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A simple mathematical description is developed for the bunching spectrum in echo enabled
harmonic generation (EEHG) that incorporates the effect of additional electron beam energy
modulations. Under common assumptions, they are shown to contribute purely through the phase
of the longitudinal bunching factor, which allows the spectral moments of the bunching to be
calculated directly from the known energy modulations. In particular, the second moment (spectral
bandwidth) serves as simple constraint on the amplitude of the energy modulations to maintain a
transform-limited seed. We show that, in general, the impact on the spectrum of energy distortions that
develop between the EEHG chicanes scales like the harmonic number compared to distortions that
occur upstream. This may limit the parameters that will allow EEHG to reach short wavelengths in
high brightness FELs.
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I. INTRODUCTION

Echo enabled harmonic generation (EEHG) [1] is an
external seeding scheme for modern free electron lasers
(FELs) designed to improve the temporal coherence and
produce a transform-limited output pulse. It uses lasers to
imprint coherent energy modulations on a relativistic
electron beam that are then converted to a high harmonic
density modulation. The beam then enters the FEL undu-
lator where the density-modulated (bunched) electrons
radiate coherently, and the radiation is amplified up to
saturation. To reach EUV or shorter wavelengths from
conventional UV lasers, high harmonics with EEHG are
required, but preservation of the coherent modulation can
be challenging during the manipulation and transport.
As with most harmonic up-conversion schemes, initial

errors can be multiplied and spoil the final output. The
sensitivity of EEHG to initial laser phase, noise, and energy
distortions in the electron beam has been examined pre-
viously [2–8]. EEHG uses two laser modulators and two
dispersive chicanes to perform the harmonic upshift, and the
final bunching spectrum is relatively insensitive to small
distortions on the beam or in the laser upstream of the first
chicane [9,10]. Laser phase distortions in the second
modulator, however, can get amplified and impact the
time-bandwidth product similarly to high gain harmonic
generation (HGHG) [11].

Here we examine the impact of energy structures on
the beam that emerge during the EEHG transformation,
i.e., between the chicanes. Such energy distortions can
be particularly problematic because much like phase
errors in the second laser, they are not filtered by the
large first dispersion and have a pronounced impact on
the final spectrum. To analyze the problem, we develop a
general description for the bunching in the presence of
small but arbitrary energy modulations. Simple distor-
tions are analyzed and compared with previous results.
We then consider the impact on the bunching spectrum
of two common contributors to nonlinear beam energy
structure; longitudinal space charge (LSC) and coherent
synchrotron radiation (CSR). Both are driven by collec-
tive effects and are difficult to remove. LSC produces
energy modulations from localized density perturbations
and from the beam core itself. For highly relativistic
beams in a short drift the modulations are negligible, but
in strong modulators Ku ≫ 1, the effective drift length
can increase by ∼K2

u which may be on the order of a
kilometer for few GeV-scale beams coupling to UV
lasers. This can have a significant impact on the final
bunching in EEHG. Alternately, CSR leads to nonlinear
energy structures from the coherent emission of the
beam as it bends through magnetic dipoles. This has
the largest impact on the bunching in the last two bends
of the strong first EEHG chicane. Here, for both LSC
and CSR, constraints on the induced energy structures
according to their impact on the bunching spectrum are
derived with simple models, and results are checked with
numerical particle simulations. General limits are estab-
lished on the relevant parameters to seed transform-
limited FEL pulses with EEHG.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW ACCELERATORS AND BEAMS 21, 050702 (2018)

2469-9888=18=21(5)=050702(8) 050702-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevAccelBeams.21.050702&domain=pdf&date_stamp=2018-05-25
https://doi.org/10.1103/PhysRevAccelBeams.21.050702
https://doi.org/10.1103/PhysRevAccelBeams.21.050702
https://doi.org/10.1103/PhysRevAccelBeams.21.050702
https://doi.org/10.1103/PhysRevAccelBeams.21.050702
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


II. MATHEMATICAL DESCRIPTION

Notation closely follows that of [12] where more details
on the EEHG process can be found. Consider an electron
beam transformation similar to EEHG of the form,

p1 ¼ pþ A1 sinðk1zÞ þ Δp1ðzÞ;
z1 ¼ zþ B1p1=k1;

p2 ¼ p1 þ A2 sinðk2z1Þ þ Δp2ðz1Þ;
z2 ¼ z1 þ B2p2=k1: ð1Þ

where the normalized laser modulations are A1;2 ¼
Δγ1;2=σγ , normalized dispersions are B1;2 ¼ k1R

ð1;2Þ
56 σγ=γ,

the slice energy spread is σγ, and γ is the relativistic factor.
Additional energy modulations Δp1 and Δp2 of arbitrary
longitudinal dependence are modeled as occurring along-
side the laser modulations. In this simplified description,
Δp1 can also be any existing energy structure from
upstream, and Δp2 can be used to capture the integrated
effect of CSR from the first chicane.
In a beam with the phase space distribution fðz; pÞ, the

bunching spectrum near the harmonic spatial frequency
kE ¼ aEk1 ¼ ðnþmKÞk1 is given by

bn;mðkÞ ¼
Z

e−izðk−kEÞ−iξp−iξΔp1ðzÞ−ikB2Δp2ðz1Þ=k1

× fðz; pÞJnð−ξA1ÞJmð−kA2B2=k1Þdzdp; ð2Þ

where ξ ¼ kB=k1 −mKB1, B ¼ B1 þ B2, and K ¼ k2=k1.
Useful analytic solutions for bn;mðkÞ are available only for a
few simple forms of the energy modulations, particularly
for Δp2 which is a function of z1ðz; pÞ rather than z.
However, if Δp2 is sufficiently slowly-varying that the
modulation experienced at the position z1 is the same as at
z, then Δp2ðz1Þ ¼ Δp2ðzÞ is a significant mathematical
simplification. Similarly, we also assume that the energy
structures in Δp1 are small enough so that they do not lead
to large changes in the phase space distribution after the
first chicane, B1dΔp1=dz ≪ k1. We will explore these
assumptions shortly. Retaining the lowest order contribu-
tions near the harmonic, the bunching spectrum can be
written as

bn;mðkÞ ≈ b̄n;m

Z
fðzÞe−izðk−kEÞþiφðzÞdz; ð3Þ

where b̄n;m ¼ e−ξ
2
E=2Jnð−ξEA1ÞJmð−aEA2B2Þ is the opti-

mized bunching amplitude and ξE ¼ nB1 þ aEB2 is the
EEHG scaling parameter [10]. An uncorrelated Gaussian
initial energy distribution fðz; pÞ ¼ fðzÞð2πÞ−1=2e−p2=2

has been assumed. The additional energy modulations
Δp1 and Δp2 are expressed through a z-dependent phase,

φðzÞ ¼ −ξEΔp1ðzÞ − aEB2Δp2ðzÞ
¼ φ1ðzÞ þ φ2ðzÞ: ð4Þ

Evidently, energy modulations that occur within or before
the first modulator,Δp1, are multiplied by the small scaling
parameter jξEj ≲ 1 in their contribution to the phase φ1ðzÞ.
Linear, quadratic, and sinusoidal such initial modulations
were studied in [10], where it was shown that the smallness
of ξE is responsible for the relative insensitivity of the
EEHG bunching spectrum to small initial perturbations.
However, we see here that energy modulations introduced
between the chicanes, Δp2, are multiplied by the much
larger factor aEB2 ≈m=A2 ≫ 1 and therefore can have a
pronounced impact on the final bunching spectrum at high
harmonics.
From (3), the bunching along z can be identified from the

Fourier transform bn;mðkÞ ¼
R
b̃n;mðzÞe−ikzdz:

b̃n;mðzÞ ¼ b̄n;mfðzÞeikEzþiφðzÞ: ð5Þ

In this form it is straightforward to obtain both the
instantaneous (local) and projected (global) behavior of
the bunching spectrum. The instantaneous spatial bunching
frequency is just the z-derivative of the full longitudinal
phase,

kzðzÞ ¼ kE þ φ0ðzÞ: ð6Þ

Thus the local bunching frequency in the beam is calculated
directly from the derivative of the energy modulations in (4)
without the need to first solve for the bunching spectrum.
From the instantaneous frequency we can then obtain the
global mean frequency [13],

hkzi ¼
R∞
−∞ kzðzÞf2ðzÞdzR

∞
−∞ f2ðzÞdz ¼ kE þ hφ0ðzÞi: ð7Þ

This is the first moment of the bunching spectrum, but here
it is calculated simply from the beam distribution fðzÞ and
the additional phase. The bandwidth of jbn;mðkÞj2 about
hkzi is then given by h½kz − hkzi�2i [14]:

σ2k ¼ σ2kE þ h½φ0 − hφ0i�2i;
¼ σ2kE þ σ2φ0 ; ð8Þ

where σ2kE ¼ R ðf0Þ2dz=Rf2dz yields the transform-limited
bandwidth in the absence of additional energy structure.
We define σφ0 as the bandwidth associated with the addi-
tional frequencies introduced through the phase φðzÞ. It is
particularly useful for capturing the influence of nonlinear
low frequency modulations Oð1=σzÞ that broaden the
bandwidth and produce a pedestal near the bunching
harmonic. To maintain high quality FEL seeding in the
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presence of such bandwidth growth, one figure of merit on
the magnitude of the tolerable energy modulations on the
beam is then

σφ0=σkE ≤ 1: ð9Þ
This will be used throughout, and states that the additional
bandwidth should be less than the bandwidth of the
bunching spectrum defined by the unperturbed beam.
Visualization of the instantaneous bunching spectrum is

assisted by a Wigner distribution,

Wðz; kÞ ¼
Z

∞

−∞
e−ikxb̃n;mðzþ x=2Þb̃�n;mðz − x=2Þdx: ð10Þ

The bunching spectral power is jbn;mðkÞj2¼
R∞
−∞Wðz;kÞdz,

and the instantaneous frequency is the average frequency
of Wðz; kÞ at a given z position, kzðzÞ ¼

R∞
−∞ kWðz; kÞdk=R∞

−∞ Wðz; kÞdk [15].
One measure of how accurately the approximate bunch-

ing in (3) reproduces the exact solution in (2) is the
harmonic shift of the bunching peak in a beam with a
linear energy chirp, which can be solved exactly in both
cases. An initial linear chirp of the form Δp1 ¼ h1k1z was
solved explicitly in [9,10] and yields a shifted harmonic
factor of a ¼ ðaE þmKh1B1Þ=ð1þ h1BÞ. From Eq. (7)
with hφ0ðzÞi ¼ −ξEh1k1, the shifted harmonic in the
approximate theory is a ¼ aE − ξEh1. The relative differ-
ence between the two appears only to second order in the
chirp, h21ξEB=aE, which is generally small. An identical
chirp acquired in the second modulatorΔp2 ¼ h1k1z yields
a ¼ aE=ð1þ h1B2Þ from the exact expression in (2), or
a ¼ aEð1 − h1B2Þ from the approximate expression in (7).
Similarly, the relative difference to lowest order is h21B

2
2,

which is also typically small.
With this approximate description we can compute the

spatial-spectral distribution of the bunching through the
shape of the energy modulations imprinted on the beam.
Two simple examples with analytic solutions are given in the
Appendix. More complicated nonlinear modulations gener-
ated byLSC andCSR are examined in the following sections.

III. LONGITUDINAL SPACE CHARGE

LSC generates energy structures from the mutual repul-
sion of electrons near density peaks. In a cylindrical beam
with uniform transverse density and hard-edge radius rb,
the on-axis energy change over the length Ld due to LSC
forces is

ΔpLSCðzÞ¼
4Ld

σγ

Z
∞

0

ZðkÞ
iZ0

dk
Z

∞

−∞

Iðz0Þ
IA

sin½kðz− z0Þ�dz0

ð11Þ
where IA ¼ 17 kA, Z0 ¼ 377 Ω, and IðzÞ ¼ QcfðzÞ is the
current profile. The LSC impedance per unit length ZðkÞ
depends on the parameters of the system [16]. Inside an

undulator and under specific conditions, the impedance can
be strongly enhanced compared to a free space drift [17].
Assuming these conditions are satisfied for the EEHG
modulators and in the limit krb=γz ≪ 1,

ZðkÞ ¼ iZ0k
4πγ2z

�
1þ 2 ln

�
γz
krb

��
; ð12Þ

where γz ¼ γ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K2

u=2
p

is the longitudinal Lorentz
factor inside an undulator.
Assuming a Gaussian current profile IðzÞ ¼ I0e−z

2=2σ2z

for a pencil beam rb=γσz ≪ 1, the associated energy
modulation is,

ΔpLSCðzÞ ≈
2I0Ldz
σγIAγ2zσ2z

ln

�
γzσz
rb

�
e−z

2=2σ2z : ð13Þ

The shape of the modulation is shown in Fig. 1. The long-
range LSC wake generates a positive energy chirp in the
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FIG. 1. Examples of LSC and CSR wakes (top), Wigner
bunching distributions (middle), and bunching spectra (bottom).
The instantaneous frequency from theory is plotted (dashed red
line) over each Wigner distribution, which are from numerical
simulations of the case when σφ0=σkE ¼ 10. Results apply
generally for Gaussian beams with energy structures described
by Eqs. (13) and (22).
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beam core. If it develops in the second modulator, it
redshifts the local bunching frequency as indicated by
kzðzÞ, which is calculated from ΔpLSCðzÞ with Eqs. (4) and
(6). The LSC-induced bandwidth constraint from (9) with
σkE ¼ 1=

ffiffiffi
2

p
σz for a Gaussian is

σφ0
LSC

=σkE ≈ η
I0Ld

σγIAγ2zσz
ln

�
γzσz
rb

�
≤ 1 ð14Þ

where η ¼ ξE or aEB2 depending on whether the LSC
effect occurs in the first or second modulator, respectively.
Inspection of the induced global energy spread σΔpLSC

≈
σφ0

LSC
σz=η shows that Eq. (14) translates to a simple

constraint; σΔpLSC
≤ 1=

ffiffiffi
2

p
η. Clearly if η ¼ aEB2 ≫ 1,

the tolerable energy modulation from LSC in the second
modulator is much less than the intrinsic slice energy
spread. This may be problematic for high current beams in
strong undulators.

IV. MICROBUNCHING INSTABILITY

Consider a beam upstream of the EEHG line with a
small amplitude (b0 ≪ 1) density modulation IðzÞ ¼
I0ð1þ 2b0 cos k0zÞ that gets amplified by LSC and pro-
duces an energy modulation. Through a drift length (or
undulator) Ld, space charge forces will drive energy
modulations with frequency k0 ≫ 1=σz according to [18],

ΔpMðzÞ ¼
8πb0I0LdjZðk0Þj

σγIAZ0

sinðk0zÞ

¼ AMðk0Þ sinðk0zÞ: ð15Þ

In the limit k0 ≪ k1 a monochromatic modulation gener-
ates coherent bunching sidebands at the frequencies kE �
qk0 with amplitudes that scale as JqðηAMÞ. The case of an
energy modulation upstream of the first chicane (η ¼ ξE)
was studied in [10]. Here we see that if the energy
modulation develops in the second modulator, the larger
η ¼ aEB2 ≫ 1 leads to a much stronger effect on the
spectrum. For example, the bunching at kE is suppressed
when J0ðηAMÞ ¼ 0, and thus when AM ¼ 2.4=η. Clearly if
η ¼ aEB2 this can be much smaller than the slice energy
spread.
Let us assume that the energy modulation in (15) occurs

in the first EEHG modulator alongside the first laser
modulation. The beam will then pass through the first
EEHG chicane, which can convert the induced energy
modulation into a density modulation, depending on k0.
Higher frequencies can be suppressed [19], whereas lower
frequencies can be amplified. In the linear theory, the
current spectrum after the chicane is just the initial current
spectrum times a density “gain” function,

Gðk0Þ ¼ −
k0B1

2k1b0
AMðk0ÞJ0

�
k0B1

k1
A1

�
e−

1
2
ðk0B1k1

Þ2 ð16Þ

where b0 ≪
k0B1

k1
AM < 1. In the absence of the first laser

A1 ¼ 0, this reduces to the standard expression for the gain
due to LSC [20]. We see here however, that the first EEHG
laser acts to reduce the growth of the density modulation
(Fig. 2). It does so by mixing high frequency energy
structures into the beam that are longitudinally smeared,
similar to a laser heater.
In the second EEHG modulator, the density modulation

can then develop into an additional energy modulation that
will impact the spectrum via the phase φ2ðzÞ. The modu-
lation at the end of the second undulator is similar to
Eq. (15) but with the bunching multiplied by the gain,

ΔpM;2ðzÞ ¼ AM;2ðk0ÞGðk0Þ sinðk0zÞ: ð17Þ

AM;2 has the same form as AM but uses the impedance
LdjZðk0Þj of the second undulator. For A1 ¼ 0 the modu-
lation scales in frequency as ΔpM;2 ∝ k30e

−ðk0B1=k1Þ2=2,
which has maximum when k0 ≈ km ¼ ffiffiffi

3
p

k1=B1. The
EEHG beamline works as a LSC amplifier with multiple
stages, but with the first laser and strong chicane providing
some mitigation against MBI growth.
The single frequency analysis can be extended to the

case of a beam that initially has a broadband spectrum of
incoherent density modulations. Such is the case of MBI
from shot noise that can produce a spectral pedestal around
the harmonic bunching spike [21]. This case can be
modeled with (17) as a discrete sum over the different
frequencies and corresponding amplitudes,

ΔpMBIðzÞ ¼
X
j

AM;2ðkjÞGðkjÞ sinðkjzþ ϕjÞ ð18Þ
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FIG. 2. Left: Density modulation gain function through the
first EEHG modulator and chicane. Right: Corresponding
impact of A1 on the MBI-induced energy spread through the
second undulator with AMðkmÞ ¼ 0.17, AM;2ðkmÞ ¼ 0.11, and
b0 ¼ 0.2%. Parameters are similar to an idealized LCLS-II,
4 GeV beam at high current I0 ¼ 3.3 kA to exaggerate the effect
for simulation efficiency, with σγ ¼ 0.88, σz=c ¼ 50 fs,
rb ¼ 30 μm, Ld;1 ¼ 6.25 m, Ld;2 ¼ 4 m, Ku ¼ 17.8, B1 ¼ 20,
and 2π=k1 ¼ 260 nm.
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where ϕj is a random phase. For noise, the induced
energy spread is dominated by the incoherent contribution
to the sum, σ2ΔpMBI

¼ 1
2

P
jAM;2ðkjÞ2GðkjÞ2. The contribu-

tion to the bunching spectrum pedestal from the
growth in the second modulator alone is then

σ2φ0
MBI

¼ ðaEB2Þ2
2

P
jAM;2ðkjÞ2GðkjÞ2k2j . In the continuous

limit we can integrate over the frequencies

σ2ΔpMBI
¼ 1

2nz

R∞
0 AM;2ðkÞ2GðkÞ2dk to obtain σ2ΔpMBI

≈
15k1

ffiffi
π

p
32nzB1

ðAMAM;2

6b0
Þ2

2
F2ð12 ; 72 ; 1; 1;−A2

1Þ where AM and AM;2

are evaluated at the frequency peak km, and nz ¼ffiffiffiffiffiffi
2π

p
=σz for a Gaussian current. 2F2 is a generalized

hypergeometric function that captures the impact of A1

on the MBI-driven energy spread growth, as shown in
Fig. 2. If A1 > 2 the energy spread growth is simply,

σ2ΔpMBI
≈

k1
2πnzB1A1

�
AMAM;2

6b0

�
2

: ð19Þ

This expression holds if the energy modulations that
develop from pure noise in the second modulator are
small compared with those amplified through cascading,
and the system satisfies the linear gain theory. Performing
a similar integral for σφ0

MBI
, one can obtain a relationship

between the induced incoherent bandwidth growth and the
induced incoherent energy spread growth. With A1 > 2 it
reduces to a simple form,

σφ0
MBI

=σkE ≈
ffiffiffi
6

p
jnjk1σzσΔpMBI

; ð20Þ

where aEB2=B1 ≈ jnj.
The constraint in Eq. (9) then gives σΔpMBI

≤
1=

ffiffiffi
6

p jnjk1σz, which is independent of the harmonic
number and suggests that the MBI-induced energy spread
through the second modulator must be much less than the
slice energy spread (since k1σz ≫ 1) to maintain narrow-
band bunching. One caveat, however, is that σφ0

MBI
includes

frequencies that may be outside the FEL bandwidth that can
be largely ignored, specifically if 1=aEB1 > ρ or if the
wavelengths are shorter than the cooperation length. Only
when the MBI gain in the low frequencies near the spike is
large enough does the bunching spectrum have an attached
pedestal and the constraint applies.
Figure 3 illustrates the impact of MBI on the bunching

spectrum. Numerical simulations were performed with
energy modulations imposed on the beam according to
(18). Results of the bunching spectrum bandwidth indicate
good agreement with the scaling of the incoherent energy
spread in Eq. (20). Simulations also confirm that the

bunching factor is reduced by e−
1
2
ðaEB2Þ2σ2ΔpMBI [22], and

thus that the harmonic number is limited by the induced
incoherent energy spread. Results highlight the need to
keep b0 as small as possible to avoid MBI growth in the
EEHG section.

V. COHERENT SYNCHROTRON RADIATION

The impact of CSR on the EEHG bunching spectrum has
been studied numerically (see, e.g., [23]). The energy
modulation imparted by CSR along the beam after passage
through a dipole bend magnet of length Lm is given in the
steady state limit as [24],

ΔpCSRðzÞ ¼ −
2Lm

σγIAð3R2Þ1=3
Z

z

−∞

dz0

ðz − z0Þ1=3
dIðz0Þ
dz0

; ð21Þ

where R is the bend radius. This expression is applicable in
the regime R=γ3 ≪ σz ≪ Rθ3=24, where θ ≪ 1 is the bend
angle. It is assumed that the current profile remains
essentially unchanged throughout the bend. The energy
change for a Gaussian current is [25,26]

ΔpCSRðzÞ ¼ −
LmI0Γð23Þ
IAσγ

�
8

3
ffiffiffi
2

p
σzR2

�
1=3

× e−z
2=2σ2zH1=3

�
−

zffiffiffi
2

p
σz

�
; ð22Þ

and H1=3 is the Hermite polynomial. The instantaneous

frequency then goes like e−z
2=2σ2zH4=3ð−z=

ffiffiffi
2

p
σzÞ, as shown

in Fig. 1. The induced bandwidth constraint on the
bunching from the CSR energy wake is then calculated
to be

0 0.01 0.02 0.03 0.04
0

10

20

30

40

50

60
Theory
Simulation

0 0.01 0.02 0.03 0.04
0

0.01

0.02

0.03

0.04

0.05

0.06

Theory
Simulation

-50 0 50
0

0.01

0.02

0.03

0.04

0.05

0.06

FIG. 3. MBI impact on EEHG bunching for parameters of an
idealized LCLS-II type 4 GeV beam with I0 ¼ 1 kA, A1 ¼ 3,
A2 ¼ 5, and aE ¼ 200, n ¼ −1 using 2π=k1 ¼ 260 nm seed
lasers. Top left: Bunching spectrum evolution as a function of
MBI-induced energy spread. Top right: Corresponding induced
spectral bandwidth vs energy spread growth fromMBI. Solid line
is the prediction from Eq. (20). Bottom left: Bunching spectra for
different induced energy spreads, each averaged over 100 runs.

Bottom right: Bunching reduction according to e−
1
2
ðaEB2Þ2σ2ΔpMBI .
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σφ0
CSR

=σkE ≈ η
LmI0

IAσγðσzR2Þ1=3 ≤ 1 ð23Þ

where again η depends on where the energy modulation
occurs. This is a subtler point for CSR than for LSC
because CSR occurs progressively throughout the chicane
on the evolving phase space. In a symmetric four-dipole
first chicane, CSR in the first pair of dipoles has a smaller
impact on the final bunching spectrum than CSR in the last
two dipoles, simply because the phase space has not
experienced the full shearing. Elegant simulations [27]
with the steady-state model indicate that CSR in each of the
last two dipoles has a comparable impact on the spectrum
such that taking η ≈ 2aEB2 in (23) approximately captures
the overall impact on the bunching from the first chicane.
The CSR constraint can be related directly to the

longitudinal dispersion, Rð1Þ
56 ¼ 2θ2ðLD þ 2Lm=3Þ, where

LD is the drift length between the first and second dipoles.
Equation (23) then gives a rough limit on the peak value,

Rð1Þ
56 ≲

�
σz
6

�
1þ 3LD

2Lm

��
IAγ

jnjI0k1

�
3
�
1=4

: ð24Þ

It is assumed that the chicanes are related by the harmonic

number Rð2Þ
56 ≈ jnjRð1Þ

56 =aE. From this perspective, chicanes
with LD=Lm ≫ 1 are favorable because they allow larger
values of dispersion without violating the constraint. For the
LCLS-II beam at aE ¼ 100, Eq. (24) is only satisfied for the

required Rð1Þ
56 ≈ 7 mm dispersion if LD=Lm > Oð102Þ. This

appears to be the most restrictive constraint if this type of
dispersion element is used with a Gaussian beam.
In reality, the CSR effect may have transients and 3D

effects that modify the description. For example, the current
can be reduced if the bend angle is such that σz ≪ θσx
within the dipole. On the other hand, large energy wakes
generated in one dipole can be turned into density mod-
ulations in the following dipole, which drives a CSR
instability inside the chicane. For simplicity in the analysis
we therefore assume that the wakes are small enough that
the instability does not develop, and that the CSR effect is
purely an energy modulation. This is justified because the
constraint on the bandwidth growth in (23) also indicates
that the tolerable energy modulations are less than the slice
energy spread.

VI. CONCLUSIONS

We have developed an description for the bunching in
EEHG that enables the spatial-spectral bunching distribu-
tion and spectral moments to be simply calculated in the
presence of energy structures on the beam. In particular, a
general expression for the spectral bandwidth is derived for
arbitrary energy structures and beam current profiles, and
serves as a measure of tolerable energy modulations via
their impact on the bunching spectral width. The

description also applies to HGHG with one laser modulator
and chicane turned off. In EEHG, we find that the bunching
spectrum is particularly sensitive to energy distortions that
develop on the electron beam during the harmonic up-
conversion, such as within the first chicane or second
modulator. Specific examples of LSC and CSR are studied
with steady-state models, and we derive several constraints
to maintain a near transform-limited bunching spectrum
with beams that have a Gaussian current profile. In several
instances the constraints appear highly restrictive, but we
note that for the more typical flatter, non-gaussian current
profiles of modern systems and with the effects of FEL
lasing included, the constraints may be somewhat relaxed.
This is especially true if the seed laser pulses are shorter
than the electron beam, which naturally broadens the
bunching bandwidth. A shorter seed pulse also samples
smaller, more linear regions of the phase space. This is a
topic of future study.
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APPENDIX: SIMPLE EXAMPLES

Consider two examples of energy modulations with
analytic solutions on a general beam with a Gaussian
current profile, fðzÞ ¼ ð2πσ2zÞ−1=2e−z2=2σ2z , for which the
unperturbed bandwidth is σkE ¼ 1=

ffiffiffi
2

p
σz. In the presence

of a linear and quadratic energy chirp, the additional phase
from (4) can be written as,

φðzÞ ¼ αzþ βz2: ðA1Þ

The instantaneous frequency is then kzðzÞ ¼ kE þ αþ 2βz
and induced bandwidth σ2φ0 ¼ 2ðβσzÞ2. The Wigner dis-
tribution is then

Wðz; kÞ ¼ b̄2n;mffiffiffi
π

p
σz

e−z
2=σ2z−σ2zðk−kE−α−2βzÞ2 ðA2Þ

Alternately, a sinusoidal energy modulation on the beam
gives the phase

φðzÞ ¼ μ sinðk0zÞ; ðA3Þ

with kzðzÞ ¼ kE þ μk0 cosðk0zÞ and σ2φ0 ¼ ðμk0Þ2=2 for
k0 ≫ 1=σz. The Wigner distribution is
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Wðz;kÞ¼ b̄2n;mffiffiffi
π

p
σz

X∞
n¼−∞

Jnð2μcosk0zÞe−z2=σ2z−σ2zðk−kE−nk0=2Þ2 :

ðA4Þ

Figure 4 shows the Wigner distributions for both analytic
examples as well as results from numerical particle sim-
ulations of EEHG bunching with the corresponding energy
modulations imprinted on the beam in the second undu-
lator, with σz=c ¼ 50 fs and bn;m ¼ 0.05. The good agree-
ment indicates that the approximations made in the analytic
calculation of Δp2 are reasonable in these instances.
Parameters are chosen for illustration and clearly violate
the bandwidth constraint in Eq. (9).
The first example in (A1) is a linear frequency structure

that is easily removable, at least in principle. The respon-
sible quadratic beam chirp can be largely removed by phase
space linearization, or used intentionally to produce com-
pressible FEL pulses if the linear frequency chirp is
maintained during amplification. The sinusoid exemplifies
a type of nonlinear energy structure that could be used
beneficially to produce coherent bunching sidebands
[8,10,28], or conversely may compromise the FEL output
if uncontrolled.
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