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We consider the electromagnetic field of a point charged particle moving along the axis of a cylindrical
waveguide from a homogeneously filled area to a dielectric loading area having an axially symmetrical
channel. We are interested in studying the Cherenkov radiation excited in the bilayer area. The solution is
performed by expanding the field in each area in a series of orthogonal eigenmodes. The main attention is
focused on investigation of the wave field in the bilayer section. We show that, at a given observation point,
the “reduced wakefield” is simplified with time (the number of modes decreases). The obtained results are
generalized for the case of a bunch with Gaussian longitudinal profile. The typical numerical results for
wakefield formation process are presented. These results agree with simulations done by the industry
standard electromagnetic code CST Particle Studio.
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I. INTRODUCTION

Considerable attention is currently focused on the devel-
opment of new methods of charged particle acceleration, in
particular, the wakefield acceleration technique in dielectric
loaded waveguides. This technique is based on the use of a
Cherenkov radiation generated by the charged particle bunch
moving through the waveguide [1,2]. In this connection, the
possibility to use rectangular [3–5] and cylindrical [6,7]
waveguides containing a vacuum channel as an accelerating
structure is considered. Analysis of the wakefield formation
process is significant for this acceleration method.
Note that the investigation of electromagnetic fields

produced by charged particles in a dielectric-loaded wave-
guide with channel is of interest for development of
methods of bunch diagnostics as well. For example, the
bunch length measurement method by use of bilayer
circular waveguides was presented in [8]. Reference [9]
is devoted to the method for determination of particle
energy. The proposed method is based on the dependence
of the mode frequency of a cylindrical regular bilayer
waveguide on Lorentz factor.
The electromagnetic fields generated by moving charges

in cylindrical waveguides with transverse boundaries were

investigated earlier in the series of papers [10–12]. However,
the presence of a vacuum channel was not considered in
these works. This assumption is justified if the channel
radius is much less than the waveguide one. However, if the
channel radius is comparable with the waveguide one then
the problem is complicated principally because two wave-
guide parts possess different sets of eigenmodes.
In the present paper we investigate the electromagnetic

field of a point charge and Gaussian bunch moving with
uniform velocity along the cylindrical waveguide axis. The
waveguide consists of two semi-infinite parts: a homo-
geneously filled part and a dielectric part with coaxial
channel and dielectric layer. The charge moves from the
homogeneous section into the bilayer one.
It should be noted that a similar structure was considered

earlier for the problem of axially symmetrical transverse-
magnetic mode launching on the transverse boundary in the
waveguide [13]. In that work we described the mode
transformation effect caused by the waveguide irregularity.
We also studied the case of a chargemoving from the bilayer
area to the vacuumone [14]. Themain attentionwas focused
on the so-called Cherenkov-transition radiation effect when
Cherenkov radiation excited in the bilayer area penetrates
through the transverse boundary. In particular, we showed
that it is possible to generate both monochromatic and
multifrequency radiation in the vacuum waveguide area.
The present work is devoted to the case of the “opposite”

charge motion which results in different physical effects.
We assume that the charge velocity is more than the light
velocity in the cylindrical layer but less than the light
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velocity in the channel and in the homogeneous part of the
waveguide. Therefore, Cherenkov radiation is excited in
the bilayer waveguide area, but it is not excited in the
homogeneous one. Note that the wave field of the charge in
the regular cylindrical waveguide with channel (the so-
called “wakefield”) is well studied [1,2]. Here we focus on
analytical and numerical investigation of process of the
wakefield formation in the bilayer waveguide area.

II. ANALYTICAL TREATMENT

We consider the infinite cylindrical waveguide of radius
a composed of the area with relative permittivity ε1,
relative permeability μ1, and bilayer area with dielectric
filling ðεd; μdÞ and coaxial channel ðεc; μcÞ of radius b (see
Fig. 1). All media are isotropic, homogeneous, and non-
dispersive. The dissipation in the media is negligible. The
external waveguide surface is perfectly conducting. The
cylindrical coordinates are used. The point particle with
the charge q uniformly moves along the waveguide axis
with velocity v⃗ ¼ cβe⃗z (c means the speed of light in
vacuum) and intersects the boundary z ¼ 0 at the instant
time t ¼ 0.
We consider the situation when ndβ > 1, ncβ < 1, n1β <

1 ðni ¼ ffiffiffiffiffiffiffiffi
εiμi

p
; i ¼ c; d; 1Þ, i.e., Cherenkov radiation is

generated only in the area z > 0, r > b. Initially we put
for generality that n1 and nc are different from 1, but further
we will study in more detail the case of the vacuum area
z < 0 and the vacuum channel since this situation is of
main interest for practice.
The electromagnetic field in each waveguide area can be

presented as a sum of two terms:

E⃗1;2 ¼ E⃗ðqÞ
1;2 þ E⃗ðbÞ

1;2; H⃗1;2 ¼ H⃗ðqÞ
1;2 þ H⃗ðbÞ

1;2: ð1Þ

The first summand with superscript (q) is the field of the
particle in the infinite regular waveguide. It is called a
“forced” field by Ginzburg [15]. The second summand (b)
(“free” field) is determined by the influence of the trans-
verse boundary. The subscripts 1 or 2 denotes the area
z < 0 and z > 0 correspondingly.
The forced fields in both areas have been investigated in

the literature [2,9,16]. We give here expressions only for
longitudinal field components:

EðqÞ
1z ¼ −

q
2v2ε1

ðn21β2 − 1Þ
Z

∞

−∞
ω exp

�
i
ω

v
ζ

�

×

�
Hð1Þ

0 ðs1rÞ −
Hð1Þ

0 ðs1aÞ
J0ðs1aÞ

J0ðs1rÞ
�
dω; ð2Þ

EðqÞ
2z ¼ iq

πv2
ðn22β2 − 1Þ

Z þ∞

−∞
ω exp

�
i
ω

v
ζ

�
ΦðqÞðr;ωÞdω;

ð3Þ
where

n2¼
ffiffiffiffiffiffiffiffiffi
ε2μ2

p
; ε2;μ2¼

�
εc;μc r≤b

εd;μd r≥b;
ζ¼ z−vt;

kðωÞ¼ jωj
v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−n2cβ2

q
; ReðkÞ>0;

sðωÞ¼ω

v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2dβ

2−1

q
; ImðsÞ≥0;

s1ðωÞ¼
ω

v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21β

2−1

q
; Imðs1Þ≥0;

ΦðqÞðr;ωÞ¼ ε−1c ½K0ðkrÞþχðqÞI0ðkrÞ�r≤b;

ΦðqÞðr;ωÞ¼ iπνðqÞ

2εd

�
Hð1Þ

0 ðsrÞ−Hð1Þ
0 ðsaÞ
J0ðsaÞ

J0ðsrÞ
�
r≥b;

ψ0;1ðxÞ¼J1;0ðxbÞY0ðxaÞ−J0ðxaÞY1;0ðxbÞ;

χðqÞ ¼ εcsK1ðkbÞψ1ðsÞþεdkK0ðkbÞψ0ðsÞ
εcsI1ðkbÞψ1ðsÞ−εdkI0ðkbÞψ0ðsÞ

;

νðqÞ ¼−
2εdk
πbs

J0ðsaÞ
εcsI1ðkbÞψ1ðsÞ−εdkI0ðkbÞψ0ðsÞ

:

Here J0;1ðxÞ, Y0;1ðxÞ are the Bessel and Neumann func-

tions, respectively, Hð1Þ
0;1ðxÞ are Hankel functions of the first

kind, I0;1ðxÞ, K0;1ðxÞ are modified Bessel and Hankel
functions, respectively.
The free field components can be written as a series of

eigenfunctions of the transverse operator. According to this
method, a free field takes the form

E⃗ðbÞ
1;2 ¼

X∞
n¼1

E⃗ðbÞ
1n;2n; H⃗ðbÞ

1;2 ¼
X∞
n¼1

H⃗ðbÞ
1n;2n; ð4Þ

8>>>><
>>>>:
HðbÞ

1φn

EðbÞ
1zn

EðbÞ
1rn

9>>>>=
>>>>;

¼ ηn
μ1a

Z þ∞

−∞
Bð1Þ
n ðωÞexp ½iΦ1nðωÞ�

×

8>>>>>>>><
>>>>>>>>:

J1

�
ηn

r
a

�
icηn
ε1aω

J0

�
ηn

r
a

�

−
chð1Þn ðωÞ
ε1ω

J1

�
ηn

r
a

�

9>>>>>>>=
>>>>>>>;
dω; ð5Þ

FIG. 1. Composite waveguide structure.
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8>>><
>>>:

HðbÞ
2φn

EðbÞ
2zn

EðbÞ
2rn

9>>>=
>>>;

¼
Z þ∞

−∞
Bð2Þ
n ðωÞ exp ½iΦ2nðωÞ�

×

8>>>><
>>>>:

Fnðr;ωÞ
ic
ε2ω

�
Fnðr;ωÞ

r þ ∂Fnðr;ωÞ∂r
�

chð2Þn ðωÞ
ε2ω

Fnðr;ωÞ

9>>>>=
>>>>;
dω: ð6Þ

Here Φ1n;2n ¼ −ωt ∓ hð1;2Þn ðωÞz, functions Bð1;2Þ
n ðωÞ are

unknown mode excitation coefficients, ηn is the zero of
Bessel function J0ðηnÞ ¼ 0;

hð1Þn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2n21
c2

−
η2n
a2

s
; Imðhð1Þn Þ ≥ 0;

hð2Þn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2n2c;d
c2

− α2cn;dn

s
; Imðhð2Þn Þ ≥ 0;

Fnðr;ωÞ ¼ J1ðαcnrÞr ≤ b;

Fnðr;ωÞ ¼
iJ0ðαdnaÞJ1ðαcnbÞ

ψ0ðαdnÞ
�
Hð1Þ

1 ðαdnrÞ

−
Hð1Þ

0 ðαdnaÞ
J0ðαdnaÞ

J1ðαdnrÞ
�
r ≥ b:

Note that functions Fnðr;ωÞ possess the orthogonality
property (bar means complex conjunction):Z

a

0

F̄nðr;ωÞFmðr;ωÞ
r
ε2
dr ¼ δnmGnðωÞ; ð7Þ

where

GnðωÞ¼
b2

2εc

�
J21ðαcnbÞþJ20ðαcnbÞ−

2

αcnb
J0ðαcnbÞJ1ðαcnbÞ

�

þ J21ðαcnbÞ
2εdψ

2
0ðαdnÞ

�
4

π2α2dn
þ 2b
αdn

ψ0ðαdnÞψ1ðαdnÞ−b2ψ2
0ðαdnÞ−b2ψ2

1ðαdnÞ
�
forαcn∈R; ð8Þ

GnðωÞ ¼
b2

2εc

�
I21ðjαcnjbÞ − I20ðjαcnjbÞ þ

2

jαcnjb
I0ðjαcnjbÞ × I1ðjαcnjbÞ

�

þ I21ðjαcnjbÞ
2εdψ

2
0ðαdnÞ

�
4

π2α2dn
þ 2b
αdn

ψ0ðαdnÞψ1ðαdnÞ − b2ψ2
0ðαdnÞ − b2ψ2

1ðαdnÞ
�

for αcn ¼ ijαcnj: ð9Þ

Coefficients αcn;dn can be determined as follows. The

requirement EðbÞ
2z ¼ 0 at the surface r ¼ a and the con-

tinuity conditions for EðbÞ
2z and HðbÞ

2φ at the surface r ¼ b
result in the relation α2cn ¼ ω2ðn2c − n2dÞ=c2 þ α2dn and the
following dispersion equation, which can be regarded as an
equation for coefficients αdn:

εcαdnJ1ðαcnbÞψ1ðαdnÞ− εdαcnJ0ðαcnbÞψ0ðαdnÞ¼ 0: ð10Þ

The mode excitation coefficients Bð1;2Þ
n ðωÞ can be

found by using the continuity conditions for the
tangential components of the total electromagnetic
field [defined by the expression (1)] at the transverse
boundary:

E1rjz¼−0 ¼ E2rjz¼þ0; H1φjz¼−0 ¼ H2φjz¼þ0
: ð11Þ

Our main interest is to analyze the field generated in the
bilayer area. For this purpose we multiply equalities (11) by

the function rJ1ðηmr=aÞðm ¼ 1; 2…Þ, and integrate over
the waveguide radius using the orthogonality property of
eigenmodes in the region z < 0:

Z
a

0

J1

�
ηn

r
a

�
J1

�
ηm

r
a

�
rdr ¼ a2J21ðηmÞ

2
δnm: ð12Þ

In that way the following infinite systems can be obtained

for coefficients Bð2Þ
n ðωÞ:

X∞
n¼1

AmnB
ð2Þ
n ¼ Um; m ¼ 1; 2… ð13Þ

Amn ¼
ab

ðα2cna2 − η2mÞðα2dna2 − η2mÞ
�
ηmJ0

�
ηm

b
a

�

× J1ðαcnbÞQ1 − aαcnJ0ðαcnbÞJ1
�
ηm

b
a

�
Q2

�
; ð14Þ
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Um ¼−
qωaηm

πvcðs21a2−η2mÞ
�
1þhð1Þm

v
ω

�
−
qωaε1ηm
πvcεc

1

k2a2þη2m

�
1þ εc

ε1
hð1Þm

v
ω

�

þqωaε1k
πvc

1

ðk2a2þη2mÞðs2a2−η2mÞ
saJ1ðηmb=aÞψ1ðsÞQ3−ηmJ0ðηmb=aÞψ0ðsÞQ4

εcsI1ðkbÞψ1ðsÞ− εdkI0ðkbÞψ0ðsÞ
: ð15Þ

Coefficients Bð1Þ
n ðωÞ are expressed through Bð2Þ

n ðωÞ by the following way:

Bð1Þ
m ¼ 2μ1

ηmaJ21ðηmÞ
�X∞

n¼1

Bð2Þ
n ab

ðα2cna2 − η2mÞðα2dna2 − η2mÞ
�
ηmJ0

�
ηm

b
a

�
J1ðαcnbÞQ5 − aαcnJ1

�
ηm

b
a

�
J0ðαcnbÞQ6

�

þ qω2ηma3ðn21 − n2cÞ
πc3ðs21a2 − η2mÞðk2a2 þ η2mÞ

−
qka

πcFchðωÞðs2a2 − η2mÞðk2a2 þ η2mÞ
�
εcasψ1ðsÞJ1

�
ηm

b
a

�
Q7 − εdηmψ0ðsÞJ0

�
ηm

b
a

�
Q5

��
; ð16Þ

FchðωÞ≡ εcsI1ðkbÞψ1ðsÞ − εdkI0ðkbÞψ0ðsÞ; ð17Þ

Q1 ¼ α2dna
2

�
hð1Þm þ ε1

εc
hð2Þn

�
− α2cna2

�
hð1Þm þ ε1

εd
hð2Þn

�
− η2mh

ð2Þ
n

ε1
εc

�
1 −

εc
εd

�
; ð18Þ

Q2 ¼ α2dna
2

�
hð1Þm þ ε1

εc
hð2Þn

�
− α2cna2

εd
εc

�
hð1Þm þ ε1

εd
hð2Þn

�
− η2mh

ð1Þ
m

�
1 −

εd
εc

�
; ð19Þ

Q3 ¼ k2a2
�
1þ εd

ε1
hð1Þm

v
ω

�
þ s2a2

�
1þ εc

ε1
hð1Þm

v
ω

�
þ η2m

εd
ε1

hð1Þm
v
ω

�
1 −

εc
εd

�
; ð20Þ

Q4 ¼ k2a2
�
1þ εd

ε1
hð1Þm

v
ω

�
þ εd

εc
s2a2

�
1þ εc

ε1
hð1Þm

v
ω

�
þ η2m

�
1 −

εd
εc

�
; ð21Þ

Q5 ¼
ω2a2

c2
ðn2d − n2cÞ; ð22Þ

Q6 ¼ a2
�
α2dn −

εd
εc

α2cn

�
− η2m

�
1 −

εd
εc

�
; ð23Þ

Q7 ¼ a2
�
s2 þ εd

εc
k2
�
− η2m

�
1 −

εd
εc

�
: ð24Þ

III. “REDUCED WAKEFIELD” IN
BILAYER AREA

Further we will assume that the channel and the area
z < 0 are vacuum ðn1 ¼ nc ¼ 1Þ. The main attention will
be given to the investigation of the sum of the wakefield
(i.e., Cherenkov radiation in bilayer infinite regular wave-
guide) and the discrete part of the free field. This sum can
be named as “reduced wakefield” (the meaning of this term
will be clarified further). Hence, the reduced wakefield
longitudinal component can be written as

EðwÞ
2z ¼ EðqwÞ

2z þ EðbwÞ
2z :

Here superscripts ðqwÞ and ðbwÞ denote the wakefield and
discrete part of the free field correspondingly.
Cherenkov radiation in a bilayer regular waveguide

(usually named as wakefield) is determined by the poles
contribution in expression (3). The wakefield explicit form
can be obtained, therefore, by using the residue theorem
[9]. Here we give only the expression for the wakefield
longitudinal component:

EðqwÞ
2z ¼

X∞
k¼1

EðqwÞ
2zk ¼ 4q

v2
ΘðtÞΘðvt − zÞRe

�X∞
k¼1

ωk

× Rðr;ωkÞ exp
�
iωk

ζ

v

��
; ð25Þ
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where ΘðxÞ ¼ 1 for x > 0, ΘðxÞ ¼ 0 for x < 0,

Rðr;ωÞ ¼ ðβ2 − 1Þ½I0ðkrÞResðχðqÞÞ�r ≤ b;

Rðr;ωÞ ¼ iπ
2εd

ðn2dβ2 − 1Þ
�
ResðνðqÞÞðHð1Þ

0 ðsrÞ

−
Hð1Þ

0 ðsaÞ
J0ðsaÞ

J0ðsrÞ
��

r ≥ b;

ResðχðqÞÞ ¼ sK1ðkbÞψ1ðsÞ þ εdkK0ðkbÞψ0ðsÞ
dFch=dω

;

ResðνðqÞÞ ¼ −
2εdk
πbs

J0ðsaÞ
dFch=dω

:

Res½fðxÞ� means the residue of function fðxÞ, and ωk is the
Cherenkov frequency which is determined by the equation

FchðωÞ ¼ 0; ð26Þ
where Fch is defined by (17).
In accordance with (6), the longitudinal free field mode

has the form

EðbÞ
2zn ¼

ic
ε2

Z þ∞

−∞

Bð2Þ
n ðωÞ
ω

�
Fnðr;ωÞ

r
þ ∂Fnðr;ωÞ

∂r
�

× exp ½iΦ2nðωÞ�dω: ð27Þ
Asymptotic expressions for such an integral can be found
by using the steepest descent method [17]. Using this
method, we establish the saddle point ωðsÞ

n location out of

the equation dΦ2n=dω ¼ 0, i.e., dhð2Þn =dω · z − t ¼ 0. This
equation can be written in the form

z ¼ vðgrÞn ðωðsÞ
n Þt; ð28Þ

where vðgrÞn ¼ ∂ω=∂hð2Þn denotes the group velocity of the n
mode. Note that in the case under consideration the
condition to be able to use the method of steepest descent

is jz − vðgrÞn ðωÞtj ≫ a.
Significant contributions into the free field can be

produced by the singularities of the integrand (27), which
are crossed at transformation of the initial integration path
(real axis) toward the steepest descending path (SDP). The
desired discrete part of the free field is determined by those
of the crossed singularities, which represent the poles of
function Bð2Þ

n ðωÞ.
In the case n1 ¼ nc ¼ 1 the right part U⃗ of the system

(13) is simplified:

Um ¼ qωak
πvcðk2a2þη2mÞðs2a2−η2mÞ

×
saJ1ðηmb=aÞψ1ðsÞQ3−ηmJ0ðηmb=aÞψ0ðsÞQ4

FchðωÞ
:

ð29Þ

Comparing the function UmðωÞ denominator with the
equation for Cherenkov frequencies (26), we conclude
that the poles of the function UmðωÞ are at frequencies

�ωkðk ¼ 1; 2…Þ. The functions Bð2Þ
n ðωÞ may have poles

only at the same frequencies as the function UmðωÞ.
After cumbersome mathematical transformations one

can show that

ResðBð2Þ
n ðωkÞÞ ¼ −

iqεdkðωkÞ
πcb

ψ0½sðωkÞ�
I1½kðωkÞb�

×

�
dFch

dω

�
−1
				
ω¼ωk

if k ¼ n;

Res½Bð2Þ
n ðωkÞ� ¼ 0 if k ≠ n; ð30Þ

i.e., the amplitude of the nth free field mode possesses only
one pole from the complete set of Cherenkov frequencies.
The contribution of the poleωk is determined by the residue
theorem. Here we present only the longitudinal component
of the free field discrete part:

EðbwÞ
2z ¼ 4πc

ε2
ΘðtÞRe

�X∞
k¼1

Res½Bð2Þ
k ðωkÞ�
ωk

×

�
Fkðr;ωkÞ

r
þ ∂Fkðr;ωkÞ

∂r
�

× Θ½vðgrÞk ðωkÞt − z�eiζvωk

�
: ð31Þ

As can be seen, the discrete part of the free field consists of
a set of waves (Cherenkov modes) generated at Cherenkov
frequencies.
The contribution (31) exists only if the pole ωk is crossed

at transformation of the initial integration path (real axis)
toward the SDP. One can show that this crossing takes place

under condition ωðsÞ
k < ωk, that is identical with inequality

z < vðgrÞk ðωkÞt. Further, one can show that the pole con-
tribution is equal in magnitude and has the opposite sign in
comparison with wakefield mode (25) generated at the
same frequency ωk. Thus, the wakefield mode is compen-
sated by the corresponding part of the free field in the area

z < vðgrÞk ðωkÞt. Therefore, the mode of the reduced wake-

field in the area z < vðgrÞk ðωkÞt is equal to zero. This effect
determines the choice of the term reduced wakefield used to
denote the sum of the wakefield and discrete part of the free

field. As soon as the group velocity vðgrÞk ðωkÞ is different for
different modes and, moreover, increases with increase of
mode number, we observe the effect of switching off the
modes one by one behind the charge. The analogous effect
was described in Ref. [12] for the case of homogeneous
dielectric filling in both waveguide areas.
The obtained results can be generalized for the case of a

bunch having Gaussian longitudinal profile with volume
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charge density ρðgÞ ¼ qð ffiffiffiffiffiffi
2π

p
σÞ−1δðxÞδðyÞexp ½−ζ2=ð2σ2Þ�.

As a result, the longitudinal component of the reduced
wakefield generated by Gaussian bunch in a bilayer wave-
guide area can be written in the form

EðwÞ
2z ¼ 4q

v2
ΘðtÞΘð−ζÞRe

�X∞
k¼1

ωkRðr;ωkÞΘ½z − vðgrÞk ðωkÞt�

× exp
�
i
ζ

v
ωk −

ðωkσÞ2
2v2

��
: ð32Þ

As follows from this expression, it is possible to
achieve an amplitude decrease of the high-frequency
modes by bunch length selection, since there is a summand
exp ½−ðωkσÞ2=ð2v2Þ�.

IV. NUMERICAL RESULTS AND DISCUSSION

Figure 2 shows the example of the time dependence of
the reduced wakefield component EðwÞ

2z at point r ¼ 0 cm,
z ¼ 75 cm in the case in moving point charge (waveguide
and particle parameters are a ¼ 1 cm, b ¼ 0.2 cm, εd ¼ 4,
μd ¼ 1, q ¼ 1 nC, v ¼ 0.99c). We present the case when
the wakefield and the discrete part of free field practically

contain 16 Cherenkov modes (further increase in number of
modes leads to insignificant change of the wave field). As
was mentioned earlier, the kth mode of the reduced

wakefield exists in the area z > vðgrÞk ðωkÞt only. We
emphasize that the end of this area moves with the group

velocity of the mode. The reduced wakefield EðwÞ
2z is

consequently composed of a different number of modes
depending on the time moment and the observation point.
The number i in Fig. 2 means the number of modes in the
corresponding time interval. One can see that the number of

modes in the field EðwÞ
2z decreases with increasing distance

from the charge. In time domain 2.53 < t < 8.17 ns the
reduced wakefield contains the set of sharp extrema. A
similar field structure corresponds, as a rule, to the field in a
wakefield accelerator [6]. From the moment t ≈ 9.84 ns we
can see a single frequency field. The reduced wakefield
disappears at moment t ≈ 9.90 ns.
Figure 3 shows the dependence of the relative group

velocity vðgrÞk ðωkÞ=c on the mode number k for the same
structure parameters. As one can see, the group velocity of
the first mode is close to the group velocity of the first mode
in the case of homogeneous dielectric waveguide, i.e.,

vðgrÞ1 ðω1Þ ≈ c2=ðvεdÞ ≈ c=εd ¼ 0.25c This effect can be

FIG. 2. Dependence of the reduced wakefield longitudinal component EðwÞ
2z on time t at point r ¼ 0 cm, z ¼ 75 cm (obtained on the

basis of analytical results). Waveguide and point charge parameters are a ¼ 1 cm, b ¼ 0.2 cm, εd ¼ 4, μd ¼ 1, q ¼ 1 nC, v ¼ 0.99c.
The number i means the number of Cherenkov modes contributing in a corresponding time interval.
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explained by the fact that characteristic scales of the first
modes variation are large in comparison with the channel
radius, so the channel has only a little influence on these
modes. Note that the group velocity behavior becomes
more complicated with increasing of the mode number. For
small mode numbers the group velocity slowly increases
with k, then faster and reaches a maximum (its further
decrease is not essential since the modes with number
greater than 16 are insignificant for the parameters under
consideration). Such behavior leads to the unequal time
intervals in Fig. 2.
The results based on the analytical investigation are

verified by comparing with results of numerical simulation
in CST Particle Studio for the case of a moving Gaussian
bunch. Figure 4 illustrates the time dependence of the
total field EðCSTÞ

2z calculated by CST simulation at point

r ¼ 0.3 cm, z ¼ 30 cm and the same dependence EðwÞ
2z for a

reduced wakefield obtained on the basis of analytical
consideration. The following model is considered:

a¼1cm, b¼0.7cm, εd¼4, μd¼1, q¼1nC, σ ¼ 0.6 cm,
v ¼ 0.9c. The bilayer waveguide part is 100 cm in length
and the vacuum part is 30 cm in the CST model. The
parameter σ was chosen so that the wakefield excited in this
situation has practically only the first mode with frequency
ω1 ≈ 13.0 GHz (other modes have negligible amplitudes).
The moment t1 ≈ 2.84 ns corresponds to the time when

condition z ¼ vðgrÞ1 ðω1Þt is satisfied at the observation point
(“breakage” of the wakefield mode). One can see that the
total field coincides with the wakefield at t < t1 almost
everywhere with very high accuracy (in the domain t < t1
the pole contribution of the free field is absent). The wave
parts of the forced and the free fields compensate each
other for t > t1; therefore the reduced wakefield is absent in
this domain. Naturally, the exact field (blue curve) is
continuous: there is some transient process in the total
field at t ∼ t1. Note that the amplitude of the exact field is
approximately equal to half of the amplitude of forming the
wakefield at t ¼ t1. Mathematically this point corresponds

FIG. 3. Dependence of the relative group velocity vðchÞk ðωkÞ=c on mode number k at point r ¼ 0 cm, z ¼ 75 cm. Waveguide and point
charge parameters are the same as in Fig. 2.

FIG. 4. Dependence of component EðCSTÞ
2z of the total field obtained using CST simulation (blue solid line) and reduced wakefield

component EðwÞ
2z obtained from analytical investigation (red marked line) on time t at point r ¼ 0.3 cm, z ¼ 30 cm. Waveguide and

bunch parameters are a ¼ 1 cm, b ¼ 0.7 cm, εd ¼ 4, μd ¼ 1, q ¼ 1 nC, σ ¼ 0.6 cm, v ¼ 0.9c.
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to coincidence of the pole and the saddle point where the
integral asymptotic is determined by half of the pole
contribution [17].

V. CONCLUSION

We have investigated the electromagnetic radiation gen-
erated by the charge crossing the boundary between the
vacuum area of the cylindrical waveguide and the area with
the layered dielectric filling. The solution was carried out by
representing the free field as a set of eigenmodes in
correspondingwaveguide areas. Primary attentionwas given
to the study of the wave field in the region partially loaded
with a dielectric. It was shown that wakefield and free field
discrete parts are excited at the same Cherenkov frequencies
and compensate each other in some area behind the charge.
Results obtained for the point source were generalized to the
bunch with a Gaussian longitudinal profile.
The typical wakefield formation process in a bilayer

waveguide area was presented. At the given observation
point, the reduced wakefield is simplified with time (the
number of modes is decreased). An analogous effect takes
place at the given observation moment: the number of
modes decreases with increasing distance from the charge
to the observation point. To verify the analytical results, we
used the numerical simulation by CST for the case of
Gaussian bunch. Simulations show that there is the large
domain behind the bunch where the total electromagnetic
field is almost entirely determined by the wakefield only.
As well, there is some transition domain where the mode
amplitude is smoothly decreased.

ACKNOWLEDGMENTS

This work is supported by Russian Foundation for Basic
Research according to the research Project No. 15-
02-03913.

[1] W. Gai, P. Schoessow, B. Cole, R. Konecny, J. Norem, J.
Rosenzweig, and J. Simpson, Experimental Demonstration
of Wake-Field Effects in Dielectric Structures, Phys. Rev.
Lett. 61, 2756 (1988).

[2] A. Kanareykin, Cherenkov radiation and dielectric based
accelerating structures: wakefield generation, power ex-
traction and energy transfer efficiency, J. Phys. Conf. Ser.
236, 012032 (2010).

[3] L. Xiao, W. Gai, and X. Sun, Field analysis of a dielectric-
loaded rectangular waveguide accelerating structure,

Proceedings of the Particle Accelerator Conference,
2001 (IEEE, New York, 2001), pp. 3963–3965.

[4] S. S. Baturin, I. L. Sheinman,A.M.Altmark,D. A. Semikin,
and A. D. Kanareykin, Wakefield radiation generated in a
dielectric-filled rectangular accelerating structure, Tech.
Phys. Lett. 37, 394 (2011).

[5] S. S. Baturin, I. L. Sheinman, A. M. Altmark, and A. D.
Kanareikin, Wakefield radiation generated by an electron
bunch in a rectangular dielectric waveguide, Tech. Phys.
57, 683 (2012).

[6] M. Rosing andW. Gai, Longitudinal- and transverse-wake-
field effects in dielectric structures, Phys. Rev. D 42, 1829
(1990).

[7] B. D. O’Shea, G. Andonian, S. K. Barber, K. L.
Fitzmorris, S. Hakimi, J. Harrison, P. D. Hoang, M. J.
Hogan, B. Naranjo, O. B. Williams, V. Yakimenko,
and J. B. Rosenzweig, Observation of acceleration
and deceleration in gigaelectron-volt-per-metre gradient
dielectric wakefield accelerators, Nat. Commun. 7,
12763 (2016).

[8] W. Li, Z. He, and Q. Jia, Electron bunch length measure-
ment with a wakefield radiation decelerator, Phys. Rev. ST
Accel. Beams 17, 042801 (2014).

[9] A. V. Tyukhtin, Determination of the particle energy in a
waveguide with a thin dielectric layer, Phys. Rev. STAccel.
Beams 15, 102801 (2012).

[10] T. Yu. Alekhina and A. V. Tyukhtin, Electromagnetic field
of a charge intersecting a cold plasma boundary in a
waveguide, Phys. Rev. E 83, 066401 (2011).

[11] T. Yu. Alekhina, A. V. Tyukhtin, and A. A. Grigoreva,
Cherenkov-transition radiation in a waveguide partly filled
with a resonance dispersion medium, Phys. Rev. STAccel.
Beams 18, 091302 (2015).

[12] T. Yu. Alekhina and A. V. Tyukhtin, Radiation of a charge
in a waveguide with a boundary between two dielectrics, J.
Phys. Conf. Ser. 357, 012010 (2012).

[13] A. A. Grigoreva, A. V. Tyukhtin, V. V. Vorobev, T. Yu.
Alekhina, and S. Antipov, Mode transformation in a
circular waveguide with a transverse boundary between
a vacuum and a partially dielectric area, IEEE Trans.
Microwave Theory Tech. 64, 3441 (2016).

[14] A. A. Grigoreva, A. V. Tyukhtin, V. V. Vorobev, and S.
Antipov, Radiation of a charge intersecting a boundary
between a bilayer area and a homogeneous one in a circular
waveguide, IEEE Trans. Microwave Theory Tech. 66, 49
(2018).

[15] V. L. Ginzburg and V. N. Tsytovich, Transition Radiation
and Transition Scattering (Adam Hilger, London, 1990).

[16] B. M. Bolotovskii, Theory of cherenkov radiation (iii),
Phys. Usp. 4, 781 (1962).

[17] L. B. Felsen and N. Marcuvitz, Radiation and Scattering of
Waves (Prentice-Hall, New York, 1972).

ALEKSANDRA A. GRIGOREVA et al. PHYS. REV. ACCEL. BEAMS 21, 031302 (2018)

031302-8

https://doi.org/10.1103/PhysRevLett.61.2756
https://doi.org/10.1103/PhysRevLett.61.2756
https://doi.org/10.1088/1742-6596/236/1/012032
https://doi.org/10.1088/1742-6596/236/1/012032
https://doi.org/10.1134/S1063785011050038
https://doi.org/10.1134/S1063785011050038
https://doi.org/10.1134/S1063784212050052
https://doi.org/10.1134/S1063784212050052
https://doi.org/10.1103/PhysRevD.42.1829
https://doi.org/10.1103/PhysRevD.42.1829
https://doi.org/10.1038/ncomms12763
https://doi.org/10.1038/ncomms12763
https://doi.org/10.1103/PhysRevSTAB.17.042801
https://doi.org/10.1103/PhysRevSTAB.17.042801
https://doi.org/10.1103/PhysRevSTAB.15.102801
https://doi.org/10.1103/PhysRevSTAB.15.102801
https://doi.org/10.1103/PhysRevE.83.066401
https://doi.org/10.1103/PhysRevSTAB.18.091302
https://doi.org/10.1103/PhysRevSTAB.18.091302
https://doi.org/10.1088/1742-6596/357/1/012010
https://doi.org/10.1088/1742-6596/357/1/012010
https://doi.org/10.1109/TMTT.2016.2602267
https://doi.org/10.1109/TMTT.2016.2602267
https://doi.org/10.1109/TMTT.2017.2738000
https://doi.org/10.1109/TMTT.2017.2738000
https://doi.org/10.1070/PU1962v004n05ABEH003380

