In the analysis the
corrector is treated as the reference point. If the reference
point is fixed an additional phase term shows up in all the
driving terms. This phase term varies from 0 to 2π when the
correctors are switched. Consequently the phase depends
on the imaginary part and the real part of the driving terms
even though in the formulas only the imaginary part is
shown. (2) Δψx, Δψy cover all but one of the leading order
driving terms provided the on- and off-momentum phases
are considered. The only missing term is h10002, which is a
δ2 term and can be regarded as higher order. (3) The terms
that are multiplied byQ1;2½ψn − ψðsÞ�mean the summation
is between the corrector and the observation point ψðsÞ. Be
aware that the driving terms are defined for a full turn.
Therefore the driving terms here are sectional driving
terms. However, if the driving terms are restored in every
section, the sum for the whole ring must be corrected.
Consequently these terms can be perceived as regular
driving terms for our purpose. (4) On the other hand,
due to theseQ1;2½ψn − ψðsÞ� terms the coefficients of these
driving terms are linearly independent when switching
correctors. Therefore correcting the phase advance will lead

to restoring the driving terms. This convergence has been
verified in simulation.
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