
 

Dynamical bunching and density peaks in expanding Coulomb clouds

B. S. Zerbe,* X. Xiang, C.-Y. Ruan, S. M. Lund, and P. M. Duxbury†

Department of Physics and Astronomy, Michigan State University,
220 Trowbridge Road, East Lansing, Michigan 48824, USA

(Received 22 December 2017; published 14 June 2018)

Expansion dynamics of single-species, non-neutral clouds, such as electron bunches used in ultrafast
electron microscopy, show novel behavior due to high acceleration of particles in the cloud interior.
This often leads to electron bunching and dynamical formation of a density shock in the outer regions
of the bunch. We develop analytic fluid models to capture these effects, and the analytic predictions are
validated by PIC and N-particle simulations. In the space-charge dominated regime, two and three
dimensional systems with Gaussian initial densities show bunching and a strong shock response, while one
dimensional systems do not; moreover these effects can be tuned using the initial particle density profile
and velocity chirp.
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I. INTRODUCTION

Non-neutral plasma systems arise in a variety of physical
contexts ranging from astrophysics [1–3]; accelerator
technologies [4–7]; ion and neutron production [8–13];
sources for electron and ion microscopy [14,15]; to high
power vacuum electronics [16–18]. Understanding of the
dynamics of spreading of such systems is critical to the
design of next generation technologies, and simple analytic
models are particularly helpful for instrument design. As a
result, substantial theoretical efforts have already been
made in this vein [19–30]. Specifically, free expansion
of clouds of charged single-specie particles starting from
rest have been well studied both analytically and computa-
tionally [15,21,23,26,27,31–39], and a number of studies
have found evidence of the formation of a region of high-
density, often termed a “shock,” on the periphery of the
clouds under certain conditions [14,23–26,31,34].
One application of these theories that is of particular

current interest is to high-density electron clouds used in
next-generation ultrafast electron microscopy (UEM)
development [40–42]. The researchers in the UEM and
the ultrafast electron diffraction (UED) communities have
conducted substantial theoretical treatment of initially
extremely short bunches of thousands to ultimately hun-
dreds of millions of electrons that operate in a regime
dominated by a virtual cathode (VC) limit [36,40,43–45]
which is akin to the Child-Langmuir current limit for beams

generated under steady-state conditions [18]. These short
bunches are often generated by photoemission, and such
bunches inherit an initial profile similar to that of the driving
laser pulse profile. Typically, the laser pulse has an in-plane,
“transverse” extent that is of order one hundred microns
and a duration on the order of fifty femtoseconds, and these
parameters translate into an initial electron bunch with
similar transverse extents and sub-micron widths [40].
After photoemission, the electrons are extracted longitudi-
nally using either a DC or AC field typically in the
1–10 MV=m [46–49] through tens of MV/m [50–52]
ranges, respectively. However, the theoretical treatments
of such “pancake-like” electron bunch evolution have
largely focused on the longitudinal dimension [32–35,
44]. The few studies looking at transverse dynamics have
either assumed a uniform-transverse distribution [35] or
have looked at the effect of a smooth Gaussian-to-uniform
evolution of the transverse profile on the evolution of the
pulse in the longitudinal direction [34,37]. Of specific note,
only one analytic study found any indication, a weak
longitudinal signal, of a shock [34].
On the other hand, an attractive theoretical observation is

that an ellipsoidal cloud of cool, uniformly distributed
charged particles has a linear electric field within the
ellipsoid which results in maintenance of the uniform
charge density as the cloud spreads [23]. In the accelerator
community, such a uniform distribution is a prerequisite in
employing techniques such as emittance compensation [53]
as well as forming the basis of other theoretical analyses. It
has long been proposed that such a uniform ellipsoid may
be generated through proper control of the transverse
profile of a short charged-particle bunch emitted from a
source into vacuum [44], and experimental results have
shown that an electron cloud emitted from a photocathode
and rapidly accelerated into the highly-relativistic regime
can develop into a final ellipsoidal profile characteristic of a
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uniform charge distribution [54]. Contrary to expectations
from the free expansion work but consistent with the
longitudinal analyses, this profile lacks any indication of
a peripheral region of high-density shocks. However, recent
work has indicated that a substantial high density region
may indeed form in the transverse direction [55], and N-
particle simulation results, as demonstrated in Fig. 1,
demonstrate a rapidly developed substantial ringlike shock
circumscribing the median of the bunch when a bunch with
initial Gaussian transverse-profile starts from sufficient
density. Moreover, this shock corresponds to a region of
exceedingly low brightness, or conversely, high, local
temperature, and experiments show that removal of this
region results in a dramatic increase in the bunch brightness
[55]. We term this effect “Coulomb cooling” since it is
similar to evaporative cooling as the “hottest” charged
particles are removed from the distribution’s edge thus
leaving behind a higher-quality, cooler bunch.
To begin to understand Coulomb cooling, we first inves-

tigate this transverse shock. Here we demonstrate the
formation of a ring-like shock within N-particle simulations
[56,57] of electron bunches with initial transverse Gaussian
profile and offer an explanation of why this phenomena has
not been noted previously within the UED literature. We

then utilize a Poisson fluid approach to derive analytic
predictions for the expansion dynamics in planar (1D),
cylindrical, and spherical geometries, and we derive con-
ditions for the emergence of density peaks distinct from any
initial densitymaximum.We show that peak formation has a
strong dependence on dimension, with one dimensional
systems less likely to form shocks, while in cylindrical and
spherical geometries bunching is more typical. Particle-in-
cell (PIC) methods, utilizing Warp [58], and N-particle
simulations are then used to validate the analytical predic-
tions for peak emergence.

II. OBSERVATION OF TRANSVERSE SHOCK

One reason that a transverse shock has not been seen
previously in simulations is apparent in Fig. 1 where data
was generated using electrostatic N-particle simulations.
We consider pancake electron bunches typical of 100 keV
ultrafast electron microscopy, and we consider the thin
direction of the bunch to be the z-axis. Previous studies of
the expansion dynamics of these bunches, including our
own work, have looked at the projection of the particle
density distribution to the x-z plane [38,44,54,59,60].
Figure 1 shows that by projecting the distribution in this

(a) (b)

(c) (d) (e)

FIG. 1. (a–d) Two dimensional projections of 1 × 106 electron positions simulated with the electrostatic N-particle code, COSY, for
approximately 300 ps after injection with a Gaussian (σr ¼ 100 μm) transverse profile into a cavity with an electric field of 10 MV=m.
Colors from white to red indicate electron density on a linear scale. (a) and (b) are projections of the full distribution to the x-z and x-y
planes, respectively. (c) and (d) are x-z and x-y projections, respectively, of just the portion of the distribution within 20% of the standard
deviation of the median value of y and z, respectively. Notice the ring-like substructure that is evident in the “slices,” (c) and (d), but
absent from the full distribution projections, (a) and (b). (e) N-particle radial-distributions obtained near the longitudinal median plane of
the bunch at various times. Density is calculated by binning 1000 macroparticles and assigning the resulting density to the average radial
position of those particles. The initial distribution is sampled from a Gaussian, and the square-like nature of the plot results from the
discreteness of the bins. The sub-graph in the upper left corner shows the position of maximum density as a function of time, which is
non-zero at initial time due to binning resulting in a non-zero minimum radial position. The subgraph in the upper right shows the ratio
of the maximum density to the density at the minimum r value. Notice, the “phase transition” in the 45–80 ps range where the location of
the nonzero, nonstochastic peak first appears well away from the origin.
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manner, and with the ability to statistically discern density
fluctuations at about the 10% level, results in what appears
to be a uniform distribution; however, by restricting the
projection to only electrons near the median of the bunch, a
restriction that can only be done computationally presently,
results in evidence of a transverse ringlike density sub-
structure near the median longitudinal (z) position.
To better understand when this shock emerges, simu-

lations with the same distribution parameters (σr ≈ 100 μm
and Δz ≈ 0.4 μm) but various numbers of electrons were
run. The average radial density was calculated for 30
instances of bunches with 1 thousand, 10 thousand, and
100 thousand electrons. As can be seen in Fig. 2, the shock
emergence is present for bunches with 100 thousand
electrons but not for those with 1 thousand electrons.
The case of bunches with 10 thousand electrons suggests
the emergence of the shock, but the shock becomes less
defined at later times. Figure 3 shows six density profiles at
time 10τp, where τp represents the plasma period, with

τp ¼ 2π
ffiffiffiffiffiffi
mϵ0
ne2

q
and n ¼ N

πσ2rσz
. The dots in each figure

indicate average densities in cylindrical rings, originating
from two randomly chosen initial conditions (figures in
each row) and for three values of the total number of
electrons N: 1 thousand, 10 thousand, and 100 thousand
electrons; for the top,middle, and bottom rows, respectively.
These representative density plots support the conclusion
that the shock is only present in the case of bunches with 100
thousand electrons;where the spline fit to the data indicates a
significant peak removed from the center of the bunch in all
instances examined. As expected, the density of bunches
with one thousand electrons is noisy due to low statistics
both from the small number of electrons in the simulation
and the large proportion of electrons that spread beyond the
analysis region due to the initial velocity spread. Further, the
density profile of bunches with 10 thousand electrons has a
consistent general shape that conforms well to the spline fit
but lacks significant emergent peaks, the indicators of shock
formation.

(a) (b) (c)

FIG. 2. Average density near the z-median of 30 simulations calculated from bunch profiles evaluated at different times: 5τp (yellow),

6τp (green), 7τp (blue), and 10τp (purple) where τp ¼ 2π
ffiffiffiffiffiffi
mϵ0
ne2

q
, n ¼ N

πσ2rσz
, σr ≈ 100 μm, and σz ≈ 0.4 μm, for different values of the total

number of electrons, N. Dotted lines represent spline fits of order 3 with 10 knots.

FIG. 3. Density near the z-median of simulated pancake
bunches with transverse Gaussian profiles (σr ¼ 100 μm) in
an extraction field of 10 MV=m. Each row is the transverse
radial density of a section of width σz ≈ 0.4 μm for different
numbers of electrons, and columns represent 2 different initial

conditions. Density was calculated at time 10τp where τp ¼
2π

ffiffiffiffiffiffi
mϵ0
ne2

q
is the plasma frequency and where n ¼ N

πσ2rσz
. The

number of electrons in each horizontal panel is different and
equal to N ¼ 1000 (top), N ¼ 10 000 (middle), and N ¼ 100 000
(bottom). For the density at 10τp, 30 cylindrical shells of equal
volume and length σz partitioned the distribution out to 0.6 mm,
and the numbers of electrons in each of these shells were used to
calculate a density at the shell’s average radius. Due partially to
the different numbers of electrons and partially due to the fact that
the longer simulations, namely the simulation with N ¼ 1000,
resulted in significantly more electrons migrating out of the
analysis region as a result of the initial velocity spread, the
density scales are different for the three rows in the figure: 1

ð0.1mmÞ3
for the top row, 0.1

ð0.01mmÞ3 for the middle row, and 1
ð0.01mmÞ3 for the

bottom row. Red dashed lines represent splines of order 3 with 10
knots. Notice the clear presence of a shock for the case
N ¼ 100 000, an ambiguous shock at N ¼ 10 000, and essen-
tially noise at N ¼ 1000.
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We define the emergence time as the time at which peaks
indicative of a shock emerge in the dynamics of Coulomb
clouds. Figure 4 shows the dependence of the emergence
time, and its variability, on the number of electrons in a
bunch. It also shows very clearly that the emergence time is
proportional to the plasma period, τp. As can be seen in this
figure, the spread in the emergence time is large for a bunch
with 10 thousand electrons, but this spread decreases as the
density of the bunch increases. For bunches with N ≥
100 000 the spread in the emergence time is small, more-
over the emergence time appears to converge toward
approximately 5τp at large N (for Gaussian initial distri-
butions). We note here that for Gaussian pulses with similar
spatial and temporal extents, simulations at and above
10 million electrons, a goal of the community [61], result in
relativistic velocities as a result of the stronger space-charge
effects. As the discussion here focuses on non-relativistic
physics, we present data for up to 1 million electrons,
where density shock formation occurs well before the
electron velocities become relativistic.
The results presented in Figs. 2–4 are a second reason

that shock formation has not been seen previously in
studies of electron bunches. Specifically, most work has
been conducted using ≤ 10 000 electrons with a transverse
standard deviation of 100 μm, and in the regime where
there is no consistent emergence of a shock. Moreover, the
fact that the non-relativistic evolution of the bunch profile
has a time scale proportional to the plasma period, a fact
that we derive under special geometries later in this
manuscript, means that higher density bunches result in
faster, more consistent evolution of the transverse profile.

In other words, the emergence time of a shock happens
earlier as the density of the bunch is increased. Specifically,
a transverse shock emerges at on the order of 50 ps for an
initially Gaussian profile (σr ¼ 100 μm with sub-micron
length) with 106 electrons, which is the number of electrons
that is the current goal for the diffraction community [61].
This implies that for modern bunches, this transverse shock
is happening well within the photoemission gun before the
onset of the relativistic regime. The goal of 108 electrons
for the imaging community needs to be further examined as
the transverse velocity spread will be relativistic, but we
expect to find this effect there as well; furthermore, we
expect that it occurs at short times, of order a few
picoseconds.

III. 1D MODEL

As noted in the introduction, formation of a shock in the
longitudinal direction of an expanding pancake pulse has
not been observed, and the analysis of Reed [34] demon-
strates that this is true for cold initial conditions. Here we
rederive this result using an elementary method, which
enables extension to include the possibility of an initial
chirp; and we find chirp conditions at which shock
formation in the longitudinal direction can occur.
Consider the nonrelativistic spreading of an electron

bunch in a one dimensional model, which is a good early
time approximation to the longitudinal spreading of a
pancake-shaped electron cloud generated at a photoca-
thode. For the sake of readability, denote the 1D position of
a particle from the Lagrangian perspective to be z ¼ zðtÞ
and z0 ¼ zð0Þ. Further, let the cumulative distribution
function (cdf)-like parameter Fðz; tÞ represent the propor-
tion of the distribution to the left of z at time t, and define
δσðz; tÞ ¼ Fðz; tÞ − Fð−z; tÞ. Continuing with the probabi-
listic analogy, define ρ ¼ ρðz; tÞ ¼ dF

dz to be the normalized
density with units of inverse length so that

δσ ¼
Z

z

−z
ρðz̃; tÞdz̃ ð1Þ

Note that ρ is the probabilistic density function (pdf) and is
not strictly the charge distribution, ρq. However, the two are
related through ρq ¼ Σtotρ where Σtot is the total charge per
unit area. Further, note that as Σtot is simply a constant, the
evolution of ρq is essentially described by the evolution of
ρ. Specifically, the acceleration of a Lagrangian particle is

aðz; tÞ ¼ qΣtot

2mϵ0
δσ ð2Þ

where q is the charge of the particle (e.g., electron) andm is
its mass. The two key observations enabling analytic
analysis are (1) that if the flow of electrons is lamellar,
so that there is no crossing of particle trajectories, then

FIG. 4. The emergence time divided by the plasma period as a
function of the number of electrons in the initial Gaussian profile
with σr ≈ 100 μm and σz ≈ 0.4 μm. Emergence time was deter-
mined as the first time the density away from the inner-most-
value exceeded the inner-most-value by 2%. Notice that the
emergence time converges to about 5τp for high densities, but at
low densities the emergence time has high variability with a
median shifted to higher multiples of the plasma period.
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these integrals and the acceleration calculated from them
are time independent and hence may be determined from
the initial distribution and (2) that mass is conserved,
expressed mathematically by

ρðzÞ ¼ ρ0ðz0Þ
z0

ð3Þ

where 0 denotes d
dz0
. This allows us to derive an analytic

form for the density

ρðz; tÞ ¼ ρ0
1þ v00tþ qΣtot

2mϵ0
ρ0t2

ð4Þ

d
dz

ρðz; tÞ ¼ ρ00ð1þ v00tÞ − ρ0v000t
ð1þ v00tþ qΣtot

2mϵ0
ρ0t2Þ3

ð5Þ

Details of these derivations may be found in Appendix A.
Equation (5) can be used to show that novel peak formation
does not occur in the 1D cases without tuning of the initial
position-momentum chirp to a sufficiently negative value.
A discussion of this expression and the required conditions
on the chirp to cause the emergence of a new density peak
are presented in Appendix B.
As we show in the next section the one-dimensional

results do not apply, even qualitatively, to higher dimen-
sions, as the constant acceleration situation is not valid and
particle crossover can occur even with cold initial con-
ditions. In the next section we present fluid models in
higher dimensions where novel mechanisms for emergent
density shocks are elucidated.

IV. CYLINDRICAL AND SPHERICAL MODELS

The derivations for the cylindrical and spherical models
are similar so we develop the analysis concurrently in this
section.
Consider a nonrelativistic evolving cylindrically-

symmetric distribution of charged particles again denoted
by ρq. Analogous to the cdf in the planar model, we define
the proportion of a distribution contained in a cylinder of
radius r at time t to be λðr; tÞ; analogous to the pdf in the
planar model, we denote ρ such that

λðr; tÞ ¼
Z

r

0

2πr̃ρðr̃; tÞdr̃ ð6Þ

where ρ in this model has units of inverse area. Again, the
charge density is related to λ via ρq ¼ Λtotρ where Λtot is
the constant charge per unit length meaning the entire
evolution of ρq can again be described by the evolution
of ρ.
Similarly, a non-relativistic evolving spherically-

symmetric distribution of charge particles, ρq, has a unitless
cdf, Pðr; tÞ, and pdf, ρðr; tÞ, such that

Pðr; tÞ ¼
Z

r

0

4πr̃2ρðr̃; tÞdr̃ ð7Þ

Here, ρ has units of inverse volume. Additionally, ρq ¼
Qtotρ where Qtot is the total charge and the evolution of ρq
and ρ are then again just related by a constant.
In systems with cylindrical and spherically symmetries,

the mean field equation of motion for a charge at r≡ rðtÞ is
given respectively by

dp⃗
dt

¼ qΛtotλðr; tÞ
2πϵ0r

r̂ ð8Þ

dp⃗
dt

¼ qQtotPðr; tÞ
4πϵ0r2

r̂ ð9Þ

where p⃗ is the momentum of a Lagrangian particle. Notice,
r in Eq. (8) denotes the cylindrical radius while r in Eq. (9)
represents the spherical radius. In both cases, before any
crossover occurs, the cdf of a Lagrangian particle is
constant in time. For simplicity we write λðr; tÞ ¼
λðr0; 0Þ≡ λ0 and Pðr; tÞ ¼ Pðr0; 0Þ≡ P0 for a particle
starting at r0 ≡ rð0Þ. In other words, since Λtotλ0 and
QtotP0 can be interpreted as the charge contained in the
appropriate Gaussian surface, if we track the particle that
starts at r0, these contained charges should remain constant
before crossover occurs. It is convenient to also define the
average particle density to be ρ̄0 ¼ λ0

πr2
0

in the cylindrically

symmetric case and ρ̄0 ¼ 3P0

4πr3
0

in the spherically symmetric

case. Likewise, define the initial average charge density as
ρ̄q;0 ¼ Λtotρ̄0 and ρ̄q;0 ¼ Qtotρ̄0 in the cylindrical and
spherically cases, respectively. Notice that these average
particle densities are a function solely of r0, and we will use
these parameters shortly. Equations (8) and (9) may now be
rewritten as,

dpr

dt
¼ qΛtotλ0

2πϵ0r
ð10Þ

dpr

dt
¼ qQtotP0

4πϵ0r2
ð11Þ

for the cylindrical and spherical cases respectively. These
equations apply for the period of time before particle
crossover. Note that unlike the one dimensional case, in
two and three dimensional systems the acceleration on a
Lagrangian particle is not constant; time dependence can be
seen implicitly in Eqs. (10) and (11) through the time
dependent position r ¼ rðr0; tÞ term in the denominator.
Since Eqs. (10) and (11) represent the force on the

particle in the cylindrical and spherical contexts, respec-
tively, we can integrate over the particle’s trajectory to
calculate the change in the particle’s energy. Integrating
from r0, 0 to r, t gives for the cylindrical and spherical
cases respectively
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Eðr; tÞ − Eðr0; 0Þ ¼
qΛtotλ0
2πϵ0

ln

�
r
r0

�
ð12Þ

Eðr; tÞ − Eðr0; 0Þ ¼
qQtotP0

4πϵ0

�
1

r0
−
1

r

�
ð13Þ

where the term on the right side of the equality can be
interpreted as the change in the potential energy due to the
self-field of the bunch; within the electrostatic approxima-
tion. To test whether the electrostatic approximation is
accurate, the particle in cell (PIC) simulations presented
in the next section were carried out using both the electro-
static (ES) solver and the fully relativistic electrodynamic
(EM) solver. For the cases studied here, no significant
difference was found between the results found using these
procedures.
In the nonrelativistic limit, we can derive implicit

position-time relations for the particle by setting the energy
difference equal to the nonrelativisitic kinetic energy,
1
2
mv2, and integrating. The details of this derivation have

been placed in Appendix C and the resulting expressions in
the cold-case for the cylindrical and spherical systems are

t ¼ τ̄p;0
π

r
r0
F

2
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

�
r
r0

�s 3
5 ð14Þ

t ¼
ffiffiffi
3

2

r
τ̄p;0
2π

�
tanh−1

� ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r0
r

r �
þ r
r0

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r0
r

r �
ð15Þ

where Fð·Þ represents the Dawson function and τ̄p;0
represents the plasma period determined from the initial

conditions, τ̄p;0 ¼ 2π
ffiffiffiffiffiffiffi
mϵ0
qρ̄q;0

q
, indicating that the appropriate

time scale is the scaled plasma period. This is consistent
with the timescale found in Figs. 2 and 4 for the case of
pancake bunches used in ultrafast electron diffraction
systems. Equation (15) and its derivation is equivalent to
previous time-position relations reported in the literature
[26,62] although the previous work did not identify
the plasma period as the key time-scale of Coulomb
spreading processes and cylindrical symmetry was not
discussed [Eq. (14)].
The time-position relations detailed in the equations

above depend solely on the amount of charge nearer to
the origin than the point in question, i.e., ρ̄q;0, and not on
the details of the distribution. Notice however, that it is the
difference between the time-position relationships of differ-
ent locations where the details of the distribution become
important and may cause neighboring particles to have
interesting relative dynamics; leading to the possibility of
shock formation in the density.
To translate the Lagrangian particle evolution equations

above to an understanding of the dynamics of the charge
density distribution, we generalize Eq. (3) to

ρðr; tÞ ¼
�
r0
r

�
d−1 ρ0

r0
ð16Þ

where d is the dimensionality of the problem, i.e., 1 (planar
symmetry), 2 (cylindrical symmetry), or 3 (spherical
symmetry), and 0 ≡ d

dr0
. The factor in the denominator,

r0, may be determined implicitly from the time-position
relations above, and the details are presented in
Appendix D. The resulting expressions for the density
dynamics, in the cold case, for d ¼ 2 (cylindrical) and
d ¼ 3 (spherical) cases are

r0 ¼ r
r0

�
1þDdðr0Þfd

�
r
r0

��
ð17Þ

where

Dd ¼ Ddðr0Þ ¼
d
2

�
ρ0
ρ̄0

− 1

�
; ð18Þ

is a function only of the initial position. The function f2 for
cylindrical systems is given by

f2

�
r
r0

�
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

�
r
r0

�s
F

2
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

�
r
r0

�s 3
5; ð19Þ

while f3 for systems with spherical symmetry is,

f3

�
r
r0

�
¼ r0

r

ffiffiffiffiffiffiffiffiffiffiffi
1−

r0
r

r
tanh−1

� ffiffiffiffiffiffiffiffiffiffiffi
1−

r0
r

r �
þ1−

r0
r
: ð20Þ

Note that these are functions of the ratio r=r0. The
functions fd can also be written as mixed functions

of r and t, specifically f2ð rr0 ; tÞ ¼
r0
r

ffiffiffiffiffiffiffiffiffiffiffi
lnð rr0Þ

q
ω̄p;0t and

f3ð rr0 ; tÞ ¼
r0
r

ffiffiffiffiffiffiffiffiffiffiffi
1 − r0

r

p
ω̄p;0t where ω̄p;0 ¼ 2π

τ̄p;0
¼

ffiffiffiffiffiffiffi
qρ̄q;0
mϵ0

q
.

However, care must be used when using these mixed forms
as r is implicitly dependent on t. Here we work with these
functions in terms of relative position, r

r0
. Substituting

Eq. (17) into Eq. (16), we find that the density evolution
in systems with cylindrical (d ¼ 2) and spherical symmetry
(d ¼ 3) can be compactly written as

ρðr; tÞ ¼
�
r0
r

�
d ρ0
1þDdðr0Þfdð rr0Þ

ð21Þ

This expression is general and can be applied to arbitrary,
cylindrically, or spherically symmetric initial conditions.
Analogously to the 1D case the condition, r0 < 0 results

in particle crossover. However, as detailed in Eq. (17), the
sign of r0 depends on the sign of 1þDdðr0Þfdð rr0Þ. It is
very interesting to note that Ddðr0Þ is the deviation from a
uniform distribution function, so that the D functions are
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solely functions of the initial conditions and are positive
at locations where the local density is larger than the
average density at r0 and negative when the local density is
smaller than the average density at r0. On the other hand,
the functions fd are functions of the evolution of the
Langrangian particle. One immediate consequence of
Eq. (21) is that for a uniform initial density distribution,
for either cylindrical or spherical systems, the correspond-
ing D function is zero at every location where the original
density is defined. Thus, the uniform density evolution
in Eq. (16) reduces to the generally recognized expressions:
ρðr; tÞπr2 ¼ ρ0πr20 for the cylindrical case; and
ρðr; tÞ 4

3
πr3 ¼ ρ0

4
3
πr30 in the spherical case. We provide

additional details for the uniform distribution in the next
section. However, Eq. (17) is general for any distribution
before particle crossover, not just the uniform distribution.
For a particle starting at position r0 and having a

deviation from uniform function Ddðr0Þ, crossover occurs
when the particle is at a position, r, that satisfies
fdð rr0Þ ¼ −1=Ddðr0Þ. Since every particle moves toward
positive r, every particle will have a time for which it will
assume every value of the function fdð rr0Þ. The characters of
f2 and f3 are similar as can be seen in Fig. (5) where the
value of the function is plotted against r

r0
. Specifically, both

functions increase to a maximum and then asymptote
towards 1 from above. This means that all density
positions eventually experience uniform-like scaling since

limr→∞fdð rr0Þ ¼ 1 results in Eq. (16) simplifying to ρπr2 ¼
ρ0

πr2
0

1þDdðr0Þ and ρ 4
3
πr3 ¼ ρ0

4
3
πr3

0

1þDdðr0Þ in the cylindrical and

spherical cases, respectively, for large enough r. Notice,
this uniform-like scaling does not mean that the distribution
goes to the uniform distribution, which is what happens in
1D but need not happen under cylindrical and spherical
geometries.
The main difference between the cylindrical and spheri-

cal symmetries is that the cylindrical function’s maximum
is larger than the spherical function’s maximum; and we
find maxðf2Þ ≈ 1.28 while maxðf3Þ ≈ 1.07. Moreover the
maximum of the cylindrical function occurs at a larger
value of r0

r than that of the spherical function; specifically
r ≈ 9.54r0 instead of r ≈ 8.27r0, respectively. The first
observation means cylindrical symmetry is more sensitive
to the distribution than the spherical case, while the second
observation indicates that if crossover is going to occur for
a specific particle, it will occur before the r value for which
the corresponding f function is maximum (i.e., r ≈ 9.54r0
or r ≈ 8.27r0), otherwise the particle will never experience
crossover while the model is valid. From this reasoning, we
obtain the earliest time for crossover by minimizing the
time taken for a trajectory to reach the maximum of the
function fd, with the crossover constraint r0 ¼ 0. This may
be achieved by using Lagrange multipliers or by running
calculations for a series of values of r=r0 to find the

position at which crossover happens first. The mean field
theory is valid before the minimum crossover time, and the
results presented below are well before this time.

V. UNIFORM AND GAUSSIAN EVOLUTIONS:
THEORY AND SIMULATION

In this section, the mean field predictions are compared to
nonrelativistic N-particle simulations, which solve force
through electrostatic field superposition, and PIC simula-
tions using an ES solver and relativistic particle pusher. First
we present the evolution of the initially-at-rest cylindrically-
and spherically-symmetric uniform distribution of 1.875 ×
104 electrons/mm and 2 × 104 electrons within radii’s of
1 mm [see Figs. 6(a) and 6(b)]. Note, in this fairly trivial
case, crossover should not occur and the analytic results
should bevalidmean-field-results for all time. Since ρ0 ¼ ρ̄0
in this case, Ddðr0Þ ¼ 0 and Eq. (21) reduces to

ρðr; tÞ ¼
�
r0
r

�
d
ρ0ðr0Þ ð22Þ

(a)

(c) (d)

(b)

FIG. 5. (a-b.) Plot of the functions f2 and f3 against r
r0
. Since

particles are always moving away from the origin, r
r0
> 1 for

positive times and this ratio goes to infinity as time goes to
infinity. Both functions have a similar character with a maximum
in the 8 − 10r0 range, and they both eventually approach one
from above. Dashed lines in the plots indicate the location of the
functions’ maxima. These functions allow us to analytically

classify the distribution by the initial value of Ddðr0Þ ¼
d
2
ðρ0ðr0Þρ̄0ðr0Þ − 1Þ as is done in (c-d). Specifically, crossover may

occur at some time when dr
dr0

< 0. For negative values of Dd

crossover first occurs at the maximum of fd and the value ofDd at
which that occurs is given in the schematics of (c,d). For values of
Dd that are more negative than this value, crossover will occur at
some time in some parts of the distribution. For the uniform
distribution, Dðr0Þ ¼ 0 for all points inside the distribution. The
dashed blue line indicates expansion less quickly than the
uniform distribution, while the green line indicates more rapid
expansion than for the uniform distribution.
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Notice that r can be solved for a specific time using Eq. (14)
or Eq. (15), depending on whether we are examining the
cylindrically- or spherically-symmetric case, respectively,
and due to ρ̄0’s independence from r0, these equations need
only to be solved once for a given time to describe all r.
Therefore, we may write r ¼ αðtÞr0 ≡ αr0, where α is
independent of r0, and we immediately see that Eq. (22)
can be written as ρðr; tÞ ¼ αdρ0ðr0Þ suggesting that the
density simply scales with time as generally recognized by
the community. We solve for α at 6 different times, and
present a comparison with both PIC and N-particle cylin-
drically-symmetric and spherically-symmetric simulations
in Figs. 6(a) and 6(b). As can be seen, despite the presence of
initial density fluctuations arising from sampling, the

simulated results follow the analytic results exceedingly
well. Specifically, the distributions simply expand while
remaining essentially uniform, and the analytic mean field
formulation correctly calculates the rate of this expansion.
While this comparison is arguably trivial, it is reassuring to
see that our general equation reduces to a form that captures
these dynamics.
Less trivial is the evolution of Gaussian distributions. We

simulated 3.75 × 104 electrons=mm and 105 electrons for
the cylindrical and spherical cases, respectively, using
σr ¼ 1 mm. Solving for the minimum crossover time,
we get approximately 44 ns for each distribution.
Therefore, we simulate for 37.5 ns, which is well before
any crossover events.

(a) (b)

(d)(c)

FIG. 6. Analytical (solid line), PIC (circles) using an ES solver and relativistic particle pusher, and electrostatic N-particle (triangles)
results of the normalized density evolution of (a,c) cylindrically and (b, d) spherically symmetric (a, b) uniform and (c,d) Gaussian
distributions with R ¼ σr ¼ 1 mm and N of 1.875 × 104 electrons=mm, 2 × 104 electrons, 3.75 × 107 electrons=mm, and
105 electrons, respectively. The subgraph in the upper left corner of (c, d) shows the analytic position of max density as a function
of time, and the subgraph in the upper right of (c, d) shows the analytic ratio of the max density to the density at the minimum r value
both. The corresponding analytic ratio for the uniform distribution is shown in this sub-graph as a dashed horizontal line at 1.
Unsurprisingly, the PIC results and the analytical results, both mean-field models, are in almost perfect agreement, and the N-particle
results are in surprisingly good agreement as well. Notice that the models predict peak formation on a time-scale dependent on the initial
plasma frequency similar to the peak formation seen in the N-particle disclike density evolution seen in Fig. 1(e) and detailed in Fig. 4.
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For the Gaussian distributions we introduce the scaled
radius variables s ¼ rffiffi

2
p

σr
and s0 ¼ r0ffiffi

2
p

σr
, so that from

Eq. (18) for the cylindrical and spherical cases we have,

D2ðs0Þ ¼
ð1þ s20Þe−s

2
0 − 1

1 − e−s
2
0

ð23Þ

D3ðs0Þ ¼
ð2s30 þ 3s0Þe−s20 − 3

ffiffi
π

p
2
erfðs0Þffiffiffi

π
p

erfðs0Þ − 2s0e−s
2
0

ð24Þ

where erf is the well-known error function. Putting these
expressions into Eq. (21) we find for the cylindrical and
spherical cases respectively

ρðs; tÞ ¼
s2
0

πs2 e
−s2

0

1þ 2
ð1þs2

0
Þe−s20−1

1−e−s
2
0

ffiffiffiffiffiffiffiffiffiffiffi
lnð ss0Þ

q
F½

ffiffiffiffiffiffiffiffiffiffiffi
lnð ss0Þ

q
�

ð25Þ

ρðs; tÞ ¼
s3
0

π
3
2s3

e−s
2
0

1þ ð2s3
0
þ3s0Þe−s

2
0−3

ffiffi
π

p
2
erfðs0Þffiffi

π
p

erfðs0Þ−2s0e−s
2
0

�
s0
s

ffiffiffiffiffiffiffiffiffiffiffi
1 − s0

s

q
tanh−1

� ffiffiffiffiffiffiffiffiffiffiffi
1 − s0

s

q �
þ 1 − s0

s

� ð26Þ

To find rðtÞ=r0 we solve Eq. (14) or Eq. (15), depending
on whether we are examining the cylindrically- or spheri-
cally-symmetric cases, respectively; and for r

r0
, and for

every time step, we calculate the predicted distribution at
5000 positions, r, corresponding to 5000 initial positions,
r0, evolved to time t. As can be seen in Fig. 6, both the
cylindrically- and spherically-symmetric Gaussian distri-
butions develop peaks similar to those seen in the simu-
lations of expanding pancake bunches described in the first
section of the paper. As can be seen in Fig. 6, both the PIC
and the N-particle results match the analytical results
very well. Notice, the primary differences between the
cylindrically- and spherically-symmetric evolutions is in
their rate of width expansion and the sharpness of the peak
that forms, and both of these facets are captured by the
analytic models.

VI. DISCUSSION AND CONCLUSIONS

In this work, we have shown that a shock occurs in the
transverse, but not longitudinal, direction during expansion
of pancake-like charged particle distributions typical of
those used in ultrafast electron microscope (UEM) systems.
Fluid models for arbitrary initial distributions, Eq. (4), a

generalization of a model already in the literature, showed
that the formation of such a shock should not occur for any
cold initial distribution in one dimension. This result is
consistent with the finding that typically no shock is visible
in the longitudinal direction dynamics of nonrelativistic
UEM bunches; however we also showed in Appendix B,
that by tuning the initial velocity distribution it is possible
to generate a dynamic shock.
We generalized the fluid theory to cylindrical and

spherical symmetries deriving implicit evolution equations
for the charge density distributions Eq. (21). We analyzed
these models for the advent of particle crossover, which
occurs for some distributions even when the initial dis-
tribution is cold due to the behavior of the Coulomb force in
higher dimensions. We found that the time scales

associated with the space charge expansion are proportional
to the plasma period. One interesting detailed observation is
that in the case of cylindrical symmetry, the pre-factor of τp

π
of Eq. (14) is roughly 0.3 while for the spherical symmetric

case, corresponding prefactor in Eq. (15),
ffiffi
3
2

q
τp
2π, is roughly

0.2 plasma periods. Interestingly beam relaxation has been
independently found to occur at roughly 0.25 the plasma
period [63], which falls directly in the middle of our
cylindrically and spherically symmetric models. The ana-
lytic theory predicts that emergence of a shock is distri-
bution dependent, and as expected, a uniform initial
distribution does not produce a shock. However we showed
that electron bunches that are initially Gaussian distributed
produce a shock well before the advent of particle crossover
indicating that the emergence of a shock is well described
by fluid models presented here. This is consistent with the
observation of a shock in N-particle simulations of the
transverse expansion of UEM pancake bunches (see
Figs. 1–4).
To our knowledge, we have presented the first analytic

derivation of the cold, single-species, non-neutral density
evolution equations for cylindrical and spherical sym-
metries. These equations are general enough to handle
any distribution under these symmetries, and can be used
across specialties from accelerator technology, to electron-
ics, to astrophysics. While simulation methods, like the
N-particle and PIC codes used here are general tools, the
insights provided by these simple analytical equations
should provide fast and easy first-approximations for a
number of calculations; while providing physical insights
and parameter dependences that are more difficult to extract
from purely computational studies.
The analysis presented here has been carried out for the

nonrelativistic regime; which is only valid for cases of
sufficiently low density where the shock occurs prior to the
electrons achieving relativistic velocities. For higher den-
sities or other physical situations where the bunch becomes
relativistic more quickly than the formation of this shock, a
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relativistic analysis is needed. For example, for sufficiently
high densities, e.g., 107 or more electrons in a pancake
geometry like that used in the typical single shot experi-
ments in the UE field, relativistic effects become important
and need to be considered. This will be discussed in detail
in a forthcoming paper.
The analysis presented here is based on the force

expression, Eqs. (10) and (11), that are derived from
Gauss’s law. The same physics is contained in the ES
solver in Warp and in the N-particle simulation code used
here. The excellent agreement between simulations and
theory indicates that fluid models describe electron cloud
dynamics when electrostatic effects dominate. In the
relativistic limit a variety of new effects may become
important, including magneotstatic fields, retardation, iner-
tial mass effects and the effects of dynamically varying EM
fields. The PIC code Warp supports an electromagnetic
(EM) solver that includes all of these effects [64]. This
procedure is more computationally expensive but enables a
check on the accuracy of the ES approximation; and we
used the EM solver in Warp to verify that the results of the
ES theory are fully consistent with those of the EM solver
in the regimes studied here. Some aspects of the relativisitic
limit dynamics have been resolved, specifically,
Bychenkov and Kovalev have already included inertial
mass effects and ES self-fields in their analysis of the
evolution of the uniform distribution [65]. A further
question, as noted by an anonymous referee of this paper,
is the validity of the standard three step photoemission
model which leads to an initial state consisting of initial
positions and velocities of a set of N electrons. In typical
simulations, the initial electric field of this set of electrons is
calculated electrostatically, and this initial field is used in
the simulations, either electrostatically with tools like the
ES solver or electrodynamically with tools like the EM
solver. Questions should be raised about the need for a
dynamical, relativistic treatment of the photoemission
process; and this is an important direction for future work
especially as the community moves to higher and higher
densities that will decrease the time scale of expansion. It is
worth noting that a key aspect of a relativistic photoemis-
sion model is that it must conserve charge. This has been
handled previously by us in the non-relativistic case
through incorporating positive “hole” charges on the
cathode during electron emission[38], and discussions of
the electrodynamics must consider similar processes in
order to be physically accurate.
We also point out that the Child-Langmuir current

should not have the dynamic shocks elucidated in this
paper, except at the onset of the current before the steady-
state condition sets in. Previous studies note the “hollow-
ing” of a steady-state beam due to fringe field effects [66],
but a steady state Child-Langmuir current is largely
independent of emission parameters; so that this hollowing
effect is not dynamical, but part of the continuous emission

process itself. This is therefore a very different mechanism
than the dynamic shocks we see here. It would be
interesting to study the combined effects of steady state
beam hollowing and dynamic shock formation in pancake
bunches to determine if the combination of these processes
provides new opportunities for optimization of beam
properties.
The analytic models presented here treat free expansion

whereas most applications have lattice elements to confine
the bunches. Substantial work, in particular the particle-
core model, has been very successful at predicting trans-
verse particle halos of beams [67,68]. This model assumes
a uniform-in-space beam-core density called a Kapchinsky-
Vladimirsky (KV) distribution due to its ease of theoretical
treatment. Such an assumption is supported by the analysis
presented here as we find that the distribution within the
shock is nearly uniform. However, the particle-core models
do not treat the initial distribution as having a large density
on the periphery. It would be interesting to revisit such
treatments with this new perspective; specifically, it should
be possible to examine the effect of radial-focussing fields
on the evolution of the three-dimensional distributions we
have investigated here. On the other hand, we would like to
point out that the main effect the particle-core model
attempts to capture, halos, occur even after aperturing
the beam [67] again indicating a different mechanism for
the formation of halos than the mechanism of shock
formation we describe here.
The experimental work that motivated this analysis, [55],

not only predicted a shock but also a correlated decrease in
brightness near the periphery. We emphasize that the mean-
field equations used here explain the density shock only
and do not provide a quantitative theory of the emittance
and the Coulomb cooling achieved by removing the
electrons in the shock. Specifically, the true emittance in
the analytic models presented here remains zero for all
time. For instance, in the spherically symmetric case, all

particles at a radius r have velocity
ffiffi
2
3

q
r0
ω̄p;0

ffiffiffiffiffiffiffiffiffiffiffi
1 − r0

r

p
result-

ing in zero local spread in velocity space. This perfect
relationship between velocity and position means that the
true emittance is zero even if the relation is nonlinear;
however, in such a nonlinear chirp case, the rms emittance
will not remain zero despite the true emittance being zero.
Moreover, the analytic model does capture some of the rms
emittance growth as a change in the distribution has a
corresponding change on the variance measures used to
determine the rms emittance. Specifically, a Gaussian
distribution should have especially large emittance growth
due to its evolution to a bimodal distribution, a distribution
that is especially problematic for variance measures. Such a
large change in the emittance of the transverse Gaussian
profile has been seen computationally by Luiten [44] and us
[37,38]. On the other hand, the perfectly uniform distri-
bution does not change its distribution throughout its
evolution and therefore should have zero rms emittance
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growth as the chirp exactly cancels out the expansion of the
pulse at all times. Moreover, Luiten et al. found computa-
tionally that the uniform distribution does have an increase
in emittance although less than the Gaussian case [44], an
observation that is corroborated by our own work with PIC
and N-particle calculations [37,38]. The analytic formu-
lation of mean-field theory presented here provides new
avenues to treating emittance growth, by treating fluctua-
tions to these equations in a systematic manner. This
analysis will be presented elsewhere.
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APPENDIX A: 1D DENSITY DERIVATION

We denote aðz; tÞ ¼ a0, ρ0 ¼ ρðz0Þ ¼ ρðz; 0Þ, and
δσ ¼ R

z0
−z0 ρ0ðz̃Þdz̃. Moreover, due to the fact that for any

particle trajectory, the acceleration is constant and given by
a0, the Lagrangian particle dynamics reduces to the
elementary constant acceleration kinematic equation

zðtÞ ¼ z0 þ v0tþ
1

2
a0t2 ðA1Þ

where v0 is the initial velocity of the charged particle that
has initial position z0. Notice that both v0 and a0 are
functions of the initial position, z0, and we shall see later
that the derivatives of these parameters, v0 and a0 where
0≡ d

dz0
are important in describing the relative dynamics of

Lagrangian particles starting at different initial positions.
Moreover, the special case of v0 ¼ 0 everywhere, which we
will call the cold-case, is commonly assumed in the
literature, and we will examine this case first.
First we consider the spreading of the charge distribution

within the Eulerian perspective, where z is an independent
variable instead of it describing the trajectory of a particle.
We denote the charge distribution at all times to be
Σtotρðz; tÞ with ρðz; tÞ a unit-less, probability-like density
and Σtot the total charge per unit area in the bunch. Since
particle number is conserved, we have

ρðz; tÞdz ¼ ρ0dz0 ðA2Þ

so that in the nonrelativistic case derived above,

ρðz; tÞ ¼ ρ0
z0

¼ ρ0
1þ v00tþ 1

2
a00t

2
ðA3Þ

Notice that the derivative of the acceleration with respect to
the initial position is directly proportional to the initial
distribution, so that,

a00 ¼
qΣtot

2mϵ0

dδσ
dz0

¼ qΣtot

mϵ0
ρ0 ðA4Þ

where we assumed that ρ0 is symmetric leading. Plugging
Eq. (A4) into Eq. (A3), we get the expression detailed
in Eq. (4).
To determine the slope of the density, we take the

derivative with respect to the z coordinate of Eq. (A3)

d
dz

ρðz; tÞ ¼
�
ρ0
z0

�0	
z0

¼ ρ00
z02

−
ρ0
z03

z00

¼ ρ00z
0 − ρ0z00

z03
ðA5Þ

From the main text, we have

z0 ¼ 1þ v00tþ
qΣtot

2mϵ0
ρ0t2 ðA6Þ

and from this it is straightforward to show

z00 ¼ v000tþ
qΣtot

2mϵ0
ρ00t

2 ðA7Þ

Subbing this back into Eq. (A5), we get

dρ
dz

¼
ρ00ð1þ v00tþ q

2mϵ0
ρ0t2Þ − ρ0ðv000tþ q

2mϵ0
ρ00t

2Þ
ð1þ v00tþ qΣtot

2mϵ0
ρ0t2Þ3

¼ ρ00ð1þ v00tÞ − ρ0v000t
ð1þ v00tþ qΣtot

2mϵ0
ρ0t2Þ3

ðA8Þ

This is Eq. (5) in the main text.

APPENDIX B: 1D CHIRP ANALYSIS

For the cold-case, Eq. (4) reduces to the density
evolution equation derived by Reed [34] using different
methods. Also, in the cold-case, Eq. (5) simplifies into a
proportionality between the initial slope of the distribution
and the slope of the distribution at any later time. Therefore,
a charge distribution that is initially at rest and unimodal,
i.e., only a single initial location has non-zero density with
ρ00 ¼ 0, never develops a dynamically generated second
maximum. This explains why we should not expect to see
an emergent shock in the longitudinal direction; provided
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the 1D model is applicable and cold initial conditions are
valid. However, if a nonlinear velocity chirp exists, i.e.,

v000 ≠ 0, density peaks will emerge at z when t ¼ ρ0
0

v00
0
ρ0−v00ρ

0
0

,

and hence occurs at positive time if v000ρ0 > v00ρ
0
0. In the

special case v000ρ0 ¼ v00ρ
0
0, the distribution may be reframed

as a cold-case distribution starting from t ¼ − mc1ϵ0
qΣtot

for
some z0-independent constant c1 with velocity units when
mc2

1
ϵ0

qΣtot
< 1 or a distribution starting from a singularity with

velocity distribution ṽ0 ¼ c1ðρ0 − 1
2
δσÞ. As noted earlier,

the function a0ðz0Þ is monotonically increasing as a
function of distance from the center of the pulse, which
means that electrons at the edges of the bunch always have
larger accelerations away from the center of the pulse than
electrons nearer the pulse center. Thus crossover, where an
inner electron moves past an outer electron, cannot occur
unless the initial velocities of inner electrons overcome this
relative acceleration.
To consider the case where crossover may occur, we add

an initial velocity chirp, i.e., v0 ¼ cz0 where c has units of
inverse time. We seek the crossover time, which is the time
at which two electrons that were initially apart, are at the
same position at a later time. In this case it is straightfor-
ward to find the time at which crossover occurs by
considering an electron at initial position z0, and a second
electron at position z0 þ δz. Before either of these electrons
experiences a crossover Eq. (A1) is valid, and setting
zðz0; txÞ ¼ zðz0 þ δz0; txÞ reduces to,

At2x þ Btx þ 1 ¼ 0 ðB1Þ

where A ¼ qΣtot
2mϵ0

ρ0 and B ¼ v00. Solving the quadratic
equation leads to the crossover time given by

tx ¼
−B�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − 4A

p

2A
ðB2Þ

Since A is always positive, the square root is real only if B2

is larger than 4A. Moreover the time is only positive if B is
negative. Therefore crossover only occurs if the chirp has a
negative slope, as expected on physical grounds. The
conditions for tuning the chirp to produce crossover in
1D are then

v00 < 0 ðB3Þ

jv00j ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qΣtot

mϵ0
ρ0

s
ðB4Þ

The results above are applicable to the spreading in the
logitudinal direction of nonrelativistic pancake bunches,
because the expression Eq. (A1) is linear in acceleration. In
that case, the position of a charged particle at any time can
be calculated from a superposition of the contribution from
the space-charge field and any external constant field such

as a constant and uniform extraction field. In that case, the
space charge field leads to spreading of the pulse, while the
extraction field leads solely to an acceleration of the center
of mass of the entire bunch. In that case the center of mass
and spreading dynamics are independent and can be
decoupled. The extension of the description above to
asymmetric charge density functions is also straightfor-
ward, as is the inclusion of an image field at the photo-
cathode. Moreover, inclusion of these effects does not
change Eq. (4), Eq. (5), nor the conclusions we have drawn
from them. These results apply generally to all times before
the initial crossover event within the evolution of the bunch,
and once crossover occurs, the distribution can be reset
with a new Eq. (4) to follow further density evolution.

APPENDIX C: DERIVATION OF
TIME-LOCATION RELATIONS

1. Integral form

Starting with the relativistic expression for change in
particle energy derived in the main text

cyl∶ EðtÞ − Eð0Þ ¼ qΛtotλ0
2πϵ0

ln

�
r
r0

�
ðC1Þ

sph∶ EðtÞ − Eð0Þ ¼ qQtotP0

4πϵ0

�
1

r0
−
1

r

�
ðC2Þ

we approximate the energy change with a change in
nonrelativistic kinetic energy starting from rest

cyl∶
1

2
mv2 ¼ qΛtotλ0

2πϵ0
ln

�
r
r0

�
ðC3Þ

sph∶
1

2
mv2 ¼ qQtotP0

4πϵ0

�
1

r0
−
1

r

�
ðC4Þ

where v ¼ dr
dt is the velocity of the particle at time t in the

two or one of the three dimensional models, respectively,
with the appropriate definition of r. Solving these equations
for the velocity at time t, separating the variables and
integrating, we obtain

cyl∶ t ¼
Z

r

r0

dr̃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qΛtotλ0
πmϵ0

lnð r̃r0Þ
q ðC5Þ

sph∶ t ¼
Z

r

r0

dr̃ffiffiffiffiffiffiffiffiffiffiffiffi
qQtotP0

2πmϵ0r0

q ffiffiffiffiffiffiffiffiffiffiffi
1 − r0

r̃

p ðC6Þ

2. Cylindrically-symmetric integral solution

We solve the cylindrically-symmetric integral first. First,

let a ¼ qΛtot
πmϵ0

. Define ũ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aλ0 lnð r̃r0Þ

q
. Solving this equation
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for r̃ in terms of ũ, we see that r̃ ¼ r0e
ũ2
aλ0 . It is also

straightforward to see that

dũ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aλ0 lnð r̃r0Þ

q aλ0
2r0

e
−ũ2
aλ0dr̃

Applying this change of coordinates to Eq. (C5), we get

cyl∶ t ¼ 2r0ffiffiffiffiffiffiffi
aλ0

p
Z

w

0

ew̃
2

dw̃ ðC7Þ

where w̃ ¼ ũffiffiffiffiffi
aλ0

p , and w ¼
ffiffiffiffiffiffiffiffiffiffiffi
lnð rr0Þ

q
. The remaining integral,R

w
0 ew̃

2

dw̃ can be written in terms of the well-studied
Dawson function, Fð·Þ:

Z
w

0

ew̃
2

dw̃ ¼ r
r0

F

2
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

�
r
r0

�s 3
5 ðC8Þ

Subbing Eq. (C8) back into Eq. (C7) gives us our time-
position relation

cyl∶ t ¼ τ̄p;0
π

r
r0

F

2
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

�
r
r0

�s 3
5 ðC9Þ

where τ̄p;0
2π ¼

ffiffiffiffiffiffiffiffiffiffiffi
mϵ0

qΛtotρ̄0

q
and ρ̄0 ¼ λ0

πr2
0

.

3. Spherically-symmetric integral solution

We solve the spherically-symmetric integral with
an analogous approach. First, let a ¼ qQtot

πmϵ0
. Define ũ ¼ffiffiffiffiffiffiffiffiffiffiffi

1 − r0
r̃

p
and solving for r̃ gives r̃ ¼ r0

1−ũ2. Thus

dũ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
1 − r0

r̃

p ð1 − ũ2Þ2
2r0

dr̃

Applying this change of coordinates to Eq. (C6) with
u ¼ ffiffiffiffiffiffiffiffiffiffiffi

1 − r0
r

p
, we get

sph∶ t¼
ffiffiffiffiffiffiffiffi
2r0
aP0

s Z
u

0

2r0
ð1− ũ2Þ2dũ

¼
ffiffiffi
2

3

r
τ̄p;0
2π

�
tanh−1

� ffiffiffiffiffiffiffiffiffiffiffi
1−

r0
r

r �
þ r
r0

ffiffiffiffiffiffiffiffiffiffiffi
1−

r0
r

r �
ðC10Þ

where the solution to the integral was obtained with
Mathematica’s online tool [69] and where ρ̄0 ¼ P0

4
3
πr3

0

and τ̄p;0
2π ¼

ffiffiffiffiffiffiffiffiffiffiffi
mϵ0

qQtotρ̄0

q
.

APPENDIX D: DERIVATION OF DERIVATIVES
WITH RESPECT TO INITIAL POSITION

Denote 0≡ d
dr0
. As noted in the main text, much of the

physics of distribution evolution in our models is captured
in the term r0. The procedure to derive the expressions for
this derivative is to take the derivative of Eqs. (C9) and
(C10), which should be zero, and then solving for r0. We do
this mathematics here.

1. The cylindrically-symmetric derivative

First, let a ¼ qΛtot
πmϵ0

. We begin by rewriting t from
Eq. (C9) as

t ¼ 2r

ffiffiffiffiffiffiffi
1

aλ0

s
FðyÞ ðD1Þ

where y ¼
ffiffiffiffiffiffiffiffiffiffiffi
lnð rr0Þ

q
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lnðrÞ − lnðr0Þ
p

. So

y0 ¼ 1

2y

�
r0

r
−

1

r0

�
ðD2Þ

The Dawson function has the property d
dy FðyÞ ¼

1–2yFðyÞ ¼ ð 1
FðyÞ − 2yÞFðyÞ, and with the chain rule this

becomes F0ðyÞ ¼ ð 1
FðyÞ − 2yÞy0FðyÞ. Using Eq. (D2), this

becomes

F0ðyÞ ¼ FðyÞ
�

1

2yFðyÞ − 1

��
r0

r
−

1

r0

�
ðD3Þ

Also, note

�
1ffiffiffiffiffi
λ0

p
�0

¼ −
1

2
ffiffiffiffiffi
λ0

p λ00
λ0

¼ −
1ffiffiffiffiffi
λ0

p 1

r0

ρ0
ρ̄0

ðD4Þ

So

0 ¼ t0

¼ tr0

r
−

t
r0

ρ0
ρ̄0

þ t

�
1

2yFðyÞ − 1

��
r0

r
−

1

r0

�

¼ t
r

1

2yFðyÞ r
0 −

t
r0

�
ρ0
ρ̄0

þ 1

2yFðyÞ − 1

�
ðD5Þ

which gives

r0 ¼ r
r0

8<
:1þ

�
ρ0
ρ̄0

−1

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

�
r
r0

�s
F

2
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

�
r
r0

�s 3
5
9=
; ðD6Þ
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2. The spherically-symmetric derivatives

First, let a ¼ qQtot
πmϵ0

. We begin by rewriting t from
Eq. (C10) as

t ¼
ffiffiffiffiffiffiffiffi
2r30
aP0

s �
tanh−1yþ r

r0
y

�
ðD7Þ

where y ¼ ffiffiffiffiffiffiffiffiffiffiffi
1 − r0

r

p
. So

y0 ¼ −
1

2yr

�
1 −

r0
r
r0
�

ðD8Þ

Hence

ðtanh−1yÞ0 ¼ −
1

2yr0

�
1 −

r0
r
r0
�

ðD9Þ

and�
r
r0
y

�0
¼ 1

2yr0

�
2

�
r0−

r
r0

��
1−

r0
r

�
−1þ r0

r
r0
�

ðD10Þ

Therefore �
tanh−1yþ r

r0
y

�0
¼ 1

yr0

�
r0 −

r
r0

�
ðD11Þ

Also, similar to Eq. (D4),�
1ffiffiffiffiffiffi
P0

p
�0

¼ −
1

2
ffiffiffiffiffiffi
P0

p P0
0

P0

¼ −
3

2

1ffiffiffiffiffiffi
P0

p 1

r0

ρ0
ρ̄0

ðD12Þ

Putting this together we have

0 ¼ t0 ¼ 3

2

t
r0

−
3

2

t
r0

ρ0
ρ̄0

þ
ffiffiffiffiffiffiffiffi
2r30
aP0

s
1

yr0

�
r0 −

r
r0

�
ðD13Þ

Solving for r0 we get

r0 ¼ r
r0



1þ3

2

�
ρ0
ρ̄0

−1

��
r0
r

ffiffiffiffiffiffiffiffiffiffiffi
1−

r0
r

r
tanh−1

� ffiffiffiffiffiffiffiffiffiffiffi
1−

r0
r

r �

þ1−
r0
r

��
ðD14Þ
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