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It has been well known that the resonant interaction of an ultrarelativistic electron beam and the radiation
field in the single-pass high-gain free electron laser (FEL) amplifier leads to the optical gain guiding. The
transverse Laplacian term of the slowly varying wave equation in the linear regime can be approximated as
a constant detuning parameter, i.e., j∇2⊥j ∼ kR=zR where kR is the resonant wave number and zR is the
Rayleigh range of the laser. In the post-saturation regime, the radiation power begins to oscillate about an
equilibrium for the untapered case while continues to grow by undulator tapering. Moreover, in this regime
the gain guiding decreases and the simple constant detune is no longer valid. In this paper we study the
single-pass high-gain FEL performance in the post-saturation regime with inclusion of diffraction effect
and undulator tapering. Our analysis relies upon two constants of motion, one from the energy conservation
and the other from the adiabatic invariant of the action variable. By constructing a two-dimensional
axisymmetric wave equation and the coupled one-dimensional electron dynamical equations, the
performance of a tapered FEL in the postsaturation regime can be analyzed, including the fundamental
mode profile, the power efficiency and the scaled energy spread. We begin the analytical investigation with
two different axisymmetric electron beam profiles, the uniform and bounded parabolic ones. It is found that
the tapered FEL power efficiency can be smaller but close to the taper ratio provided the resonant phase
remains constant and the beam-wave is properly matched. Such a tapered efficiency is nearly independent
of transverse electron beam size before significant electron detrapping occurs. This is essentially different
from the untapered case, where the power extraction efficiency is around the essential FEL gain bandwidth
(or ρ, the Pierce or FEL parameter) and depends on the beam size. It is also found that the power
enhancement due to undulator tapering is attributed more by the field increase outside the transverse
electron beam than that inside the transverse electron beam. Several scaling properties on the taper ratio and
the transverse electron beam size are also discussed in this paper.
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I. INTRODUCTION

Generating an intense high-power x-ray free electron laser
(FEL) can be of great interest, e.g., the peak power at the
level of terawatt (TW) or sub-TW, since such power level of

output radiation has stimulated numerous experiments in
various scientific areas (see, for example, Refs. [1–3]). For
example, in an x-ray nanocrystallography study [1] a laser
beam of 1.8-keV photon energy and∼100-femtosecond (fs)
pulse duration, with about 1012 photons per pulse on the
sample was experimented. Research in these areas will
greatly benefit from at least 10 to 100 times larger number of
coherent photons within a comparable or shorter pulse
duration than the typical existing x-ray FELs [4–7]. That
is, the requirements will correspond to an output laser
consisting of 1013 to 1014 1-keV photons within a several
tens of fs pulse duration, i.e., the target output power of 1TW
or higher.
The output characteristics of FEL are determined by its

operation modes. In the x-ray wavelength regime a single-
pass high-gain FEL can work either in the self-amplified
spontaneous emission (SASE) or seeded mode, despite the
lack of direct seeding source. In the SASE mode [8], the
initial seeding originates from shot noise of the electron
beam. Therefore the output characteristics of SASE FEL
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can be noisy in both temporal and spectral profile, although
the transverse coherence can be excellent see, for example,
Refs. [9–11] and references therein. Acting as an amplifier,
the seeded mode indeed requires an input source. It has
been known that utilizing higher harmonics generation,
e.g., high-gain harmonics generation (HGHG) [12,13] or
echo-enabled harmonic generation (EEHG) [14,15] can be
an option. Another option is the so-called self-seeding
[16–18]. In the self-seeding option the FEL system starts
with the first section of undulators based on SASE mode
and is followed by a crystal monochromator or gratings to
purify the output spectrum, serving as the subsequent input
signal. Then a second section of undulators proceeds and
amplifies the (purified) signal up to saturation. Compared
with SASE, the output characteristics of seeded FEL are in
general with much narrower spectral bandwidth and better
wavelength stability (see, for example, Refs. [16–19]).
Up to the end of exponential growth in the short-

wavelength single-pass FEL, the power efficiency (defined
as the ratio of the FEL radiation power to the electron beam
power) is about ρ (the Pierce or FEL parameter, usually
smaller than 1 × 10−3 for x-ray FELs), indicating that the
output peak power can be Prad ≈ ρPbeam (with Pbeam the
electron beam power) ∼25 GW for an electron beam with a
typical peak current ∼5 kA and the nominal energy of
several GeV in a ∼100-m-long untapered undulator. There
is still a factor of 20-40 before reaching the aforementioned
sub-TWor TW power level. Dedicated undulator taperings
are a typical technique for power enhancement [20] and
recently the efficiency enhancement based on a phase jump
method is also proposed [21,22]. Both techniques will
favor seeded or self-seeded FELs. There have been numer-
ous numerical simulations and multi-dimensional optimi-
zation schemes reported for highest achievable power
levels [23–25].
The resonant interaction of ultrarelativistic electron

beam and radiation field in the single-pass high-gain
exponential regime of the FEL amplifier has been inten-
sively studied, for example, the longitudinal microbunch-
ing dynamics associated with the exponential growth of the
dominant modes and the SASE FEL statistical properties
(see, for example, Refs. [9–11]). In the transverse dimen-
sion the well-known optical gain guiding, the compensation
effect between the natural tendency of radiation diffraction
and the presence of cooperating electron beam, was first
predicted in 1980s [20,26,27] and later further completed in
more dedicated theories, numerical simulation and experi-
ments [28–33]. The transverse Laplacian term in the slowly
varying wave equation in the exponential-growth regime
can be well approximated as a constant detuning parameter,
i.e., j∇2⊥j ∼ kR=zR where kR is the resonant wave number
and zR is the corresponding Rayleigh range of the laser.
This diffractive effect becomes more important for single-
pass FELs at shorter wavelengths with ever-increasing
undulator lengths, because the corresponding Rayleigh

length can usually be only about 10–20 m and the short-
wavelength radiation beam is difficult to confine by a
waveguide structure. Here we remind that the Rayleigh
range zR ¼ πw2

0=λR is inversely proportional to the radia-
tion wavelength λR while the diffraction effect itself j∇2⊥j is
wavelength independent and the key parameter is the waist
of the radiation w0. In this regime the transverse diffraction
effect approximated as a constant detuning is no longer
valid and further analysis is needed.
In the saturation regime the analysis of FEL dynamics

becomes more involved. Employing the typical collective
variables [34] to analyze the system dynamics is insuffi-
cient. This is primarily because the electron beam phase
space distribution is not only characteristic of linear density
and energy modulations but also begins to rotate, i.e., the
electron beam executes the synchrotron motion. Such a
synchrotron oscillation is due to the electron trapped in the
ponderomotive potential well, formed by external undu-
lator magnetic field and the appreciable saturated radiation
field (the main signal). The resonant interaction between
the main signal and the trapped electrons, once forming a
positive feedback, will drive the electron synchrotron
oscillation and feature a growing sideband signal in the
FEL output spectrum, leading to the sideband instabi-
lity [20]. This longitudinal instability mechanism has been
known as a showstopper for reaching even higher FEL peak
power in the post-saturation regime [35–40]. Moreover,
there is another mechanism in the transverse domain, i.e.,
the focus of this paper, due to reduction of the refractive
gain guiding in the post-saturation regime. This is relevant
to reaching higher peak powers in FELs. The reduction of
gain guiding is attributed by the less rapidly growing main
signal and gradually increasing radiation beam size. Such a
phenomenon has been observed and studied in various
numerical simulations (see for example Ref. [23]). It
deserves here to mention a recent work by Schneidmiller
et al., [41] that they performed a comprehensive study of
optimization of the short-wavelength FEL amplifier per-
formance with emphasis on the dependence of the radiation
diffraction effect. However studies based on analytical
analyses are still constrained and were only limited for
the constant-parameter (untapered) case [42,43]. A similar
study is found in Refs. [44,45], where they treated the
problem by using Green function method but assumed the
explicit separation of the longitudinal and transverse radial
dependence of the beam. Our presented analytical analysis
enables to find some useful scaling properties, including
the taper ratios and the transverse beam sizes. This serves as
a motivation of this work.
In this paper we carry forward the previous work by

Gluckstern et al. [42] on the studies of untapered FEL
saturation dynamics, where they used the two invariants of
motion, one from the energy conservation and the other
from the fact of z-independent system Hamiltonian (where
z is the longitudinal undulator coordinate). We extend the
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analysis to the tapered case. In the presence of undulator
tapering the Hamiltonian depends on z and is no longer a
constant of motion. However, if the fractional change of the
undulator tapering strength is slow compared with the
synchrotron period, the corresponding action variable can
be still considered as a constant, i.e., the adiabatic invariant.
Furthermore, according to the conclusion of Ref. [42], the
equilibrium state of trapped electron phase space distribu-
tion at the initial saturation appears to most resemble the
Boltzmann distribution. Using the two pieces of informa-
tion we can derive some electron beam properties at the
initial saturation. We note that the validity of the above
analytical operation relies on the fact that the background
of untrapped electrons is nearly independent of the system
Hamiltonian [42]. Further analysis in the situation of
appreciable electron detrapping has however been beyond
the scope of this paper. The above discussion refers to the
electron dynamics. For radiation field evolution we employ
the two-dimensional axisymmetric wave equation to study
the transverse dependence of the radiation beam profile
with diffraction and in the presence of cooperating electron
beam. In the analysis we consider two transverse electron
beam profiles allowing analytical solutions: the uniform
and the parabolic ones, and finally numerically compare
with a case done by three-dimensional (3-D) simulations.
We comment that although more practical issues emphasize
how to extract more FEL power or energy from the electron
beam, the presented results here can give us more under-
standing and provide further insights of the post-saturated
tapered FEL performance.
This paper is organized as follows. In Sec. II Awe briefly

review the one-dimensional (1-D) FEL dynamics and the
associated two constants of motion that will be employed in
our subsequent analysis. In the same subsection we also
discuss a simple scaling property of the FEL power
performance with respect to the intrinsic FEL or Pierce
parameter ρ and to the ratio of undulator tapering. The
equilibrium solutions, referred to as the starting location of
undulator tapering, for the electron beam and radiation
beam are then discussed and employed to derive several
electron beam properties for later use in Sec. II B. After the
preparations, we extend the 1-D wave equation to two-
dimensional (2-D) axisymmetric one with inclusion of
transverse Laplacian operator to account for diffraction
effect, and solve the resultant radiation field profile in the
presence of driving electron bunching. The results are
derived for two transverse electron beam profiles that allow
analytical solutions. In Sec. III A we discuss the scaling
properties of the above derived results to the transverse
electron beam size and to the different levels of undulator
tapering, including the special case of an untapered FEL. In
Sec. III B we illustrate the spatial evolution of the radiation
field intensity along the undulator coordinate z and the
transverse dimension for untapered and 8% tapered cases.
The obtained results are consistent with the conclusion

made in our analysis. Finally we summarize the results and
discuss possible future work in Sec. IV.

II. THEORETICAL FORMULATION

In this section we formulate the problem by starting the
investigation of 1-D high-gain FEL with a tapered helical
undulator and later extending to 2-D for the radiation beam.
Our primary focus will be in the post-saturation regime.
The FEL process initiates from the following resonance
condition

λR
λu

¼ 1þ K2
0=2

2γ2R0
; ð1Þ

where λR is the radiation wavelength of the main signal, λu
is the undulator period, γR0 is the initial electron reference
energy in units of its rest mass energy, K0 is the (peak)
dimensionless undulator parameter. In the presence of
undulator tapering, the undulator parameter is in general
a function of the undulator axis z, i.e., K0 → KðzÞ. Here we
consider K-tapering and assume λu is a constant. The
variation of KðzÞ should follow with that of electron energy
loss and ensure that λR remains constant. For simplicity we
do not consider the postsaturation dynamics of harmonic
lasing FEL (see for example Ref. [46–48] and references
therein).

A. Model equations for tapered FEL saturation

In the following we begin by defining the undulator
taper profile fBðzÞ such that KðzÞ ¼ fBðzÞK0, where
0 ≤ fBðzÞ ≤ 1. For convenience we also define Δ≡
1 − fBðzfÞ as the total taper ratio at the undulator exit
zf. The 1-D FEL process can be formulated based on the
following single-particle Hamiltonian,

Hðθj; ηj; ẑÞ ¼
ðηj − ηRÞ2

2fR
− i

fBðẑÞ
fRðẑÞ

ðEeiθj − E�e−iθjÞ; ð2Þ

where jð¼ 1; 2; 3;…; NeÞ is the index for each individual
particle and Ne is the total number of macroparticles
(electrons). θ ¼ ðkR þ kuÞz − ωRt is the electron phase
with respect to the radiation, kR ¼ 2π=λR, and ωR ¼ ckR,
η≡ ½γ − γRð0Þ�=ργRð0Þ is the normalized energy deviation
with respect to the dimensionless FEL or Pierce parameter
(in CGS units):

ρ ¼ 1

γRð0Þ
�
4πe2n0K2

0

32m0c2k2u

�
1=3

; ð3Þ

with e the charge unit, n0 the volume density of the electron
beam,m0 is the electron restmass. ηR¼½γR−γRð0Þ�=ργRð0Þ.
For convenience of subsequent analysis we introduce
the normalized longitudinal coordinate ẑ ¼ 2kuρz, with
ku ¼ 2π=λu. In the case of undulator tapering, the electron
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reference energy is modified accordingly through the res-
onance condition [see Eq. (1)] γRðẑÞ ¼ γRð0ÞfRðẑÞ where
fRðẑÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þK2ðẑÞ=2
1þK2

0
=2

r
. Here jEj ¼ jEj=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πn0ργRð0Þm0c2

p
is

the normalized amplitude of the electric field E.
We leave the ẑ-dependence in Eq. (2) while note that for

untapered case, fB ¼ fR ¼ 1, ηR ¼ 0 and H itself is a
constant and independent of ẑ. From Hamilton’s equations,
we obtain the single-particle equations of motion for
electron phase, energy deviation and the normalized
electric field

dθ
dẑ

¼ η − ηRðẑÞ
fRðẑÞ

ð4aÞ

dη
dẑ

¼ −
fBðẑÞ
fRðẑÞ

ðEeiθ þ E�e−iθÞ ð4bÞ

∂E
∂ẑ ¼ fBðẑÞ

fRðẑÞ
he−iθi ð4cÞ

where the bracket h…i denotes an ensemble average over the
electron beam in the steady state (or a single bunch slice).
The wave equation is obtained by taking the slowly varying
envelope approximation. For simplicity we have neglected
the index j. Note that there are a total of (2Ne þ 1) equations
in the 1-D FEL system. The analysis below starts from the
first saturation location. We remind that the theory does not
distinguish the beginning of undulator tapering from the
saturation location. Assuming Θ ¼ θ þ ϕ, we have for the
particle with the reference energy γRðẑÞ,

dηR
dẑ

¼ −2
fBðẑÞ
fRðẑÞ

jEðẑÞj cosΘR; ð5Þ

where E ¼ jEjeiϕ with ϕ the phase of the radiation field and
ΘR ¼ θR þ ϕ. In order for the electron to have a decrease of
energy at resonance, we require ΘR ∈ ½−π=2; π=2�. For an
untapered FEL, the reference phase is assumed to be fixed at
ΘR ¼ −π=2. For particles near the resonant electron, i.e.,
θ ¼ θR þ δθ, we can derive the small-amplitude synchro-
tron frequency as

ΩsynðẑÞ ¼
�
−2

fBðẑÞ
f2RðẑÞ

jEðẑÞj sinΘR

�
1=2

: ð6Þ

Those near-resonant electrons will execute an oscillation
or rotation in phase space with the synchrotron frequency
Ωsyn. It is straightforward to find the energy conservation
from Eqs. (4) that

jEðẑÞj2 þ hηi ¼ C1: ð7Þ

In what follows we assume C1 to be zero. This is
validated for an initially monoenergetic unbunched electron

beam and a low initial level of radiation [42]. The other
constant of motion comes from adiabatic invariant of action
variable. The action variable is defined as I ≡ H

dηdθ.
If the change of fraction of undulator tapering is slow
compared with the synchrotron oscillation period, the
corresponding action variable, i.e., adiabatic invariant,
can be still considered as a constant and is expressed as
hHðẑÞi=ΩsynðẑÞ ¼ C2. That is, we have

hη−ηRi2
2ΩsynðẑÞfRðẑÞ

þ 2fBðẑÞ
ΩsynðẑÞfRðẑÞ

jEðẑÞjhsinðθþϕÞi¼C2: ð8Þ

Figure 1(a) shows the evolution of C1 and C2 for a
typical tapered FEL process. In this example a constant
resonant phase ΘR ¼ −80° is assumed. The taper profile,
shown in Fig. 1(b), follows that of Eq. (13) below. We see
that the energy conservation [Eq. (7)] is well preserved and
the single-particle Hamiltonian [Eq. (2)] is no longer a
constant. However C2 [Eq. (8)], under adiabatic approxi-
mation, serves as a passable invariant of motion with a
negligible fractional deviation from the zero value. Note
that evident synchrotron oscillations emerge after FEL
saturation; therefore C2 is only valid in the postsaturation
regime.
Despite our primary focus of saturation dynamics, it

deserves here to briefly summarize the universal

FIG. 1. Evolution of (a) the single-particle Hamiltonian hHðẑÞi
(green), C1 (red) and C2 (blue); (b) the taper profile fBðẑÞ. In the
simulation the starting location of undulator tapering is set at
ẑ ¼ 5.5 and the initial seed field jEð0Þj ¼ 0.01. The inset in (a)
zooms in on C1 and C2 and the black dotted line indicates the
ratio C2=hHi.
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characteristics prior to the first saturation regime and use
Eqs. (4) to obtain two important results. By defining the
two collective variables, density bunching b ¼ he−iθi,
energy bunching p ¼ hηe−iθi, with the scaled main-signal
field EðẑÞ, we can derive the third-order ordinary differ-
ential equation for EðẑÞ, which indicates the expone-
ntial growth in the collective FEL instability of the main
signal [34]. Upon saturation, where jEðẑÞj2 ¼ Oð1Þ, we
have, from Eq. (7) and the definition of η, hηi ≤ −1, which
means that the mean electron energy begins to fall outside
the ρ. Moreover, from the definition of the scaled field, the
first-saturation power efficiency is estimated to be
Psat=Pbeam ¼ jEj2=4πnγR0mc2 ≈ ρjEj2 ∼ ρ. That is, in the
untapered case the FEL efficiency is about ρ, usually
smaller than 0.1% in x-ray regime.
Aside from Eq. (7), the energy conservation can be

expressed in another useful form. Let us decompose
Eq. (4c) into the amplitude and phase components. We have

djEj
dẑ

¼ fB
fR

hcosΘi; ð9Þ

and

dϕ
dẑ

¼ −
fB

jEjfR
hsinΘi: ð10Þ

From Eqs. (5) and (9) and assuming hcosΘi ≈ cosΘR,
we have

jEðẑÞj2 ¼ jEðẑbÞj2 þ
1 − fRðẑÞ

ρ
; ð11Þ

for ẑ > ẑb, where the relation of ηR ¼ ðfR − 1Þ=ρ has been
used, ẑb is the starting location of undulator tapering,
and jEðẑbÞj is denoted as the normalized field amplitude
at the starting location. The post-saturation tapered
FEL efficiency can now be estimated to be ρjEj2 ¼
ρjEðẑbÞj2 þ 1 − fRðẑfÞ ¼ ρþ Δ ≃ Δ. Notice that the
restrictive assumption of hcosΘi ≈ cosΘR indicates that
the electrons are deeply trapped in the ponderomotive
potential well. Under this situation through a proper
undulator tapering the power efficiency can reach up to
the level of the total taper ratio. In the following discussion
we consider the constant resonant phase, i.e., ΘR ¼
constant. For the case with adiabatic undulator tapering,
the increase of the main signal as a function of ẑ can be
obtained via Eq. (9)

jEðẑÞj ≈ jEðẑbÞj þ ðẑ − ẑbÞ cosΘR: ð12Þ

assuming fB=fR ¼ Oð1Þ.
Substituting into Eq. (5) with help of ηR ¼ ðfR − 1Þ=ρ,

we have

fRðẑÞ ≈ fBðẑÞ
≈ 1 − 2ρjEðẑbÞj cosΘRðẑ − ẑbÞ
− ρcos2ΘRðẑ − ẑbÞ2: ð13Þ

This is the derived taper profile based on the constantΘR.
Unlike the untapered case, where the radiation phase is

linearly proportional to ẑ, the tapered radiation phase
increases at a lower rate and scales logarithmically. This
can be seen by integrating Eq. (10) over ẑ assuming fB and
fR vary slowly along ẑ and fB=fR ¼ Oð1Þ,

ϕðẑÞ≈
(
ϕðẑbÞ− sinΘR

jEðẑbÞjðẑ− ẑbÞ; ΘR¼−π
2
;

ϕðẑbÞ− tanΘR ln
h
1þ cosΘR

jEðẑbÞjðẑ− ẑbÞ
i
; −π

2
<ΘR≤0

ð14Þ

Figure 2 demonstrates the evolution of the radiation
amplitude and phase along ẑ. The logarithmic dependence
can be Taylor expanded by employing lnð1þ xÞ≈
x − x2=2þ − � � �. Figure 2(b) shows the linear and (up
to) quadratic fittings to the untapered and tapered phase
evolution, respectively. Through this numerical observation
we will, for simplicity, assume the (up to) quadratic
dependence of the radiation phase evolution along ẑ.

FIG. 2. Evolution of the radiation amplitude (a) and phase
(b) along ẑ for untapered and 8% tapered case. Dotted lines in (a)
are obtained from Eq. (12) and those in (b) are fitted based on
Taylor expansion of Eq. (14) to the first (linear, for no taper) and
the second (quadratic, for 8% taper) orders. Relevant numerical
parameters follow from Fig. 1.

SINGLE-PASS HIGH-GAIN TAPERED … PHYS. REV. ACCEL. BEAMS 21, 060702 (2018)

060702-5



In this section we have already formulated the 1-D FEL
equations, including the electron dynamics and the radia-
tion field evolution. We will discuss in the next section the
equilibrium state of the first saturation to derive several
useful properties of electron beam for later use, and then in
Sec. II C extend the 1-D field equation to axisymmetric 2-D
case with inclusion of diffraction effect to study the effect
on FEL saturation performance.

B. Equilibrium solution and electron
beam properties

Below in this subsection we take advantage of
Gluckstern et al. [42] to parametrize the radiation field
solution based on the equilibrium solution. The equilibrium
solution here is referred to as the solution evaluated at the
starting location of the undulator tapering or the first-
saturation location. Again we remind that the theory does
not distinguish the difference between the two locations.
For the solution of the radiation field, we take the following
form

E ¼ ðPþ iQÞeiΦ; ð15Þ

where Φ ≈ κ0 þ κ1ðẑ − ẑ0Þ þ κ2
2
ðẑ − ẑ0Þ2. After the para-

metrization of eiΦ, P andQ are connected to the growth and
the residual oscillation parts of the field amplitude. Here κ1
and κ2 further characterize the linear and quadratic depend-
ence on ẑ and κ0 is a constant offset due to the fitting. We
will ignore this offset in the following analysis. Through a
proper choice of ẑ0, which can be ẑb but not necessary, P
can approach a linear dependence on ẑ (or a constant for an
untapered case) and Q will oscillate about zero value,
shown in Fig. 3. The coefficients κ1 and κ2 may vary for
different choices of ẑ0 to ensure the fitted Φ represents the
field phase shown in Fig. 2. Here we note that a more
rigorous treatment should impose an additional constraint
on the amplitude and phase of the radiation field, i.e., the

Kramers-Kronig relation. Here of our more interest is the
evolution of field amplitude (or power) along ẑ; detailed
account of phase contribution is overlooked in our analysis.
In what follows, we adopt P, instead of jEj, as the field
amplitude (not to be confused with the radiation power Prad
or electron beam power Pbeam).
Let us introduce the variable β for the subsequent

analysis, β ¼ θ − θR −Φ, which represents the displaced
electron phase and hβ0i ≈ 0 in the equilibrium [42]. Then
Eqs. (4) can be rewritten as

dβ
dẑ

¼ dðθ − θRÞ
dẑ

− κ1 ð16aÞ

dβ0

dẑ
¼−2

fBðẑÞ
f2RðẑÞ

ðPcosβ−Qsinβ−PcosΘRÞþ κ2 ð16bÞ

∂P
∂ẑ ¼ κ1Qþ fBðẑÞ

fRðẑÞ
hcos βi ð16cÞ

∂Q
∂ẑ ¼ −κ1P −

fBðẑÞ
fRðẑÞ

hsin βi ð16dÞ

where the prime here and in what follows denotes the
derivative with respect to ẑ.
The two constants of motion, Eqs. (7) and (8), can also

be expressed in the following forms,

P2 þQ2 þ fR½hβ0i − κ1� þ ηR ¼ 0; ð17Þ

and

fR
Ωsyn

�hβ02i
2

−κ1hβ0iþ
κ21
2
þ2

fB
f2R

ðPhsinβiþQhcosβiÞ
�
≈0:

ð18Þ

In the presence of undulator tapering, we have known the
functions P and Q in Eq. (15) can be approximately
expressed as

PðẑÞ ≈ jEðẑbÞj þ ðẑ − ẑbÞ cosΘR;

Q ≈ 0; Q0 ≈ 0: ð19Þ

The two constants of motion can be further simplified
to be

κ1 ¼
P2 þ ηR

fR
; ð20Þ

and

hβ02i ¼ 4κ1P2 − κ21: ð21Þ

It has been known that the equilibrium (or unperturbed)
electron beam phase space distribution satisfies the Vlasov

FIG. 3. Evolution of P (solid lines) and Q (dotted lines) for the
untapered (red) and tapered (blue) cases. In obtaining Q we
choose ẑ0 ¼ ẑb ¼ 5.5. The fitted coefficients are κ1 ≈ 0.714,
κ2 ¼ 0 for the untapered case, and κ1 ≈ 0.471, κ2 ≈ −1.07 × 10−2

for the 8% tapered case [see also Fig. 2(b)].
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equation. The unperturbed solution can always be
expressed in an arbitrary function of the constant(s) of
motion [49]. From the above analysis we have made the
choice of using the action variable as an invariant. In what
follows, by taking advantage of the conclusion by
Gluckstern et al. [42], we adopt the Boltzmann-type
distribution as the unperturbed solution. Therefore it can
be written in the form

fBZM ¼ N e−αĨðβ;β0;ẑÞ; ð22Þ

where N is the normalization coefficient such that
hfBZMi≡

R
2π
0

R
∞
−∞ dβdβ0fBZMðβ; β0Þ ¼ 1, and α is a mea-

sure of the particle spread in the ponderomotive potential
well [43]. From Eq. (18) we take Ĩðβ; β0; ẑÞ ¼
fR

2Ωsyn
ðβ0 − κ1Þ2 þ 2fB

ΩsynfR
P sin β. For convenience we also

define χ ¼ fB=Ωsyn, and K ¼ αfR=Ωsyn. Several relevant
quantities can be evaluated, including the normalization
coefficient

N ¼
ffiffiffiffi
K

p

ð2πÞ3=2I0ð2αχPÞ
: ð23Þ

On the right-hand side of Eqs. (16c) and (16d), the
bunching parameters can also be evaluated

hsin βi ¼ −
I1ð2αχPÞ
I0ð2αχPÞ

≈ −αχP≡ −s̄; ð24Þ

where I0 and I1 are respectively the zeroth- and first-order
modified Bessel function of the first kind, and

hcos βi ¼ cosΘR;

	
fB
fR

cos β − cosΘR



≈ 0; ð25Þ

and

hðβ0 − κ1Þ2i ¼ K−1; hβ02i ¼ K−1 þ κ21: ð26Þ

Up to now we have obtained several relevant parameters
for the electron beam expressed in terms of P and Q, based
on the arguments in Eqs. (15) and (22). We will apply these
results for our subsequent analysis.

C. Extension to transverse finite-size beams

In this subsection we will extend the 1-D wave equation
formulated in Sec. II A to axisymmetric 2-D equation
including the radial dependence of the radiation field.
The analysis will include the diffraction effect and the
guiding properties formed by the bunched electron beam
through the FEL process. The electron beam now features a
finite transverse size but the betatron oscillation and the
angular divergence (or, transverse emittance) are neglected
for simplicity. In reality due to the external strong focusing

imposed on the electron beam, the betatron motion and the
nonzero angular spread (or, finite emittance) should be
taken into account. The radiation diffraction effect is
included in the transverse Laplacian operator and the wave
equation can be written as

∂E
∂ẑ − i∇2⊥E ¼ fBðẑÞ

fRðẑÞ
Uðr̂Þhe−iθi; ð27Þ

where Uðr̂Þ is the transverse electron beam profile and the
scaled radius r̂ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ρkukR
p

r. ∇2⊥ ¼ r̂−1∂=∂r̂ðr̂∂=∂r̂Þ. In
the absence of the right hand side term, Eq. (27) becomes
the paraxial Helmholtz equation and the solution can be
typically parametrized by the Gaussian beam [50]. The
presence of nonzero term on the right-hand side of Eq. (27)
acts as an external medium. This medium, due to electron
beam microbunching, leads to an effective index of
refraction greater than unity [27]. Now, let us write
Eq. (27) in terms of the aforementioned P and Q,

∂P
∂ẑ þ∇2⊥Q ¼ κ1Qþ fBðẑÞ

fRðẑÞ
Uðr̂Þhcos βi ð28aÞ

∂Q
∂ẑ −∇2⊥P ¼ −κ1P −

fBðẑÞ
fRðẑÞ

Uðr̂Þhsin βi: ð28bÞ

From Eqs. (28b) and (19) we have

κ1P −∇2⊥P ¼ −
fBðẑÞ
fRðẑÞ

Uðr̂Þhsin βi: ð29Þ

The two constants of motion, Eqs. (17) and (18), can now
be integrated over r̂ and become

Z
∞

0

r̂dr̂fP2þQ2þUðr̂Þ½fRðhβ0i− κ1ÞþηR�g¼ 0; ð30Þ

and

Z
∞

0

r̂dr̂

�
fRUðr̂Þ
Ωsyn

hðβ0 − κ1Þ2i −
2

Ωsyn
½PQ0 − P0Q

þ κ1ðP2 þQ2Þ þ ð∇⊥PÞ2 þ ð∇⊥QÞ2�
�

¼ 0: ð31Þ

Using Eq. (19), we can simplify the above two equations

Z
r̂dr̂P2ðr̂; ẑÞ ¼ ðfRκ1 − ηRÞ

Z
r̂dr̂Uðr̂Þ; ð32Þ

andZ
r̂dr̂Uðr̂Þhðβ0− κ1Þ2i¼

2

fR

Z
r̂dr̂½κ1P2þð∇⊥PÞ2�: ð33Þ
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Now we can solve the field equation, together with the
constants of motion in a given transverse electron beam
profile. Let us consider the simplest case, i.e., the uniform
stepped profile with the form

Uðr̂Þ ¼
�
1; r̂ ≤ R̂

0; r̂ > R̂;
ð34Þ

where R̂ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ρkukR

p
R is the boundary of the transverse

electron beam density profile. Inserting into Eq. (28b) gives�
∇2⊥ þ αχ

fBðẑÞ
fRðẑÞ

− κ1

�
P ¼ 0; inside the beam ð35aÞ

ð∇2⊥ − κ1ÞP ¼ 0; outside the beam: ð35bÞ

The continuity conditions of P and dP=dr̂ at the beam
boundary leads to the following constraint,

yJ1ðyÞK0ðxÞ ¼ xJ0ðyÞK1ðxÞ; ð36Þ

where x ¼ ffiffiffiffiffi
κ1

p
R̂, y ¼ μR̂, and μ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αχfB=fR − κ1
p

.
Equation (36) sets up a constraint on x and y, i.e., α and
κ1. The explicit expression of the radiation field solution
can now be written as

Pðr̂; ẑÞ ¼
(
AJ0ðμr̂Þ; r̂ ≤ R̂

A J0ðyÞ
K0ðxÞK0ð ffiffiffiffiffi

κ1
p

r̂Þ; r̂ > R̂
ð37Þ

where A is the on-axis field amplitude, J0 and K0 are the
zeroth order ordinary Bessel function and the modified
Bessel function of the second kind, respectively.
Throughout the analysis we consider the single-mode
configuration, i.e., the TEM00 mode. This is justified that
only such a mode can exist after the exponential growth and
proceed in the postsaturation regime. The resultant field
solution needs to satisfy the aforementioned two constants
of motion. By substituting Eq. (37) into Eqs. (32) and (33)
we obtain

fRκ1−ηR¼A2

�
J20ðyÞþJ21ðyÞþ

J20ðyÞ
K2

0ðxÞ
½K2

1ðxÞ−K2
0ðxÞ�

�
;

ð38Þ
and

κ21 ¼ 2αχ
fB
fR

A2½J20ðyÞ þ J21ðyÞ� −
1

2K
; ð39Þ

where χ ¼ fB=Ωsyn, and K ¼ αfR=Ωsyn.
In the case of the uniform electron beam profile,

Eqs. (36), (38), and (39) will be numerically solved for
κ1, α, and A [i.e., Pðr̂ ¼ 0Þ]. Of our particular interest the
combined term (fRκ1 − ηR) represents the FEL power
efficiency,

fRκ1 − ηR ¼
R
r̂dr̂P2ðr̂; ẑÞR
r̂dr̂Uðr̂Þ : ð40Þ

The electron energy spread will increase during the
saturated FEL process and can be characterized by the
scaled energy spread

hðη− ηRÞ2i ¼
Z

2π

0

dθ
Z

∞

−∞
dηðη− ηRÞ2fBZM

¼
Z

2π

0

dβ
Z

∞

−∞
dβ0

����J
�∂ðθ;ηÞ
∂ðβ;β0Þ

�����ðβ0 − κ1Þ2fBZM

¼Ωsyn

α
; ð41Þ

where the Jacobian is due to the coordinate transformation,

jJð ∂ðθ;ηÞ∂ðβ;β0ÞÞj ¼ fR [see also Eq. (16)].

The second example allowing analytical solutions refers
to the bounded parabolic profile,

Uðr̂Þ ¼
�
1 −ϒ2r̂2; r̂ ≤ R̂

0; r̂ > R̂
ð42Þ

where ϒ≡ k1=R̂. Here k1 is a free parameter to character-
ize the cutoff of the profile distribution.
Similarly, inserting Eq. (42) into Eq. (28b) gives us the

governing equation for the radiation field inside and outside
the electron beam�
∇2⊥ þ αχfB

fR
ð1 −ϒ2r̂2Þ − κ1

�
Pðr̂Þ ¼ 0; inside the beam

ð43aÞ
ð∇2⊥ − κ1ÞPðr̂Þ ¼ 0; outside the beam: ð43bÞ

Notice that Eq. (43b) is identical to Eq. (35b). For
convenience of solving Eq. (43a), we define the shorthand
notation for the quantity δ2 ¼ αχfB

fR
ϒ2. Then Eq. (43a)

becomes �
d2

dr̂2
þ 1

r̂
d
dr̂

þ μ2 − δ2r̂2
�
Pðr̂Þ ¼ 0: ð44Þ

The solution to the above equation takes the form of the
confluent hypergeometric function [9,51]. Matching the
radiation field and its derivative at the beam boundary leads
to a similar matching equation to Eq. (36),

δR̂2K0ðxÞ½2ϵ1F1ðϵþ 1; 2; δR̂2Þ − 1F1ðϵ; 1; δR̂2Þ�
þ xK1ðxÞ1F1ðϵ; 1; δR̂2Þ ¼ 0; ð45Þ

where ϵ ¼ 1=2 − μ2=4δ.
Note that we have used the relation d1F1ðϵ; 1; δr̂2Þ=dr̂ ¼

2ϵδr̂1F1ðϵþ 1; 2; δr̂2Þ. The general expression of the field
solution can be expressed as
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Pðr̂; ẑÞ¼
(
Ae−δr̂

2=2
1F1ðϵ;1;δr̂2Þ; r̂≤ R̂

Ae−δR̂
2=2

1F1ðϵ;1;δR̂2ÞK0ð ffiffiffiffi
κ1

p
r̂Þ

K0ðxÞ ; r̂ > R̂:
ð46Þ

A special case of the bounded parabolic beam being
reduced to be the uniform one, where δ → 0 (or ϒ → 0),
can be retrieved by taking advantage of the relation
limδ→0½1F1ðϵ; 1; δR̂2Þ� ¼ J0ðμR̂Þ. It is clear that Eq. (45)
can be reduced to Eq. (36). Consistency requires that the
two constants of motion must be satisfied by the radiation
field solution. Before proceeding, let us define the follow-
ing two functions

F 1ðϵÞ ¼
Z

1

0

e−t½1F1ðϵ; 1; tÞ�2dt; ð47Þ

and

F 2ðϵÞ ¼
Z

1

0

te−t½1F1ðϵ; 1; tÞ�2dt: ð48Þ

Note that the two functions depend only on ϵ. For reference
their functional behaviors are shown in Fig. 4.
The two constraints on the field solution can now be

expressed in terms of F 1 and F 2 as

fRκ1−ηR¼
A2

ð1− 1
2
ϒ2R̂2Þ

�
F 1ðϵÞ
δR̂2

þe−δR̂
2

�
K2

1ðxÞ
K2

0ðxÞ
−1

�
½1F1ðϵ;1;δR̂2Þ�2

�
; ð49Þ

and

κ21 ¼
fB
f2R

2αχA2

δR̂2ð1− 1
2
ϒ2R̂2Þ

�
F 1ðϵÞ−

ϒ2

δ
F 2ðϵÞ

�
−

1

2K
: ð50Þ

Similarly, Eq. (45), together with Eqs. (49) and (50),
should be solved for κ1, α, A, provided the remaining
parameters are given.
In this subsection we have analytically obtained the

radiation field profile in the presence of electron beam for

transverse uniform stepped and bounded parabolic profiles.
Three parameters, governed by the FEL process, are subject
to the functional form of the field distribution and two
constants of motion. They include the measure of electron
trapping in the ponderomotive potential well, the power
enhancement in the postsaturation regime, and the on-axis
radiation field amplitude. Before ending this section, we
comment that the validity of the above analysis is based on
the assumption that the bunched electrons are not signifi-
cantly lost in the ponderomotive potential well (or the phase
space bucket). In Sec. III we will numerically solve the
three parameters to obtain the self-consistent results and
discuss their scaling properties on the taper ratios and the
transverse electron beam sizes.

III. NUMERICAL RESULTS

In this section we will first illustrate the radiation field
solution derived from Sec. II by numerically solving the
matching equations with constants of motion as constraints.
Of our particular interest are dependencies of the resultant
radiation field solution on the transverse beam size and on
the taper ratio, i.e., the scaling properties. Then we
qualitatively compare our findings using a full 3-D numeri-
cal simulation GENESIS [52].

A. Scaling properties

Let us begin with the untapered case. Figure 5 shows that
power efficiency, increase of the scaled energy spread, and
the half width at half maximum (HWHM) of the radiation
field profile for an untapered case. In Fig. 5(a), we can see
that the output efficiency reaches a saturation value ∼0.1%
when the scaled transverse electron beam size is larger
than 4. Note that such a value is close to the Pierce
parameter of the short-wavelength high-gain FEL. Let us
take the Linac Coherent Light Source (LCLS) like param-
eters as a practical example, K0¼ 3.5, λu ¼ 3 cm, and λR ¼
2.755Å (or 4.5 keV photon energy), which correspond to
the reference electron energy 10 GeV with a typical bunch
current level 3 kA. A typical transverse electron beam size
is about 20 μm. The Pierce parameter ρ is about 1.5 × 10−3.
This corresponds to the scaled electron beam radius
R̂ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ρkukR
p

R ≈ 3.4, and the first saturation power is at
the level of 10 GW. When the transverse beam size is
increasing, the result will approach the 1-D limit. In
addition to the power efficiency, the induced energy spread
of the electron beam, shown in Fig. 5(b), will increase as
well when the beam-wave interaction is improved.
Inserting the numerically obtained κ1, α and A into
Eqs. (37) and (47) gives the resultant radiation field profile.
The effective width can be characterized as the half width at
half maximum (HWHM), indicating the effectiveness of
the guided transverse mode.
Having illustrated the untapered case, let us study how

the saturated power efficiency, the induced energy spread,
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FIG. 4. Behavior of F 1 and F 2 defined in Eqs. (47) and (48).
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and the effective width of the radiation field profile are
affected by the undulator tapering. Figures 6(a) and 6(b)
shows the dependence of the power efficiency on the scaled
transverse electron beam size and the taper ratio, respec-
tively. Unlike Fig. 5(a), the tapered power efficiency has
very weak dependence on the transverse electron beam
size. Going from R̂ ¼ 0.1 to R̂ ¼ 5 the theoretical pre-
dictions [Eqs. (38) and (49)] give only 0.02% and 0.01%
difference for transverse uniform and parabolic distribu-
tion, respectively, for the case of 1% taper ratio. The
difference becomes even smaller for 8% taper ratio. The
dots in Fig. 6(a) are obtained from the full 3-D numerical
simulation GENESIS, where we can see both the theoreti-
cal predictions and the numerical results match well for the
untapered and 1% taper cases. For 8% taper case, there
appears a systematic deviation between the theoretical
and simulation results. However the independence of the

transverse electron beam size is shown. The deviation can
be attributed to the idealization we imposed for the electron
beam transverse motion. Note that in the theoretical
formulation we have ignored the betatron oscillation and
the finite angular divergence of the electron beam, i.e., the
finite emittance effect. By looking at another dimension of
the power efficiency dependence, the power extraction
efficiency is now almost linearly dependent on the taper
ratio, as shown in Fig. 6(b). It is interesting to note that
when the taper ratio approaches to zero, i.e., the untapered
case, the power efficiency reaches a constant close to the
FEL or Pierce parameter ρ. In Fig. 6(b) the dotted line
denotes the case where we have discussed in Sec. II A [the
text below Eq. (11)]. It is further confirmed here that in the
beam-wave matched case the resultant power efficiency can
be only slightly smaller but close to the total taper ratio. In
view of Fig. 6, we remind that the above argument of power
efficiency scaling does not apply to any arbitrarily large
transverse beam size and to any level of taper ratio. The
aforementioned discussion assumes negligible electron
detrapping. The longitudinal phase space bucket (or the
ponderomotive potential well) corresponding to the outer

FIG. 5. Dependence of the power efficiency (a), scaled energy
spread (b), and the half width of the radiation field profile (c) on
the scaled transverse electron beam radius for an untapered case
(ΘR ¼ −π=2). The dots in (a) are obtained from 3-D numerical
simulation results GENESIS.

FIG. 6. The dependence of the power efficiency on the scaled
transverse electron beam radius (a) for three specific taper ratios
(untapered, 1% and 8% taper ratios), and the dependence on the
taper ratio (b) for the uniform stepped and the bounded parabolic
(k1 ¼ 1) electron transverse beam profile. It can be seen that the
power efficiency is almost independent of R̂, although (b) is
plotted at R̂ ¼ 3. The dots in (a,b) indicate the full 3-D numerical
simulation results from GENESIS for the electron transverse
uniform distribution. The inset in (b) shows the crossing of
the calculated power efficiency to the y ¼ x dotted line.
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transverse portion of an electron beam can become smaller
than that to the on-axis of the beam, due to the weaker and
weaker radiation field amplitude, and this may give rise to
electron detrapping. In that situation one can expect that in
Fig. 6(b) the calculated power efficiency will saturate and
be bent downward at an even larger taper ratio. Since the
above analysis places emphasis on the core interaction
between the electron beam and the radiation field, the
detrapping is beyond the scope of our discussion.
Figures 7 and 8 depict the induced energy spread and the

effective width of the radiation field during the FEL
saturation process in terms of the transverse electron beam
size and the level of undulator tapering. Above a certain
transverse beam size the beam-wave interaction will gradu-
ally reach an equilibrium. In Fig. 7(b) as the taper ratio
increases up to a level, at which it can effectively capture
most of the electron energy loss, the electrons in the phase
space (or in the ponderomotive bucket) will be further
trapped, i.e., corresponding to smaller α [see Eqs. (22) and
(41)]. The more effective beam-wave interaction then leads
to the increase of the induced energy spread.
In addition to the above scaling properties, we find that

in the presence of undulator tapering more of the enhanced
radiation field intensity is contributed from outside of the
transverse electron beam than from inside of it. Inserting
the numerically obtained solutions for κ1, α, and A into
the field expressions, Eqs. (37) and (47) for uniform and

parabolic beam profiles, we can obviously see the dis-
tinction of the resultant radiation profiles between the
untapered and tapered cases. Figure 9 illustrates the
normalized field profiles for two different transverse beam
sizes (R̂ ¼ 2 and 4) of the uniform and parabolic profiles in
the untapered and 8% tapered cases. This observation is
also reflected in Fig. 8(b).

B. Three-dimensional numerical simulation

The above analysis is based on extension of 1-D to 2-D
axisymmetric FEL formalism. In this subsection we also
illustrate the dynamics of the radiation field profile by using
the full 3-D time-independent simulation code GENESIS
[52]. This numerical illustration enables us to see a clear
picture how the spatial evolution of the radiation field
intensity in both transverse and longitudinal dimensions,
and the impact of undulator tapering. In the numerical
simulation the electron beam transverse profile is set
uniform round with the half width ≈28 μm in x and y
(or ≈40 μm in r) and the total length of the undulator is
assumed 70 m with λu ¼ 2.6 cm. The corresponding
radiation wavelength is 3.1 Å. The first saturation power
≈22 GW is matched at the beam waist with the input
electron beam. The transverse domain in the numerical
setup extends from −0.8 mm to þ0.8 mm with a total
number of 451 × 451 grid points to avoid possible

FIG. 7. The dependence of the scaled energy spread on the
transverse electron beam radius (a) for three specific taper ratios
(untapered, 1% and 8% taper ratios), and the dependence on the
taper ratio (b) for the uniform stepped and the bounded parabolic
(k1 ¼ 1) electron transverse beam profile.

FIG. 8. The dependence of the size (half width at half
maximum) of radiation field profile on the transverse electron
beam radius (a) for three specific taper ratios (untapered, 1% and
8% taper ratios), and the dependence on the taper ratio (b) for the
uniform stepped and the bounded parabolic (k1 ¼ 1) electron
transverse beam profile.
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numerical effects occurred along the boundaries. In the
numerical simulation the undulator tapering starts at the
very beginning with an overall taper ratio of continuous and
quadratic 8%. Figure 10(a) shows the mountain-range plots
for the evolution of the radiation intensity profile for both
untapered and 8% tapered cases, where the clear broad-
ening of the radiation field intensity in the 8% tapered case
is indicated. More quantitatively Fig. 10(b) shows the
evolution of the half-width half maximum of the radiation
intensity profile. We see the transverse pulse broadening
proceeds after z > 20 m. Besides, more and more of the
enhanced radiation field intensity due to undulator tapering
is contributed from outside of the transverse electron beam
than from inside of it. By quantifying the ratio of the sum of
field intensity inside the transverse electron beam size
(40 μm in r in the example) to that outside the beam, as
shown in Fig. 10(c), we can see a decrease trend in the
curve for the 8% tapered case after z > 20 m. The on-axis
field intensity will therefore grow at a relatively slower rate
than the transversely integrated field intensity.
To end this section we highlight the effect of undulator

tapering on broadening of the radiation field profile. In the
presence of a proper undulator tapering, the more trapped
electrons lead to reduction of the spread (α) measured in the
electron longitudinal phase space, while the enhanced
radiation power results in a faster synchrotron oscillation
(Ωsyn). These two factors cause the reduction of the
electron bunching in spite of slight increase of on-axis field

[Eq. (24)], weaken the effective transverse guiding [μ in
Eq. (37) or δ in (46)], and eventually lead to the broadening
of the radiation field.

IV. SUMMARY AND DISCUSSION

In this paper we have analyzed the postsaturation
dynamics in a single-pass high-gain tapered FEL, including
the power efficiency, the induced energy spread, and the
radiation field intensity as a function of the scaled trans-
verse electron beam size and the level of undulator tapering.
By taking advantage of two integrals of the motion, one
from the energy conservation and the other from the action
variable based on the adiabatic invariance of the undulator

FIG. 9. The transverse radiation field profiles (colored) for two
different electron beam sizes (R̂ ¼ 2 and 4) for the uniform and
bounded parabolic (k1 ¼ 1) electron profiles in the untapered (a)
and 8% tapered (b) cases. The two thin black lines in (a) and (b)
indicate the parabolic electron beam profile.

FIG. 10. Three-dimensional mountain-range plot (a) for the
evolution of the radiation field intensity for the untapered (red)
and 8% tapered (blue) cases. The initial transverse electron beam
profile is assumed uniform within ≈�28 μm in x and y (or
≈�40 μm in r). (b) The z-dependence of the half-width half
maximum of the intensity profile. (c) The z-dependence of the
ratio of the integrated field intensity outside the electron beam to
that inside the beam.
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tapering, we have studied two cases that allow analytical
solutions of the radiation field: the uniform and the
bounded parabolic transverse electron beam profiles. The
self-consistent solutions allow us to clearly see the depend-
ences of the FEL power efficiency, the induced energy
spread increase, and the broadening of the radiation field
intensity on both the transverse electron beam size and the
taper ratio.
It is found that the tapered power efficiency has weak

dependence on the transverse electron beam size and can be
greatly improved byvirtue of undulator tapering up to its total
taper ratio prior to occurrence of significant electron detrap-
ping. In the presence of undulator tapering, besides the total
power is enhanced (compared with the untapered case), it is
also found that more and more the field intensity is contrib-
uted from outside of the transverse electron beam than from
inside of it, consistent with the numerical observation in
Ref. [53]. Finally we use a full three-dimensional time-
independent simulation [52] to illustrate the spatial evolution
of the radiation field intensity for an untapered and a 8%
tapered case. The results are consistent with the conclusion
made in our theoretical analysis for broadening of the
radiation beam profile in the presence of undulator tapering.
As a note for discussion, although we have extended the

previous work [42,43] to study of tapered FEL dynamics, it
is important to take the effect of electron detrapping into
consideration. For example, when in the regime of deep
undulator tapering or of large taper ratio, the electron
detrapping will become significant. To our knowledge, an
analytical estimation of the trapping/detrapping efficiency
as a function of the introduced dependences (e.g., taper
ratio, transverse beam size and so on) in similar analyses is
not yet available in literature. Furthermore, in spite of two-
dimensional Laplacian operator in the wave equation to
account for diffraction effect, the electron dynamics is not
self-consistently included in two (or three) dimensional
treatment. Although the finite transverse electron beam size
is taken into account, the angular divergence (or the finite
beam emittance) is neglected. To include the transverse
electron dynamics, the betatron oscillation due to external
focusing elements should also be incorporated. Theoretical
studies in a more complete postsaturation tapered FEL
system with inclusion of electron transverse dynamics is in
our plan.
As a final comment, there has recently been an interest

in shaping the electron transverse distribution utilizing
advanced laser techniques (see for example Ref. [54] and
references therein). The analysis here may provide further
insights for its application to maximize the tapered FEL
performance. As for an arbitrary transverse electron beam
profile, solving the corresponding 2-D field equation
[Eq. (27)] may be possible by means of the so-called
multilayer approximation method [9]. Such a semianalyt-
ical approach can be much more efficient than direct, full
three-dimensional numerical simulations.
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