
 

Brightness analysis of an electron beam with a complex profile
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We propose a novel analysis method to obtain the core bright part of an electron beam with a complex
phase-space profile. This method is beneficial to evaluate the performance of simulation data of a linear
accelerator (linac), such as an x-ray free electron laser (XFEL) machine, since the phase-space distribution
of a linac electron beam is not simple, compared to a Gaussian beam in a synchrotron. In this analysis, the
brightness of undulator radiation is calculated and the core of an electron beam is determined by
maximizing the brightness. We successfully extracted core electrons from a complex beam profile of XFEL
simulation data, which was not expressed by a set of slice parameters. FEL simulations showed that the
FEL intensity was well remained even after extracting the core part. Consequently, the FEL performance
can be estimated by this analysis without time-consuming FEL simulations.
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I. INTRODUCTION

Brilliant electron beams from linear accelerators (linac)
are widely utilized for synchrotron radiation facilities etc.,
such as x-ray free electron lasers (XFEL) [1] and energy
recovery linacs (ERL) [2]. The performance of synchrotron
radiation mainly depends on the brightness of the electron
beam core, because a tail part of an electron beam does not
contribute to the FEL interaction. Since an electron beam
of a storage-ring-based machine has a simple Gaussian
profile, the performance can be easily evaluated by conven-
tional root-mean-square (rms) emittance. However, an
electron beam from a linac usually does not have a simple
Gaussian profile due to the nonuniformity of a beam
emitter and collective effects of electrons, such as a space
repulsive force, CSR (coherent synchrotron radiation), and
wake-fields via physical boundaries of accelerator compo-
nents, etc. Therefore, conventional beam parameters, such
as rms emittance, do not always reflect the brightness of the
beam core sufficiently.
For a self-amplified spontaneous emission (SASE) FEL,

the FEL gain can be evaluated from the peak current, the
slice emittance and the slice energy spread of an electron
beam by using a simple model [3]. However, this simple
model sometimes is not applicable to a real SASE-XFEL
machine, when an electron beam profile is far from a simple
Gaussian beam frequently seen in case of hard bunch

compression. One of the reasons for this incompatibility is
thought to be that beam parameters, such as a slice
emittance, are calculated from all the electrons in a
specified time slice. An electron beam with a complex
profile usually has a considerable tail and halo electrons
that do not contribute to the FEL interaction. Therefore, the
FEL performance of such a complex electron beam must be
evaluated by a time-consuming three-dimensional FEL
simulation. In order to efficiently design a high-performance
SASE-FEL or another linac-based synchrotron radiation
machine, it is critically important to evaluate effective slice
parameters, such as a slice emittance, a slice energy spread
and a peak current, which represent the bunch part contrib-
uting to SASE-FEL.
In this paper, we propose a method to extract the core

bright part (lasing part) of an electron beam with a complex
phase-space distribution. The brightness of the electron
beam can be evaluated by the emittance and the beam
current of the core bright part, which are more reliable than
those from the conventional rms calculation for the whole
electron beam. Core electrons in the beam are selected with
a help of the brightness of undulator radiation from the
beam. This method is finally applied to a simulation data of
the XFEL facility, SACLA [4] in order to verify the
effectiveness of this method.

II. BRIGHTNESS CALCULATION

The brightness of an electron beam is usually calculated
from the emittance and the beam current for a Gaussian
beam. However, it is difficult to determine the effective
emittance and the effective beam current of the core part of
a complicated electron beam. Therefore, we try to find the
core bright part from an electron beam having an arbitrary
phase-space distribution by using the brightness of
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undulator radiation from the beam. Since the core bright
part should generate the brightest undulator radiation, the
electrons that maximize the radiation brightness will be
looked up in this analysis.
We start the analysis from the brightness calculation of a

Gaussian electron beam in Sec. II A, since the brightness
can be analytically obtained in the Gaussian case. The
contribution of a single electron to the radiation brightness
is derived in case of a Gaussian beam in Sec. II B and it is
also applied to an electron beam with a complicated phase-
space distribution. In this way, the radiation brightness
from any electron beams can be calculated by integrating
the contribution of each electron as described in Sec. II C.
The core bright part of an electron beam can also be
extracted by applying a threshold to the contribution of
each electron to the brightness.

A. Brightness of undulator radiation
from a Gaussian electron beam

Before the description of undulator radiation, the
Gaussian electron beam is defined at first. The transverse
phase-space distribution of a Gaussian beam can be
written by

f⊝ðxÞ ¼ q

ð2πÞ2
ffiffiffiffiffiffiffiffiffi
jΣ⊝j

p exp

�
−
1

2
xTΣ⊝−1x

�
; ð1Þ

where q is the total charge of the beam, x≡ ðx; x0; y; y0ÞT is
a phase-space coordinate, ðx; yÞ and ðx0; y0Þ are the position
and the slope of an electron, respectively, and Σ⊝ is the
covariance matrix of the phase-space distribution:

Σ⊝ ≡

0
BBBBB@

βxϵx −αxϵx 0 0

−αxϵx γxϵx 0 0

0 0 βyϵy −αyϵy
0 0 −αyϵy γyϵy

1
CCCCCA
: ð2Þ

Here, αξ, βξ and γξ (ξ ¼ x, y) are Twiss parameters [5], and
x − y coupling is neglected. Since Σ⊝ is positive-definite,
βξ and γξ are positive, and the matrix elements satisfy the
formula:

βξγξ ¼ α2ξ þ 1 ðξ ¼ x; yÞ: ð3Þ

The parameter, ϵξ, is the rms emittance, which is calculated
from

ϵξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hξ2ihξ02i − hξξ0i2

q
ðξ ¼ x; yÞ;

where hξ2i indicates the mean value of ξ2.
In order to evaluate the brightness of undulator radiation

for a Gaussian electron beam, let us remind properties of

undulator radiation from a single electron. The lowest order
radiation from an electron in an undulator can be approxi-
mated by a Gaussian mode [6]. The phase-space distribu-
tion of undulator radiation from an electron, f�1ðxÞ, can be
written by

f�1ðxÞ ¼
e0I0

ð2πÞ2 ffiffiffiffiffiffiffiffijΣ�jp exp

�
−
1

2
xTΣ�−1x

�
; ð4Þ

where e0 is the elementary charge, I0 is the photon flux
from a unit charge, and Σ� is defined as

Σ� ≡ ϵ�

0
BBBBB@

β�x −α�x 0 0

−α�x γ�x 0 0

0 0 β�y −α�y
0 0 −α�y γ�y

1
CCCCCA
:

by using photon Twiss parameters, α�, β� and γ�. The
photon emittance, ϵ�, is given by

ϵ� ¼ λ

4π
; ð5Þ

where λ is the wavelength of the photon. At the source
point, the photon Twiss parameters satisfy

α�x ¼ α�y ¼ 0;

β�x ¼ β�y ¼
L
2π

;

γ�x ¼ γ�y ¼
2π

L
;

where L is the undulator length [7]. Since the photon
emittance takes the minimum value of the uncertainty
principle, this radiation has spatially perfect coherence. The
brightness of this coherent radiation, B�

1, can be defined as

B�
1 ¼

2e0I0
π2ϵ�2

:

We consider the brightness of undulator radiation from a
Gaussian electron beam. The phase-space distribution of
this radiation, f�G, can be written by the convolution of
Eqs. (1) and (4):

f�GðxÞ ¼
ZZ

1

e0
f⊝ðxÞf�1ðξ− xÞd4ξ

¼
ZZ

qI0
ð2πÞ4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΣ⊝jjΣ�j

p

× exp

�
−
1

2
xTΣ⊝−1x−

1

2
ðξ− xÞTΣ�−1ðξ− xÞ

�
d4ξ:

This integration can be calculated by using the formula of
covariance matrices:
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covðx1 þ x2; yÞ ¼ covðx1; yÞ þ covðx2; yÞ;

and by assuming that dynamics of electrons and photons
are independent. Let x⊝ and x� be the probability variables
of electrons and photons, respectively. The covariance
matrix after the convolution is

covðx⊝ þ x�; x⊝ þ x�Þ
¼ covðx⊝; x⊝Þ þ covðx�; x�Þ ¼ Σ⊝ þ Σ�;

when x⊝ and x� are assumed to be independent.
Consequently, the phase-space distribution of radiation is
obtained to be

f�GðxÞ ¼
qI0

ð2πÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΣ⊝ þ Σ�j

p exp

�
−
1

2
xTðΣ⊝ þ Σ�Þ−1x

�
:

The covariance matrix, Σ⊝ þ Σ�, becomes

Σ⊝ þ Σ� ¼

0
BBBBB@

βxϵx þ β�xϵ� −αxϵx − α�xϵ� 0 0

−αxϵx − α�xϵ� γxϵx þ γ�xϵ� 0 0

0 0 βyϵy þ β�yϵ� −αyϵy − α�yϵ�

0 0 −αyϵy − α�yϵ� γyϵy þ γ�yϵ�

1
CCCCCA
;

and its determinant is

jΣ⊝ þ Σ�j ¼
Y

ξ¼x;y

½ðβξϵξ þ β�ξϵ
�Þðγξϵξ þ γ�ξϵ

�Þ − ðαξϵξ þ α�ξϵ
�Þ2�

¼
Y

ξ¼x;y

½ðϵξ þ ϵ�Þ2 þ Δξϵξϵ
��:

Here, the mismatch parameter, Δξ, is defined as

Δξ ≡ βξγ
�
ξ þ γξβ

�
ξ − 2αξα

�
ξ − 2 ðξ ¼ x; yÞ:

Thus, the brightness of this radiation, B�
G, is

B�
G ¼ 2qI0

π2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΣ⊝ þ Σ�j

p ¼ 2qI0

π2
Q

ξ¼x;y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵξ þ ϵ�Þ2 þ Δξϵξϵ

�
q :

ð6Þ

B. Contribution of a single electron
to the radiation brightness

In order to calculate the brightness of undulator radiation
from an electron beam with a complex phase-space dis-
tribution, we consider the contribution of a single electron
to the brightness. If the contribution of each electron is
obtained, the radiation brightness from an arbitrary electron
beam can be calculated by summing up the contribution.
Since the brightness of undulator radiation from a Gaussian
beam has been already obtained, we try to derive the
contribution of a single electron to the brightness of
undulator radiation in the Gaussian case.
We define gðxÞ as the contribution of a single electron to

the brightness of undulator radiation from a Gaussian beam

given by Eq. (1). Since gðxÞ should have a maximum at the
phase-space origin and vanish for an electron far from the
origin, gðxÞ is considered to be Gaussian also. Therefore,
gðxÞ can be written by

gðxÞ ¼ C exp

�
−
1

2
xTΣ̂−1x

�
; ð7Þ

where C is a normalization factor. The covariance matrix,
Σ̂, is defined as,

Σ̂≡

0
BBBBB@

β̂xϵ̂x −α̂xϵ̂x 0 0

−α̂xϵ̂x γ̂xϵ̂x 0 0

0 0 β̂yϵ̂y −α̂yϵ̂y
0 0 −α̂yϵ̂y γ̂yϵ̂y

1
CCCCCA
;

which can be different from Σ⊝ of Eq. (2). When B̂ is
defined as the brightness computed from gðxÞ, B̂ is
calculated from Eqs. (1) and (7):
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B̂ ¼
ZZ

1

e0
f⊝ðxÞgðxÞd4x

¼
ZZ

Cq

ð2πÞ2e0
ffiffiffiffiffiffiffiffiffi
jΣ⊝j

p exp

�
−
1

2
xTðΣ⊝−1 þ Σ̂−1Þx

�
d4x

¼ Cq

e0ϵxϵy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΣ⊝−1 þ Σ̂−1j

q : ð8Þ

The parameters in Eq. (7) can be determined by maximiz-
ing B̂, since B̂ should reflect the brightest part of the
electron beam, and by making B̂ equal to Eq. (6).
The brightness, B̂, can be maximized under the condition

of Eq. (3) by using the method of Lagrange multipliers. For
simplicity, we take the expression inside the square root of
Eq. (8) as a Lagrange function instead of Eq. (8) itself. The
Lagrange function, L, is written by,

L ¼ jΣ⊝−1 þ Σ̂−1j þ
X

ξ¼x;y

λξðβξγξ − α2ξ − 1Þ;

¼
Y

ξ¼x;y

�
1

ϵ2ξ
þ 1

ϵ̂2ξ
þ βξγ̂ξ þ γξβ̂ξ − 2αξα̂ξ

ϵξϵ̂ξ

�

þ
X

ξ¼x;y

λξðβξγξ − α2ξ − 1Þ;

where λξ is a Lagrange multiplier. By taking the partial
derivatives of L to be 0,

∂L
∂αξ ¼

∂L
∂βξ ¼

∂L
∂γξ ¼

∂L
∂λξ ¼ 0 ðξ ¼ x; yÞ;

the value inside the square root of Eq. (8) gives a
minimum at

αξ ¼ α̂ξ; βξ ¼ β̂ξ; γξ ¼ γ̂ξ ðξ ¼ x; yÞ;

and the Lagrange multipliers are determined to be

λx ¼ −
�
1

ϵy
þ 1

ϵ̂y

�
2

; λy ¼ −
�
1

ϵx
þ 1

ϵ̂x

�
2

:

Thus, the Twiss parameters of Σ⊝ and Σ̂ are identical in
case of a Gaussian beam. The maximum brightness is
obtained to be

B̂max ¼
Cqϵ̂xϵ̂y

e0ðϵx þ ϵ̂xÞðϵy þ ϵ̂yÞ
: ð9Þ

We want to know C and Σ̂ in Eq. (7) in case that the
calculated brightness, B̂max, is equal to the brightness of
undulator radiation, B�

G, in Eq. (6). However, B�
G has

uncertainty due to the mismatch parameter, Δξ, and hence
an additional constraint is necessary. Since B�

G should be as

large as possible, we take the maximum value of B�
G. The

brightness, B�
G, can also be maximized in the similar way as

above. As a result, B�
G takes a maximum value,

B�
G;max ¼

qI0ϵ�2

ðϵx þ ϵ�Þðϵy þ ϵ�Þ ; ð10Þ

when the Twiss parameters satisfy

αξ ¼ α�ξ ; βξ ¼ β�ξ ; γξ ¼ γ�ξ ðξ ¼ x; yÞ: ð11Þ

This means that the beam envelop of electrons is perfectly
matched to that of undulator radiation. From the equation,
B̂max ¼ B�

G;max, the emittances in Eq. (9), ϵ̂x and ϵ̂y, must be

ϵ̂x ¼ ϵ̂y ¼ ϵ�;

in order to satisfy the equation for any values of ϵx and ϵy.
Consequently, the normalization factor, C, is determined
to be

C ¼ 2e0I0
π2ϵ�2

;

and the contribution of each electron to the brightness,
gðxÞ, is

gðxÞ ¼ 2e0I0
π2ϵ�2

exp

�
−
1

2
xTΣ−1x

�
; ð12Þ

where Σ is expressed by

Σ≡ ϵ�

0
BBBBB@

βx −αx 0 0

−αx γx 0 0

0 0 βy −αy
0 0 −αy γy

1
CCCCCA
:

C. Brightness of undulator radiation from
an arbitrary electron distribution

By using Eq. (12), we can calculate the brightness of the
undulator radiation from an electron beam with an arbitrary
phase-space distribution, supposing that the phase-space
matching between the electrons and the photons is opti-
mum and that the result from a Gaussian beam can also be
applied to any electron beams. If we know the phase-space
distribution obtained from a particle tracking simulation of
an accelerator, we can get the radiation brightness by
integrating the product of Eq. (12) and the electron
distribution. The brightness, B, can be written by

B ¼
ZZ

gðx − x0Þ
1

e0
fðx − x0Þd4x; ð13Þ
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where fðxÞ is the phase-space distribution of the electron
beam and x0 is the parameter giving the central axis of the
electron beam, x0 ≡ ðx0; x00; y0; y00ÞT. The Twiss parame-
ters, αξ, βξ, γξ (ξ ¼ x, y) in gðxÞ, and the beam axis, x0, are
determined by maximizing B. Although the obtained Twiss
parameters are the same as conventional rms calculation in
case of a Gaussian electron beam as derived in the previous
section, the Twiss parameters are different from the rms
calculation for a complicated electron beam. Thus, the
parameters obtained from this analysis reflect the core
bright part of the electron beam.
In order to apply this analysis method to actual simu-

lation data, we need to prepare two a priori information.
One is the photon wavelength to determine the photon
emittance, ϵ�, and the other is the phase-space distribution
of electrons. Since I0 in Eq. (12) is a constant which does
not affect the analysis, it is not necessary to be specified.
The other parameters, such as Twiss parameters and the
beam axis, are then determined as the best values that
maximize Eq. (13). The effective beam charge or current
contributing to the brightness can be calculated by
extracting the electrons whose contributions to the bright-
ness are higher than a certain threshold. The effective
emittance of the electron beam core can also be estimated
from the extracted electrons. The obtained parameters of
the core electrons can be utilized for the brightness
evaluation of the electron beam and one-dimensional
FEL calculations etc. Therefore, this analysis method
has possibilities to evaluate the FEL performance
properly without executing heavy three-dimensional FEL
simulations.

III. APPLICATION TO ELECTRON
BEAM FOR XFEL

In order to confirm the applicability of the brightness
analysis method, we applied this method to some simu-
lation data. The appropriateness of the analysis procedure
was confirmed by simple Gaussian input datasets, which is
described in Appendix A. We then applied this method to a
simulation data of the XFEL machine, SACLA, as an actual
case. For simplicity, we normalize I0 to unity in this
analysis. The photon energy is set to 10 keV, corresponding
to the wavelength of 0.124 nm, for all the analyses. The
function optimization library, MINUIT [8], was used for
maximizing the brightness of undulator radiation.
This analysis was applied to two data sets, A and B, for

comparison. Each of the datasets has a charge of 278 pC
and the beam energy of approximately 8 GeV. For the data
set A, the bunch compression in the linac was moderate and
the peak current was approximately 5 kA. For the data
set B, the longitudinal bunch length was compressed as
short as possible and the peak current was approximately
40 kA. The phase-space distributions of these data sets are
plotted in Fig. 1 together with the ellipses representing the
core bright parts as the analysis results and the conventional
rms values for comparison. The areas of the ellipses are set
to the intrinsic photon emittance, ϵ�, for the brightness
analysis results, and rms emittances for the conventional
calculations. The horizontal and vertical normalized rms
emittances of the data set A were 1.86 μm rad and
1.81 μm rad, respectively, and those of the data set B were
5.78 μm rad and 1.76 μm rad, respectively. Since the
phase-space distribution is dissimilar to Gaussian, the

FIG. 1. Phase space distributions of the XFEL simulation data sets A (upper figures) and B (lower figures). The left, center and right
figures show the horizontal, vertical and longitudinal phase spaces, respectively. The Twiss parameters from the brightness analysis and
the conventional rms calculation are plotted as blue ellipses and red ones, respectively, for horizontal and vertical phase-space plots.
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conventional rms emittance does not appropriately reflect
the brightness of the electron beam.
The histograms of the beam current and the slice

brightness are shown in Fig. 2. Electrons in the tail part
of each dataset, s < −10 μm for the data set A and s <
−2 μm for the data set B, have almost no contribution to the
brightness. This behavior indicates that the slice emittance,
the betatron function or the beam axis depends on the
longitudinal position in the electron beam.
In order to obtain the core of the electron beam, we

dropped electrons with smaller contribution to the bright-
ness of undulator radiation. Since the contribution to the
brightness, Eq. (12), is a Gaussian, the threshold of the
contribution was changed on a standard deviation basis
counted by the photon emittance (ϵ�). If the exponent part
of Eq. (12), −xTΣ−1x=2, of an electron is smaller than a
certain threshold, −N2=2, this electron is discarded, where
N is the number of standard deviations (stds.). The
diameters of the blue ellipses in Fig. 1 correspond to
one std. of the threshold. The survived charge and the
normalized emittance are plotted in Figs. 3 and 4,

respectively. Since the beam profile of the data set B is
more scattered than A, the survived charge of B is
significantly smaller than A. The emittances are almost
same up to the cut threshold of 5 stds. of the photon
emittance. The emittance at 5 stds., for instance, is
approximately 0.5 μm rad for both datasets. Figure 5 shows
the brightness and the ratio of the dropped brightness to the
total brightness. The tendency of the brightness is almost
same as each other. The only difference is the absolute
brightness value due to the difference of the survived
charge. Thus, an effective charge and emittance were
obtained by setting a certain threshold to the contribution
to the brightness.
Figure 6 shows the phase-space distributions of the core

bright parts of the data sets A and B. The cut threshold is set
to 5 stds. of the photon emittance. The transverse phase-
space distributions are substantially similar to Gaussian,
compared with the distributions before cut (Fig. 1),
although a fine structure can be seen in a certain level.
The beam current histograms of the extracted electrons are

FIG. 2. Beam current (upper) and sliced brightness (lower) histograms of XFEL simulation data. The data sets A and B are plotted in
left and right figures, respectively. The beam current histograms of core bright parts with the cut threshold of 5 stds. are also shown in the
orange histograms.

FIG. 3. Survived charge of the data sets A (solid) and B
(dashed) as functions of the cut threshold on a std. basis.

FIG. 4. Normalized emittance of the data sets A (solid) and B
(dashed) as functions of the cut threshold on a std. basis. The
horizontal (vertical) emittances are shown by the blue (red)
curves.
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shown in Fig. 2 (orange). The core bright parts have still
high peak current of approximately 3 kA for the data set A
and approximately 15 kA for the data set B. Thus, the
brightness analysis successfully found the brightest part in
the transverse phase space.
In order to investigate the relationship between the FEL

performance and the brightness threshold, we performed
XFEL simulations by using SIMPLEX [9]. The undulator
beamline consists of 18 undulator segments with the period
of 18 mm and the segment length of 5 m. The lattice of the
beamline is FUDU (focusing quadrupole, undulator, defo-
cusing quadrupole, and undulator). The quadrupole field
strength was adjusted so that the average beta function fit
into 22 m, which is the typical value of SACLA. The K
value of each undulator was set to the constant value of

approximately 2.18, corresponding to 10 keV photons,
without any tapers.
The FEL pulse energies dependent on the survived charge

for the data sets A and B are plotted in Fig. 7. The pulse
energies reached plateaus at the survived charges of approx-
imately 180 pC for the data set A and 100 pC for the data
set B, corresponding to the cut threshold of 6 stds. Although
the contribution to the brightness is quite small above the
threshold of 3 stds., electrons with smaller brightness still
contribute to the FEL interaction. The reason for this
inconsistency will be discussed in Sec. IV. For the data
set B, the FEL pulse energy grows up again around 200 pC.
This increase probably comes from the secondary lasing part
in the electron beam. The interpretation of this phenomenon
is discussed in the Appendix B.

FIG. 5. Brightness (left) and the ratio of the dropped brightness to the total brightness, 1 − B=Bmax, (right) as functions of the cut
threshold on a std. basis. The data set A (B) is shown in the solid (dashed) lines.

FIG. 6. Phase space distributions of the core bright part in the XFEL simulation data sets A (upper figures) and B (lower figures). The
left, center and right figures show the horizontal, vertical and longitudinal phase-space distributions, respectively. The Twiss parameters
from the brightness analysis are plotted as blue ellipses for horizontal and vertical phase-space plots.
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Finally, we compare FEL performances from several
simulation conditions to confirm whether the beam
parameters from the brightness analysis properly reflect
the FEL performance or not. The two of the conditions are
the simulation results from the original particle data of the
entire electrons and of electrons in the core bright part.
The cut threshold for the bright part is set to 6 stds. of the
photon emittance for both datasets. The other two are
Gaussian transverse profiles having the slice rms param-
eters from the entire electron beam and from the core
bright part, while the longitudinal profiles are same as
original. The FEL gain curves for these conditions are
plotted in Fig. 8. For the data set A, all the gain curves
show similar performance, since the transverse profile is
not far from Gaussian. For the data set B, on the other
hand, the result from the Gaussian transverse profile for
the entire electrons is much worse than the others. This
means that the conventional slice rms parameters do not
properly reflect the electron beam brightness for the beam
with a highly complicated profile. For both data sets,
the results from the core bright part do not depend on the
condition of either the original particle data or the
Gaussian transverse profile. In addition, it is notable that
the core bright part has similar FEL gain as the entire
beam, even if the survived charge is less than a half.
Consequently, the brightness analysis can appropriately
extract the core bright part of an electron beam without
any significant degradation of FEL performance.

IV. DISCUSSION

The analysis in the previous section showed that most of
the brightness of undulator radiation comes from electrons
within 3 stds. phase-space volume of the intrinsic photon
emittance, ϵ� in Eq (5). However, the contribution to the
FEL interaction still remained up to the cut threshold of
about 6 stds. This effect can be explained by the optical
guiding of an FEL [10]. An electron beam with finite
emittance can produce higher-order spatial modes of the
FEL in addition to the fundamental spatial mode. However,
the FEL gain of the fundamental mode is larger than those
of higher-order modes thanks to optical guiding. Therefore,
the fundamental mode becomes dominant after sufficient
FEL amplification. As a result, electrons with smaller
contributions to the brightness also amplify the fundamen-
tal spatial mode of the FEL.
The scaling function of the three-dimensional FEL gain

from the emittance, beta function and energy spread were
studied in Ref. [3]. This scaling function expresses the
three-dimensional FEL gain, Lg, as

Lg ¼ ½1þ Λðηd; ηϵ; ηγÞ�L1D;

where L1D is the one-dimensional FEL gain length. The
three-dimensional effect is included in Λðηd; ηϵ; ηγÞ, where
ηd is related to the diffraction effect, ηϵ reflects the
emittance of an electron beam and ηγ characterizes the

FIG. 8. FEL gain curves of the data set A (left) and B (right). The results from the original particle data are shown in solid lines and
those from Gaussian transverse profiles are in dashed lines. Blue (red) curves correspond to the entire electrons (the core bright part).

FIG. 7. FEL pulse energy dependent on the survived charge for the electron beam data set A (left) and B (right).
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energy spread. Among them, ηϵ is the most sensitive to the
cut threshold of the brightness analysis and the others are
nearly independent of the threshold. The emittance param-
eter, ηϵ, is written as

ηϵ ≡ L1Dϵξ
βξϵ

� ;

where ϵξ and βξ are the emittance and beta function of the
electron beam, respectively, and ϵ� is the photon emittance.
In order to suppress the degradation of the FEL gain, ηϵ
should be sufficiently smaller than unity. For the FEL
simulations in the previous section, the normalized electron
emittance of the core bright part was approximately
0.5 μmmrad, corresponding to 3.3 times larger value than
the photon emittance. In contrast, the one-dimensional gain
length, L1D, is 1 or 2 m, which is one order of magnitude
smaller than the beta function. As a result, ηϵ takes approx-
imately 0.3, which is well below unity. Consequently, this
small ηϵ is thought to be the reason why electrons with
smaller brightness can contribute to the FEL interaction.

V. CONCLUSIONS

Since the phase-space distribution of an electron beam
from a linear accelerator is not always a simple Gaussian
shape, it is sometimes difficult to analyze the brightness
of the electron beam. A conventional rms emittance,
for example, is not satisfactory to estimate the FEL
performance for a complicated phase-space distribution.
Therefore, it is necessary to run a heavy three-dimensional
FEL simulation for such a complicated beam. To accelerate
the performance evaluation, we considered a simple
method to extract the core bright part of an electron beam
by using the brightness of undulator radiation. The bright-
ness was easily calculated by accumulating the contribution
of each electron to the brightness of undulator radiation.
The core bright part of an electron beam was appropriately
obtained for XFEL simulation data by optimizing the
brightness. An FEL simulation showed that the FEL gain
of extracted core electrons was comparable to that of the

entire electron beam. We also found that electrons with
relatively smaller brightness significantly contribute to the
FEL pulse energy. The cut threshold for sufficient FEL
interaction was approximately 6 stds. of the intrinsic photon
emittance. Consequently, parameters from the brightness
analysis are highly beneficial to evaluate FEL performance
without running time-consuming FEL simulations.

APPENDIX A: CONFIRMATION BY
GAUSSIAN PHASE-SPACE DATA

To confirm appropriateness of the brightness analysis,
we applied this analysis to a Gaussian phase-space data as
the simplest case. An example of the input parameter set
and the analysis result is summarized in Table I. In this
example, we performed the simulation 100 times and the
results are represented as the mean and rms values. The
maximum brightness was obtained to be ð6.824� 0.068Þ ×
109 from Eq. (13), which agreed well with the analytical
calculation of 6.803 × 109 from Eq. (10). The obtained
Twiss parameters were also consistent with the input
parameters within statistical uncertainties, as derived in
Eq. (11). The phase-space distribution of one of the
analyzed data is shown in Fig. 9. The phase-space ellipse
of the Twiss parameters from the analysis is also plotted.
The emittance of the ellipse is set to the intrinsic photon
emittance, ϵ�, in Eq. (5). Thus, the analysis result showed a
good agreement with the input parameter set.
In order to obtain the core part of the electron beam, we

dropped electrons having smaller contribution to the bright-
ness of undulator radiation. Figures 10 and 11 shows the
survived charge and the normalized emittance, respectively,
as functions of the cut threshold N counted by std. of the
photon emittance ðϵ�Þ. About a half of the charge survives
at the threshold of 4 stds. and the emittance in this case is
0.34 μm rad, which is half of the input parameter. Figure 12
shows the brightness and the ratio of the dropped brightness
to the total brightness. Almost all of the brightness are
survived if the threshold is more than 3 stds.
We performed XFEL simulations by using SIMPLEX [9]

and investigated the relationship between the FEL

TABLE I. Input parameter set and analysis results for the Gaussian distribution data. The values in the result column are the mean
values of 100 simulations and the errors indicate the rms values.

Parameter Input Result

Beam energy [GeV] (E) 8 � � �
Beam charge [pC] (q) 100 � � �
Number of macro particles (n) 1 × 105 � � �
Normalized emittance ½μm rad� ðβγϵx; βγϵyÞ (0.7, 0.7) � � �
Beam center ½μm� ðx0; y0Þ ð10;−10Þ ð10.00� 0.35;−9.96� 0.61Þ
Beam slope ½μrad� ðx00; y00Þ ð5;−5Þ ð5.006� 0.046;−4.998� 0.062Þ
Alpha function ðαx; αyÞ ð1;−3Þ ð1.001� 0.037;−2.998� 0.092Þ
Beta function [m] ðβx; βyÞ (10, 30) ð9.96� 0.27; 30.00� 0.87Þ
Gamma function ½m−1� ðγx; γyÞ ð1=5; 1=3Þ ð0.2011� 0.0057; 0.3324� 0.0095Þ
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performance and the brightness threshold. The simulation
setup was the same as Sec. III. Figure 13 shows the FEL
pulse energy as a function of survived charge. The pulse
energy is almost proportional to the charge up to 85 pC and
the contribution to the pulse energy decreases above 85 pC.
This boundary corresponds to the brightness threshold of
approximately 6 stds., which is consistent with the results
in Sec. III.

APPENDIX B: INTERPRETATION OF
SECONDARY FEL GROWTH

The XFEL simulation data set B in Sec. III has a
secondary FEL growth around the survived charge of
200 pC, as shown in Fig. 7 (right). Therefore, we inves-
tigated the reason for this phenomenon by scanning the
profile of FEL radiation during the amplification. Figure 14
shows the FEL profiles around the end of the exponential
growth region (z ¼ 48.0 m) and at the end of the undulator
beamline (z ¼ 109.5 m), where z is the distance from
the entrance of the undulator beamline. The left image
in Fig. 14 has two peaks, presumably coming from
transversely different lasing parts. The final FEL profile
(Fig. 14 right) shows a single peak, probably due to the
betatron oscillation of the electron beam, which merged the

FIG. 13. FEL pulse energy from the Gaussian input data as a
function of the survived charge. Open circles are the simulation
results and dashed line shows the linear fit result below 85 pC.

FIG. 9. Phase space distributions of the Gaussian data. The left
(right) figure shows horizontal (vertical) phase space. The Twiss
parameters from the analysis is plotted by blue ellipses.

FIG. 10. Survived charge as a function of the cut threshold on a
std. basis.

FIG. 11. Normalized emittance as a function of the cut thresh-
old on a std. basis. The mean value of horizontal and vertical
emittances is plotted, since both emittances are almost identical.

FIG. 12. Brightness (left) and the ratio of the dropped brightness to the total brightness, 1 − B=Bmax, (right) as functions of the cut
threshold N.
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projections of the two lasing parts. We found that these two
lasing parts were longitudinally separated with a distance of
approximately 1.6 μm, as shown in Fig. 15, which was too
long to interact each other through emitted photons. Such a
behavior was not found in the FEL simulation result for the
core electrons of the data set B (below the survived charge
of 160 pC) nor for the whole charge of the data set A. Since
the brightness analysis in this paper finds the maximum of
the radiation brightness, a secondary peak would be
neglected if the beam had two or more peaks. It is
conceivable that only the primary part was survived for
a tight threshold region and that the second bright part was
joined for a loose threshold. Even though the data set has
two brightness peaks, the primary bright part indicates the

common FEL behaviour with the other data, as shown in
Fig. 7 right (less than 160 pC). Therefore, the brightness
analysis in this paper is still effective for an electron beam
with several brightness peaks.
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