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The effect of rf harmonic cavities on the transverse mode-coupling instability (TMCI) is still not very
well understood. We offer a fresh perspective on the problem by proposing a new numerical method for
mode analysis and investigating a regime of potential interest to the new generation of light sources where
resistive wall is the dominant source of transverse impedance. When the harmonic cavities are tuned for
maximum flattening of the bunch profile we demonstrate that at vanishing chromaticities the transverse
single-bunch motion is unstable at any current, with growth rate that in the relevant range scales as the 6th
power of the current. With these assumptions and radiation damping included, we find that for machine
parameters typical of 4th-generation light sources the presence of harmonic cavities could reduce the
instability current threshold by more than a factor two.
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I. INTRODUCTION

A distinctive feature of the new generation of storage-
ring light sources is a narrow vacuum chamber to accom-
modate high-gradient magnets and high performance
insertion devices, significantly enhancing the resistive wall
(RW) impedance. Another feature is the employment of
harmonic cavities (HCs) to lengthen the bunches. While
already of common use in many existing light sources, HCs
are essential in the new low-emittance machines to reduce
scattering effects and ensure acceptable lifetime. It is
therefore of interest to investigate specifically how the
presence of HCs affects the transverse instabilities driven
by RW.
The potentially beneficial effect of HCs (“Landau

cavities”) on longitudinal multibunch instabilities has long
been known [1–4]. Similarly, there is evidence that they
may help with multibunch transverse instabilities [5] and
progress has recently been made to clarify the stabilizing
mechanisms by detailed macroparticle simulations [6]. A
satisfactory general theory of transverse instabilities with
HCs, however, is still lacking. Our goal here is to present
progress toward the development of such a theory. We do so
by addressing the narrowly defined problem of single-
bunch RW driven transverse instabilities with vanishing
chromaticites when the form of the rf bucket is strictly
quartic. This is the regime where the HCs are tuned for
maximum flattening of the electron bunches and electrons

infinitesimally close to the synchronous particle experience
vanishing synchrotron-oscillation frequency. As the focus
is on vanishing chromaticities, the scope of our investiga-
tion is the successor of the transverse mode coupling
instability (TMCI) occurring in the absence of HCs.
The most relevant reference remains a 1983 paper by

Chin et al. [7], where the effect of HCs was studied using
conventional mode-analysis methods in the approximation
where the presence of HCs amounts to a small nonlinear
perturbation. The authors briefly addressed the fully non-
linear regime by attempting an admittedly hand-waving
extrapolation of the perturbation-theory results and argued
that transverse motion would be unstable at any current (if
radiation damping is neglected). In contrast, in unpublished
simulation work [8] Krinsky noted that HCs could worsen
the stability of short bunches but indicated the existence of
a well defined instability threshold (radiation damping not
included). Recently, simulations reported in [5,9] showed
no difference in bunch instability at vanishing chromatic-
ities with or without HCs. A secondary goal of our paper is
to attempt to reconcile these conflicting claims.
The method we employ here is still based on mode

analysis of the linearized Vlasov equation—the workhorse
of all beam instability studies. However, it differs from the
traditional approach in two important respects: first, the
radial dependence of the modes is represented by values on
a grid, rather than through an expansion in orthogonal basis
functions; second, the determination of the growth rate of
the unstable modes is not cast in the form of a linear
eigenvalue problem but entails the search for the roots of a
more complicated secular equation. Our choice of the
method follows from recognizing that a nonlinear pertur-
bation to the single-particle longitudinal dynamics causes
the linearized integral equation for the collective modes to
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be singular in nature. As a consequence, the eigenfunctions
are, in general, not ordinary functions but rather distribu-
tions in the sense of Dirac akin to Van Kampen’s modes
[10,11], creating an obvious difficulty if we insist on
seeking a representation in terms of smooth basis functions.
The advantage of using a representation of the radial
functions on a grid has been noted and exploited before
in the study of longitudinal instabilities [12–15] and more
recently in the study of transverse instabilities as well [16];
however it does not fully remedy the highlighted difficulty.
A more satisfactory solution to the problem combines this
representation with a regularizing transformation to remove
the singularity of the integral equation along the lines of our
earlier work [14,15]. Although at the cost of a more
complicated form for the secular equation, the regularized
integral equation exhibits better convergence properties
against finite-dimension approximations.
We provide a demonstration that indeed, in the absence

of radiation damping the transverse motion at vanishing
chromaticities is always unstable, regardless of bunch
current, with growth rate varying from a ImΩ ∼ I6b
dependence at small bunch current Ib to ImΩ ∼ Ib for
larger Ib, the former being more likely to be encountered in
the physical systems of interest. Because of the strong 6th-
power dependence, macroparticle-simulations results could
be easily misinterpreted as indicating the existence of a
current threshold if the simulation time is not sufficiently
long, thus providing some ground to Krinsky’s findings [8].
The content of the paper is as follow. After establishing

notation and stating the linearized Vlasov equation in
Sec. II, in Sec. III we review the analysis of the TMCI
in the absence HCs. Since the integral equation is non-
singular, the conventional eigenvalue-analysis method is
adequate; we follow this method but with the notable
difference of adopting a grid representation for the radial
modes, which will be key to our approach in the nonlinear
case and recover the well known characterization of the
TMCI. In Sec. IV we introduce the HCs. First, we apply the
conventional eigenvalue method and comment on its short-
comings and finally we investigate stability using the new
approach leading to the main result this paper, Eq. (27). The
Appendices contain relevant formulas for the single-
particle longitudinal motion with HCs (A), a brief descrip-
tion of the RW impedance model and related quantities (B),
and numerical details for solving the regularized integral
equation (C).
In this paper we generally follow the conventions

adopted in, e.g., A. Chao’s book [17], (bunch head at
z > 0; nonvanishing domain of wakefunction at z ≤ 0; use
of cgs units; elementary charge e > 0.)

II. NOTATION, VLASOV EQUATION

The starting point is the Vlasov equation for the 4D
phase-space beam distribution Ψðy; py; z; δÞ in the longi-
tudinal and transverse (say the vertical) direction

∂Ψ
∂t þ ̇y

∂Ψ
∂y þ ṗy

∂Ψ
∂py

þ ̇z
∂Ψ
∂z þ δ̇

∂Ψ
∂δ ¼ 0; ð1Þ

followed by linearization about the equilibrium. To this end
we write the distribution as Ψ ¼ Ψ0 þ Ψ1 with Ψ0 ¼
f0ðy; pyÞg0ðz; δÞ being the equilibrium of the unpertu-
rbed motion (with normalization

R
dydpyf0 ¼ 1 andR

dδdzg0 ¼ 1) and

Ψ1 ¼ f1ðy; pyÞg1ðz; δ;ΩÞe−iΩt; ð2Þ

the one-frequency component of the induced perturbation.
Our instability analysis encompasses only the Hamiltonian
part of the dynamics, thus ignoring the Fokker-Planck term
for radiation effects [18,19] in (1). Radiation effects,
however, are accounted for in the choice of the thermal
equilibrium for g0 and (Sec. IV) in the determination of the
instability threshold as resulting from the balance between
the growth rate of the most unstable mode and radiation
damping.
The betatron motion is described in the smooth approxi-

mation by ̇y ¼ py and ̇py ¼ −ω2
yyþ Fyðz; tÞwith Fy being

the collective (scaled) force associated with the transverse
wake function WyðzÞ. In cgs units:

Fyðz; tÞ ¼ −
rcNc
γT0

Z
∞

z
dz0Wyðz − z0Þydðz0; tÞ; ð3Þ

where N is the bunch population, rc the electron classical
radius, T0 the revolution time, γ the relativistic factor, and
dz0ydðz0; tÞ (dimension of length) the vertical offset of the
bunch slice centered at z0.
We assume the single-particle motion in the longitudinal

plane to be unaffected by collective effects, integrable, and
therefore describable in terms of the action-angle variables
ðJz;φzÞ, implying that ̇φz ¼ ωsðJzÞ, the synchrotron osci-
llation frequency, is a function of Jz only (or a constant
independent of Jz if the motion is purely linear). We also
assume that the canonical transformation from the action-
angle variables to z has the form z ¼ rðJzÞ cosφz with
amplitude r depending only on the action Jz and where
there is only one harmonic in φz. This form is exact in the
purely linear case and, we believe, sufficiently accurate in
the nonlinear case of interest, see Appendix A. The more
general case where z ¼ rðJz;φzÞ does not pose any con-
ceptual difficulties but would complicate the numerical
calculation.
Linearization of (1) yields

∂Ψ1

∂t þpy
∂Ψ1

∂y −ω2
yy
∂Ψ1

∂py
þFyðz; tÞ

∂Ψ0

∂py
þωsðJzÞ

∂Ψ1

∂φz
¼ 0:

ð4Þ

From here, following the derivation detailed, e.g., in
[17,20] we are first led to an equation involving only
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g1ðJz;φzÞ. Here, g1ðJz;φzÞe−iΩt has the interpretation as
the average vertical offset of the particles contained in the
infinitesimal area ΔJzΔφz centered at ðJz;φzÞ at time t.
Upon introducing the azimuthal-mode decomposition

g1ðJz;φz;ΩÞ ¼
X∞

m¼−∞
RmðJz;ΩÞeimφz ; ð5Þ

we are finally led to

½Ω − ωy −mωsðrÞ�RmðrÞ þ i
Nrcc2

2γωyT0

g0ðrÞ

×
X∞

m0¼−∞

Z
∞

0

Rm0 ðr0ÞGm;m0 ðr; r0Þ dJz
dr0

dr0 ¼ 0; ð6Þ

where we have changed the notation to write RmðrÞ for
RmðJz;ΩÞ. This is a more general form of what in the
literature is known as Sacherer’s integral equation, with
kernel

Gm;m0 ðr; r0Þ ¼ iðm−m0Þ
Z

∞

−∞
ZyðkÞJmðkrÞJm0 ðkr0Þdk; ð7Þ

where ZyðkÞ is the impedance corresponding to the
wakefunction in (3), and Jm are the Bessel functions.
Note that (6) is more conveniently phrased in terms of the
amplitude r rather than the action.

III. LINEAR SYNCHROTRON OSCILLATIONS

In the presence of a single-frequency rf system, the linear
approximation for the single-particle equations of motion
in the rf bucket, ̇z ¼ −αcδ and δ̇ ¼ ω2

s0/ðαcÞ, is generally
very accurate. These equations can be derived from the
Hamiltonian H ¼ αcδ2/2þ ω2

s0z
2/ð2αcÞ upon identifying

z as the momentum-like canonical coordinate. In the
expressions above α > 0 is the momentum compaction,
ω2
s0 ¼ αceV1k1 cosϕ1/ðE0T0Þ the synchrotron oscillation

frequency, E0 the reference particle energy, V1 and k1 the rf
voltage and wave number, respectively, ϕ1 the rf phase with
sinϕ1 ¼ U0/ðeV1Þ. (In the limit U0 → 0, consistent with
the bunch-head at z > 0 convention, we have ϕ1 → 0,
where U0 > 0 is the particle energy loss per turn.)
With the thermal equilibrium in the form of a Gaussian,

the natural rms bunch length σz0 and rms relative energy
spread σδ are related by σz0ωs0 ¼ αcσδ. Note the σz0
notation for the rms bunch length in the absence of
HCs, vs. σz in the presence of HCs to be used later.
The transformation to the action angle-variables yielding

H ¼ ωs0Jz is z ¼
ffiffiffiffiffiffiffiffiffi
2Jzαc
ωs0

q
cosφz, and δ ¼

ffiffiffiffiffiffiffiffiffiffi
2Jzωs0
αc

q
sinφz,

and therefore we have r ¼
ffiffiffiffiffiffiffiffiffi
2Jzαc
ωs0

q
or equivalently

Jz ¼ r2σδ/ð2σz0Þ. Inserting dJz/dr ¼ rσδ/σz0 in (6)

ðΩ − ωy −mωs0ÞRmðrÞ þ i
Nrcc2

2γωyT0

e−r
2/ð2σ2z0Þ

2πσ2z0

×
X∞

m0¼−∞

Z
∞

0

Rm0 ðr0ÞGm;m0 ðr; r0Þr0dr0 ¼ 0; ð8Þ

where g0 ¼ N
2πσz0σδ

exp ð− r2

2σ2z0
Þ is the equilibrium.

Next, upon introducing the scaled radial variable
ρ ¼ r/σz0, dividing both terms in (8) by ωs0, and specia-
lizing the calculation to the RW impedance model (B1)
corresponding to a circular cross-section pipe of radius b,
length Lu, and conductivity σc we find

ðΔΩ̂ −mÞRmðρÞ þ iÎ0e−ρ
2/2

×
X∞

m0¼−∞

Z
∞

0

Rm0 ðρ0ÞGm;m0 ðρ; ρ0Þρ0dρ0 ¼ 0; ð9Þ

where the function Gm;m0 ðρ; ρ0Þ is defined in (B5) and
ΔΩ̂ ¼ ðΩ − ωyÞ/ωs0 is the collective-mode complex fre-
quency shift in units of the synchrotron-oscillation fre-
quency, we have introduced the (dimensionless) current
parameter

Î0 ¼
Nrcc

ð2πÞ3/2γνs0b3 ffiffiffiffiffiffiffiffiffiffiffiffiffi
cσcσz0

p βyLu

2π
; ð10Þ

and written ωy ¼ c/βy, valid in the smooth approxima-
tion. The generalization to the non-smooth approximation
and the case where the impedance has a local s depe-
ndence is accomplished by the substitution βyLuZy →R
βyðsÞðdZy/dsÞds [19,20]. For conversion to MKS units,

replace σcgsc → σMKS
c Z0c/ð4πÞ.

Equation (9) is a system of Fredholm integral equations
of the second kind. These equations are known to admit
converging finite-dimension approximations, provided that
the kernel satisfies certain conditions often met in the
physical systems of interest. Instead of seeking to expand in
terms of orthogonal polynomials, we approach the eigen-
value problem by representing the radial functions
Rm;n ≡ RmðρnÞ on a uniform grid ρn ¼ ðn − 1/2ÞΔρn, with
n ¼ 1; 2;…; nmax and Δρ ¼ ρmax/nmax, where ρmax is
chosen to be large enough for e−ρ

2
max/2 to be negligible.

The discretized equation can then be represented as

ðΔΩ̂ÞR⃗ ¼ MR⃗; ð11Þ

where the unknown is the ð2mmax þ 1Þ × nmax dimensional
vector

R⃗ ¼ ðR−mmax;1; R−mmax;2;…; R−mmax;nmax
;

…; Rmmax;1; Rmmax;2;…; Rmmax;nmax
Þ; ð12Þ
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and

Mm;m0;n;n0 ¼ mδm;m0δn;n0 − iÎ0e−ρ
2
n/2Gm;m0 ðρn; ρn0 Þρn0Δρ:

ð13Þ
Stability is studied by solving the eigenvalue problem

det ð1ΔΩ̂ −MÞ ¼ 0: ð14Þ
For comparison with the numerical solutions, it is useful

to derive an approximate expression for the rigid-dipole
mode (m ¼ 0) tuneshift valid in the small-current limit. In
(9) retaining only the term m ¼ 0 we have

ΔΩ̂R0ðρÞ þ iÎ0e−ρ
2/2

Z
∞

−∞
dκ

signðκÞ − iffiffiffiffiffijκjp J0ðκρÞ

×
Z

∞

0

R0ðρ0ÞJ0ðκρ0Þρ0dρ0 ¼ 0: ð15Þ

Following [17,20], the tuneshift is evaluated by inserting
R0 ¼ e−ρ

2/2, (the presumed form of the rigid-dipole mode
for Î ¼ 0) into (15), multiplying by ρ, and integrating:

ΔΩ̂≃−2Î0
Z

∞

0

dκffiffiffi
κ

p
�Z

∞

0

e−ρ
2/2J0ðκρÞρdρ

�
2

¼−Γð1/4ÞÎ0:

ð16Þ

The result of the eigenvalue analysis is shown in Fig. 1,
exhibiting the characteristic signature of the TMCI.
Increasing the current removes the degeneracy of the
azimuthal modes and causes the real part of the frequency
of one of the m ¼ 0 modes to cross that of the m ¼ −1
modes (top picture). The first crossing, approximately
described by the tuneshift formula (16), red curve in the
top picture, occurs at Î0 ¼ Îc0 ≃ 0.197, at which point the
frequency of the merged mode acquires a positive imagi-
nary part (bottom picture), setting the threshold of the
TMCI. Further crossings occur at higher currents triggering
more unstable modes. These are of academic interest since
the beam is likely to have been long lost before reaching
those currents and in any case linear theory will have
ceased to be valid. In the analysis shown here we retained
only three azimuthal modes (m ¼ −1, 0, and 1, or
mmax ¼ 1). Inclusion of additional azimuthal modes does
not change the determination of the critical current Îc0
appreciably and has only the effect of introducing new
unstable modes at higher currents.
For a practical illustration loosely based on parameters

from the ALS-U design studies [21], assume that RW is the
only relevant source of transverse impedance and that it is
dominated by aggressively narrow ID vacuum chambers of
b ¼ 3 mm radius, see Table I. There are 10 straight sections
available for IDs and we conservatively assume that the
vacuum chamber is identically narrow in all of them.
Finally, assuming copper material for the vacuum chamber
(σc ¼ 5.3 × 1017 s−1 in cgs units, or 5.9 × 107 Ω−1m−1 in
MKS units), we find a critical Nc0 ¼ 3.3 × 1010 bunch

FIG. 1. Eigenvalue analysis of the classical TMCI in the
absence of HCs. The top (bottom) picture shows the real
(imaginary) part of the complex-number mode frequencies ΔΩ̂ ¼
ðΩ − ωyÞ/ωs0 over a range of bunch currents. The current
parameter Î0 is defined in (10). The instability threshold is at
about Î0 ¼ Îc0 ≃ 0.197, resulting from the convergence of the
real parts of the frequencies of the m ¼ 0 and m ¼ −1 modes. In
the top picture the red line is the tuneshift for the rigid dipole
mode as given by Eq. (16). In the analysis we retained only three
azimuthal modes (mmax ¼ 1) and represented the radial part of
the modes on nmax ¼ 40 grid points with ρmax ¼ 4.5.

TABLE I. Beam/machine parameters loosely based on ALS-U.

Ring circumference C 196.5 m
Beam energy E0 2 GeV
Design bunch current Ib 1.76 mA
Vertical tune νy 20.368
Momentum compaction α 2.79 × 10−4

Natural energy spread σδ 0.835 × 10−3

Energy loss per turn U0 182 keV
Vertical damping time τy 14.4 ms
Main rf cavity voltage V1 0.76 MV
Main rf cavity frequency 500 MHz
Harmonic rf cavity frequency 1.5 GHz
Rms bunch length (no HCs) σz0 3.2 mm
Linear synchr. tune (no HCs) νs0 2.3 × 10−3

Rms bunch length with HCs σz 13 mm
Avg. synchr. tune with HCs hνsi 0.44 × 10−3

Total ID length Lu 40 m
ID vacuum chamber radius b 3 mm
Avg. beta function along IDs βy 3 m
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population for the instability threshold, equivalent to
8.1 mA single-bunch current, vs. a design Ib ¼ 1.76 mA.

IV. NONLINEAR SYNCHROTRON
OSCILLATIONS

Harmonic cavities lengthen the bunches by reducing the
restoring force responsible for the synchrotron oscillations
and therefore reducing their frequency. We are interested in
the ideal settings in which the HCs are tuned for maximum
flattening of the total rf voltage (and longitudinal bunch
profile). With this setting the single-particle dynamic is
well described by a cubic rf voltage, or equivalently a
quartic potential in the Hamiltonian, in which case the
synchrotron tune is approximately a linear function of the
oscillation amplitude r, see Appendix A.
Using expressions (A2) and (A4) for the relationship

between the canonical action variable and the amplitude r,

dJz
dr

¼
ffiffiffi
2

π

r
σδ
σ2z

r2; ð17Þ

and expression (A3) for the equilibrium in (6), we obtain
the linearized integral equation

½Ω − ωy −mωsðrÞ�RmðrÞ þ i
Nrcc2

2γωyT0

23/4e−h1ðr/σzÞ4

Γð1/4Þ2σ3z

×

ffiffiffi
2

π

r X∞
m0¼−∞

Z
∞

0

Rm0 ðr0ÞGm;m0 ðr; r0Þr02dr0 ¼ 0; ð18Þ

with numerical coefficient h1 ¼ 2π2/Γð1/4Þ4 ≃ 0.114 in the
argument of the exp function.
Next, we introduce the normalized radial variable ρ ¼

r/σz and divide both sides by a characteristic synchrotron
oscillation frequency, for example the synchrotron fre-
quency h2hωsi ¼ 2πh2hνsi/T0 experienced by a particle
with orbit amplitude r ¼ σz, where h2 ¼ 23/4π3/2/Γð1/4Þ2
and hνsi is the average synchrotron tune over all the
particles in the bunch, having made use of the expression
(A10) for the amplitude-dependent synchtrotron-oscillation
frequency ωsðρÞ ¼ h2hωsiρ, and write

ðΔΩ̂ −mρÞRmðρÞ þ iÎe−h1ρ
4

×
X∞

m0¼−∞

Z
∞

0

Rm0 ðρ0ÞGm;m0 ðρ; ρ0Þρ02dρ0 ¼ 0; ð19Þ

where ΔΩ̂ ¼ ðΩ − ωyÞ/ðh2hωsiÞ and

Î ¼ Nrcc
π5/2γhνsib3 ffiffiffiffiffiffiffiffiffiffiffiffi

cσcσz
p βyLu

2π
: ð20Þ

Unlike (9), Eq. (19) is a system of singular integral
equations [22], where the coefficient of RmðρÞ in the first

term is a function that vanishes for some ρ. In general,
discretization of this type of equations is not guaranteed to
yield converging solutions. It is nonetheless instructive to
ignore this warning and try to solve the associated
eigenvalue problem by discretizing this equation anyway.
We do so by representing the radial-mode functions RmðρÞ
on a uniform grid as we did for the case without HCs. We
could adopt an expansion of the radial modes in terms of
orthogonal polynomials, as done in the text books for the
case of unperturbed linear motion, but that should be
avoided. For one thing, orthogonal polynomials with the
required e−h1ρ

4

weighting function are not readily available
in the literature and, more importantly, they are less likely
to provide a good basis because of the generally singular
nature of the expected eigenfunctions.

A. Stability analysis by the eigenvalue method

Following the conventional method we proceed as in
Sec. III and upon discretization of the integral equation face
an eigenvalue problem formally identical to (11),
ðΔΩ̂ÞR⃗ ¼ MR⃗, but now with matrix

Mm;m0;n;n0 ¼ mρnδm;m0δn;n0 − iÎe−h1ρ
4
nGm;m0 ðρn; ρn0 Þρ2n0Δρ:

ð21Þ

The result of the eigenvalue analysis is shown in Fig. 2 for
increasingly larger number of grid points nmax in the radial
coordinate, as indicated. As expected, convergence toward
the continuum limit appears to be slow if not outright
questionable, particularly at lower current. These pictures,
however, do provide valuable insight. It is apparent that the
basic mechanism of mode coupling is still at play. The
emergence of unstable mode is still triggered by
the convergence of one of the m ¼ 0 and one of the m ¼
−1 modes. The difference with the linear case is that
coupling can now occur at arbitrarily low currents. For
currents less than ∼0.25, regions of instability appear
interleaved with regions of stability, with the extent of
the latter progressively reduced by the increasing number
of grid points nmax.

B. Analysis of the regularized integral equation

Following [14,15] the integral equation can be regular-
ized by a simple transformation of the unknown function
RmðρÞ → SmðρÞ ¼ ðΔΩ̂ −mρÞRmðρÞeh1ρ4 yielding

SmðρÞ þ iÎ
X∞

m0¼−∞

Z
∞

0

Sm0 ðρ0Þe−h1ρ04
ΔΩ̂ −m0ρ0

Gm;m0 ðρ; ρ0Þρ02dρ0 ¼ 0:

ð22Þ

Not surprisingly, the integral in (22) is now cast in a form
reminiscent of the dispersion equation familiar from the
longitudinal stability analysis of coasting beams or plasma
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waves. Without delving in mathematical details, which will
be reported more at length elsewhere, we should note that
in this form Eq. (22) properly describes modes with strictly
positive imaginary frequency Im ΔΩ̂ > 0. If certain con-
ditions are met, extension to modes with arbitrary imagi-
nary part may be done by analytic continuation (in practice,
by appropriate modification of the integration contour) but
for our purposes here this is not necessary.
We proceed by carrying out a discretization of (22) by

representing the unknown SmðρnÞ ¼ Sm;n on a grid ρn and
doing a linear approximation between grid points of the
numerator in the integrand. As detailed in Appendix C, the
equation is reduced to the form ½1þ BðΔΩ̂Þ�S⃗ ¼ 0, where
B is a ð2mmax þ 1Þ × nmax matrix and S⃗ is similar to (12).
Unlike (14), the resulting secular equation

det½1þ BðΔΩ̂Þ� ¼ 0 ð23Þ

is a transcendental (vs. polynomial) equation in the fre-
quency ΔΩ̂ and in principle more difficult to handle. In
practice, however, we found that a Newton method with
appropriately set starting point never failed to converge.
The outcome of our numerical analysis is shown Fig. 3,
reporting real and imaginary part of the frequency of the
most unstable mode in a calculation using nmax ¼ 40 radial
grid points andmmax ¼ 1. The main result of this analysis is
that transverse single-bunch motion in the presence of the
RW impedance is unstable at any current.

Over a large current range the imaginary part of the
frequency of the most unstable mode is well fitted by the
function (dashed line in the bottom picture of Fig. 3)

ImΔΩ̂ ¼ ð25/3ÎÞ6
1þ 0.55 × ð4ÎÞ5½1þ tanhðÎ/2Þ� : ð24Þ

It is tempting to make the conjecture that ImΔΩ̂ ¼
ð25/3ÎÞ6 may be the exact asymptotic limit for Î → 0. It is
seen to track the numerical data quite accurately for Î ⪅ 0.2.
The deviation observed at very low Î is dependent on the
choice of nmax and we verified that the error scales
consistently with this power law if we increase or decrease
nmax.
Similar to the case familiar from the longitudinal stability

analysis of coasting beams, the spectrum of eigenvalues
with positive imaginary part is discrete. The corresponding
eigenfunctions are regular functions (in contrast, the
eigenfunctions with purely real eigenvalues are generalized
functions). An illustration of the unstable mode for Î ¼ 0.2,
with eigenvalue ΔΩ̂ ¼ ðΩ − ωyÞ/ðh2hωsiÞ ¼ −1.206þ
0.070i is given in Figs. 4 and 5. The mode is identified
as the eigenvector of the matrix BðΔΩ̂Þ in Eq. (23) with
eigenvalue −1. For this value of Î we found no numerical
evidence of additional unstable modes but the existence of
multiple roots of the secular equation (23), possibly with
very small (positive) imaginary part, cannot be ruled out.
Specifically, Fig. 4 shows a fully 3D representation,

FIG. 2. Stability analysis in the presence of HCs using the conventional eigenvalue-method analysis. The top (bottom) pictures show
the real (imaginary) part of the modes complex-number frequencies ΔΩ̂ ¼ ðΩ − ωyÞ/ðh2hωsiÞ as functions of the current parameter Î,
for increasingly finer (left to right) grids in the radial variable ρ, as indicated. The bottom pictures are in log scale and report only the
frequencies with positive imaginary part (unstable modes). Particularly at small Î, convergence to what we believe is the exact
asymptotic solution of the infinite-dimension problem Im ΔΩ̂ ¼ ð25/3 ÎÞ6, (valid for Î ⪅ 0.2, red dashed curve; see Sec. IV), appears to
be slow if not outright questionable.
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including the azimuthal-angle dependence, while Fig. 5
shows the radial parts of the two dominant azimuthal
components.
Observe that the mode density is peaked around a narrow

annulus with radius ρ ≃ jReΔΩ̂j, corresponding to the orbit
amplitude of particles that undergo synchrotron oscillations
with frequency ωsðρÞ equal to the real part of the
mode frequency shift, i.e., jReΔΩj ¼ jReΩ − ωyj ¼
jReΔΩ̂jh2hωsi ≃ ρh2hωsi ¼ ωsðρÞ. At smaller current the
radius of the annulus moves toward the origin ρ ¼ 0 and the
radial profile becomes increasingly more spiky. This is
consistent with the real part of the eigenvalue also tending to

zero and therefore the eigenfunction becoming more sin-
gular, and it correlates to the apparent numerical difficulty
seen in Fig. 2 at low Î: as the mode approaches a singular
profile it demands an increasingly finer grid resolution.
In electron storage rings radiation damping will even-

tually prevail if the bunch current is not too high. The
condition ImΩ ¼ τ−1y , where τy is the vertical radiation
damping time, defines the critical current parameter Î ¼ Îc
as follows: ImΩ ¼ h2hωsiImΔΩ̂ ¼ h2hωsið25/3ÎcÞ6 ¼
τ−1y , having restricted our analysis to the regime where
the ImΔΩ̂ ∝ Î6 power law applies. We have

Îc ¼
2−5/3

ðh2τyhωsiÞ1/6
≃ 0.245 ×

�
T0

τyhνsi
�

1/6
: ð25Þ

FIG. 3. Stability analysis in the presence of HCs using the
mode-decomposition method proposed in this paper. Real (top)
and imaginary (middle and bottom) parts of the root with largest
imaginary part of the secular equation (23), as functions of the
current parameter Î. The middle picture contains the same data as
the bottom picture but on a different scale for easier comparison
with Fig. 2. In the limit of small Î the numerical solution is
consistent with the power law Im ΔΩ̂ ¼ ð25/3 ÎÞ6, dashed curve in
the middle picture. Overall, the numerical solution is reasonably
well fitted by Eq. (24), dashed curve in the bottom picture.
Calculation done with nmax ¼ 40, mmax ¼ 1, and ρmax ¼ 3.

FIG. 4. Example of unstable eigenmode. The images show
the density plot (bottom) and 3D view (top) of mode Re
½Pm¼1

m¼−1 RmðρÞeimφz �, with eigenvalue ΔΩ̂ ¼ ðΩ − ωyÞ/
ðh2hωsiÞ ¼ −1.206þ 0.070i, at scaled current Î ¼ 0.2. The den-
sity is plotted in the longitudinal phase-space normalized
coordinatesZ ¼ ρ sinφz,Δ ¼ ρ cosφz. Themaximummagnitude
occurs at amplitude ρ ≃ jReΔΩ̂j. This is where a particle synchro-
tron-oscillation frequency ωsðρÞ equals the (real)
frequency shift of the collective mode: jReΔΩj ¼ jReΩ − ωyj ¼
jReΔΩ̂jh2hωsi ≃ ρh2hωsi ¼ ωsðρÞ. The radial parts of the two
azimuthal dominant components of this mode are shown in Fig. 5.
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More expressively, we can relate Nc, the critical bunch
population in the presence of HCs, and Nc0, the critical
bunch population in the absence of HC, when all the
relevant machine parameters are kept unchanged while the
HCs are turned on and off. Combining (10), (25), and (20)
gives

Nc¼Nc0×
π

8×21/6Îc0

�
1

τyh2hωsi
�

1/6 hνsi
νs0

�
σz
σz0

�
1/2
; ð26Þ

where Îc0 ≃ 0.197 is the critical current parameter for the
onset of the TMC-Instability in the linear case as deter-
mined in Sec. III [23].
Making use of the relationship (A11) between synchro-

tron tunes and bunch lengths with and without HC
specialized to third-harmonic cavities, we obtain the final
result

Nc ≃ 1.15 × Nc0

�
T0

τyνs0

�
1/6
�
σz0
σz

�
1/3
: ð27Þ

Note that the quantity elevated to the 1/6 power now
depends on νs0 not hνsi. Using the machine parameters
from the ALS-U example (Table I), we find a critical
current Îc ≃ 0.168 < 0.2 placing the system in the regime
of the validity of the Im Ω̂ ∝ Î6 scaling, see Fig 3. Finally,
from Eq. (27), we conclude Nc/Nc0 ≃ 0.37, corresponding

to Ib ¼ 3 mA, i.e. the instability threshold with HCs is less
than 40% of that without. More in detail, ½T0/ðτyνs0Þ�1/6 ≃
0.52 and ðσz0/σzÞ1/3 ≃ 4−1/3 ≃ 0.62.
A macroparticle simulation with ELEGANT [24] confirms

the ∼I6b scaling, Fig. 6, and overall is reasonably close to
the theory. At this time we have not tried to investigate the
observed disagreement and it remains to be determined
whether it is related the approximations involved in the
analytical model, the difference in the modeling of higher-
order terms of the rf voltage nonlinearities, which are
included in ELEGANT but not in the theory, or other causes.
The estimated Ib ≃ 3 mA critical current is still com-

fortably above the ALS-U design bunch current, consid-
ering that the vacuum chambers of most IDs will have an
aperture radius larger than b ¼ 3 mm. However, we should
add that this analysis ignores the RW contribution from the
required NEG coating, which can be significant.

V. CONCLUSIONS

In the absence of HCs it is well known that the TMCI
current threshold scales proportionally to the synchrotron
tune, see Eq. (10). As HCs reduce the synchrotron
oscillation frequency (for ideal HC settings the synchrotron
tune is approximately a linear function of the oscillation
amplitude r, vanishing in the r → 0 limit) one could be
intuitively led to infer a substantial degradation of stability.
On the other hand, a longer bunch length and mixing from
the synchrotron-tune spread could plausibly be credited for
reducing the instability.
In the end, our analysis indicates that the presence of

HCs in an environment dominated by the RW impedance
has an overall destabilizing effect, with the single-bunch
transverse dynamics turning out to be unstable at any
current. The instability growth rate, however, decreases
very rapidly with current and for sufficiently small current
radiation damping will eventually prevail. For machine
parameters relevant to 4th-generation light sources one can

FIG. 5. Real (top) and imaginary (bottom) radial parts of the
two dominant azimuthal components, m ¼ −1 (black solid line)
and m ¼ 0, (red dashed line) of the unstable mode shown in
Fig. 4, highlighting the peaks at ρ ≃ jReΔΩ̂j. The m ¼ 1
component, having much smaller amplitude, is not shown.

FIG. 6. The TMC-Instability growth rate vs. bunch current from
macroparticle simulations (dots) tracks reasonably well the
theory (solid line). The simulation does not include radiation
damping but for reference the expected radiation damping rate
(dashed line) is also reported. ALS-U parameters as in Table I.
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expect a reduction of the instability threshold by a factor
two or more due to the HCs.
We should caution that this conclusion is strictly depen-

dent on the nature of the impedance. As already noticed in
[8], a broad-band resonator model for the transverse
impedance, for example, could lessen and possibly erase
the HC penalty on the instability, as it gives more weight to
the longer-bunch advantage. (A simple inspection of the
integral equation shows that for a broad-band resonator
impedance the current parameter Î has the more favorable
Î ≃ σ−1z scaling rather than Î ≃ σ−1/2z as in the RW case.) We
plan to investigate this and other impedance models in the
future. This suggests that in the MAX-IV studies [5,9]
mentioned in the Introduction, where HCs were not seen to
modify the instability threshold, the transverse impedance
was presumably not RW dominated.
Finally, we note that the method employed here has

elements of a more general theory, to which we will return
elsewhere, that can be easily extended to include finite
chromaticities and in principle radiation and multibunch
effects, feedback models, as well as more general tuning of
the HCs.
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APPENDIX A: SINGLE-PARTICLE DYNAMICS IN
A DOUBLE-FREQUENCY RF SYSTEM:

USEFUL FORMULAS

The motion of an ultrarelativistic electron in an rf
bucket obeys ̇z ¼ −αcδ and ̇δ ¼ eVrfðzÞ/ðE0T0Þ where
in a double frequency rf system VrfðzÞ¼V1sinðk1zþϕ1Þþ
VnsinðknzþϕnÞ−U0/e, with V1 and Vn being the main and
harmonic cavity voltages, k1 and kn ¼ nk1 their wave
numbers, n the harmonic number, and U0 the particle
radiation loss per turn.
If the harmonic cavity phase and voltage are

chosen so that cosϕn ¼ −½V1/ðnVnÞ� cosϕ1 and Vn ¼
ðV1/nÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2ϕ1 þ n−2sin2ϕ1

p
where sinϕ1 ¼ n2ðU0/eV1Þ/

ðn2 − 1Þ is the phase of the main cavity, we find that the
first two derivatives of VrfðzÞ at z ¼ 0 vanish. The volt-
age is then dominated by the third-order term [25]
VrfðzÞ ≃ z3½ðn2 − 1Þ/6�k31V1 cosϕ1. In the approximation
where we retain only this cubic term, the single-particle
motion is described by a Hamiltonian with quartic potential
H ¼ αc δ2

2
þ αcq z4

4
, with

q ¼ n2 − 1

6

eV1k31
αcE0T0

cosϕ1 ≃
4

3

ω2
s0k

2
1

ðαcÞ2 : ðA1Þ

The approximate equality in (A1) is valid for third-
harmonic cavities (n ¼ 3) and U0/ðeV1Þ ≪ 1, in which
case the setting of the main cavity voltage will be about the
same whether or not the HCs are present (recall the
expression of the synchrotron frequency ωs0 observed in
the absence of HCs).
An orbit in the z/δ phase space (roughly, a squeezed

ellipse) is uniquely identified by the maximum amplitude
z ¼ r occurring at δ ¼ 0 (because of symmetry the mini-
mum z of the orbit occurs at z ¼ −r). We are interested in
determining the Hamiltonian, action variable Jz, and non-
linear synchrotron oscillation frequency ωs as a function of
r. The Hamiltonian reads H ¼ αcqr4/4. The action is

Jz ¼
1

2π

I
δðzÞdz ¼ 1

π

�
q
2

�
1/2

Z
r

−r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 − z4

p
dz ¼ 2K̂

3π

ffiffiffi
q

p
r3

ðA2Þ

where K̂ ¼ Γð1/4Þ2/ð4 ffiffiffi
π

p Þ ¼ 2−3/2
ffiffiffi
π

p
Γð1/4Þ/Γð3/4Þ ≃

1.854 is a numerical factor and Γ the Euler function.
From the Hamiltonian we derive the equilibrium for
the beam longitudinal density in the form g0ðrÞ ¼
A expð−H/ðαcσ2δÞÞ with A determined by normalization.
As a function for the amplitude variable r the equilibrium
reads

g0ðrÞ ¼
23/4

Γð1/4Þ2σzσδ
exp

�
−h1

r4

σ4z

�
; ðA3Þ

with numerical coefficient h1 ¼ 2π2/Γð1/4Þ4 ≃ 0.114,
where

σ2z ¼ σδ
2ffiffiffi
q

p Γð3/4Þ
Γð1/4Þ ðA4Þ

is the square of the rms bunch length in the presence of
HCs. Notice the linear dependence on σδ. Combining (A4)
and (A1), and making use of the relationship between linear
synchrotron tune and natural bunch length σz0 in the
absence of HCs we find

σ2z ≃ 31/2
Γð3/4Þ
Γð1/4Þ

σz0
k1

: ðA5Þ

Equivalently, the lengthening factor reads

σz
σz0

¼ 31/4ffiffiffiffiffiffiffiffiffiffiffi
σz0k1

p Γð3/4Þ1/2
Γð1/4Þ1/2 ≃

0.765ffiffiffiffiffiffiffiffiffiffiffi
σz0k1

p : ðA6Þ

We emphasize that the numerical coefficient here is valid
for third-harmonic HCs.
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The nonlinear synchrotron oscillation frequency

ωsðrÞ ¼
2π

Ts
¼ π

2K̂

ffiffiffi
q

p
αcr ðA7Þ

follows from

Ts ¼
2

αc

Z
r

−r

dz

ðq
2
Þ1/2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 − z4

p ¼ 1ffiffiffi
q

p
αcr

Γð1/4Þ2ffiffiffi
π

p : ðA8Þ

It is useful to calculate the average synchrotron
oscillation frequency hωsi ¼

R
ωsðJzÞg0ðJzÞdφdJz ¼

2π
R
ωsðrÞg0ðrÞ dJzdr dr to find

hωsi ¼
2 × 23/4π

Γð1/4Þ2
αcσδ
σz

≃ 0.803 ×
αcσδ
σz

; ðA9Þ

and then evaluate

ωsðrÞ
hωsi

¼ h2
r
σz

; ðA10Þ

where h2 ¼ 23/4π3/2/Γð1/4Þ2 ≃ 0.712. Recalling the
expression σz0ωs0 ¼ cασδ we can also write

hνsi
νs0

¼ hωsi
ωs0

¼ 2 × 23/4π

Γð1/4Þ2
σz0
σz

≃ 0.803 ×
σz0
σz

: ðA11Þ

Finally, we need the canonical transformation from the
action-anglevariables toz ¼ zðJz;φzÞ.Theexactexpression,
involving Jacobi elliptic functions (see e.g. [25,26]) reads
z ¼ rcnð2K̂φz/π; 1/2Þ with Fourier expansion z ¼P∞

p¼0 rζp cos½ð2pþ 1Þφz� and ζp¼
ffiffi
2

p
π

K̂
/cosh½πð2pþ1Þ/2�.

The z ≃ r cosφz approximation of the canonical transforma-
tion assumed in Sec. IV entails an error j cosðφzÞ −
cnð2K̂φz/π; 1/2Þj relative to the maximum amplitude that
is about 6%at the largest. Because of the oscillating nature of
the error, we expect the impact on the determination of the
current threshold tobe somewhat smaller.Weareencouraged
that in the analysis of longitudinal instabilities [26] this
approximationwas found to result into only a 1% error in the
determination of the threshold.

APPENDIX B: RW IMPEDANCE MODEL AND
KERNEL OF THE INTEGRAL EQUATION

The RW transverse dipole impedance for a pipe with
circular cross section of radius b, length L, and conduc-
tivity σc has the asymptotic expression, generally adequate
for describing both single and multibunch transverse bunch
instabilities in storage rings,

ZyðkÞ ¼
signðkÞ − iffiffiffiffiffijkjp L

b3

ffiffiffiffiffiffiffiffiffiffi
2

πcσc

s
; ðB1Þ

(in MKS units, ZyðkÞ ¼ signðkÞ−iffiffiffiffi
jkj

p L
πb3

ffiffiffiffiffi
Z0

2σc

q
), with associated

wakefunction (nonvanishing for z < 0)

WyðzÞ ¼ −
ic
2π

Z
dkeikzZyðkÞ

¼ −
2L
πb3

ffiffiffiffiffiffiffiffiffiffi
c

σcjzj
r

: ðB2Þ

With this impedance the kernel of the integral equa-
tion (6) reads

Gm;m0 ðr; r0Þ ¼ L
b3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

πcσcσz

s
Gm;m0 ðρ; ρ0Þ; ðB3Þ

where, having introduced the scaled radial variable
ρ ¼ r/σz, we have defined the dimensionless kernel

Gm;m0 ðρ; ρ0Þ ¼ iðm−m0Þ
Z

∞

−∞
dκ

signðκÞ − iffiffiffiffiffijκjp JmðκρÞJm0 ðκρ0Þ:

ðB4Þ

Since Jmð−xÞ ¼ ð−1ÞmJmðxÞ and J−mðxÞ ¼ ð−1ÞmJmðxÞ,
we have

Gm;m0 ðρ; ρ0Þ ¼ cm;m0dmdm0iðm−m0Þ
Z

∞

0

dκffiffiffi
κ

p JjmjðκρÞJjm0jðκρ0Þ;

ðB5Þ

with coefficients cm;m0 ¼ ½1 − ð−1Þmþm0 � − i½1þ ð−1Þmþm0 �
and dm ¼ ½signðmÞ�m.
Suppose ρ ≠ ρ0 and ρ< (ρ>) is the smaller (larger)

between ρ and ρ0. Then, the integral in (B5) can be
expressed in terms of the Euler gamma Γ and the hyper-
geometric function 2F1. For non-negative integers μ, ν we
have [27,28]Z

∞

0

dκffiffiffi
κ

p Jμðκρ>ÞJνðκρ<Þ

¼ ΓðaÞ
Γð1−bÞΓð1þνÞ

1ffiffiffiffiffiffiffiffi
2ρ>

p ρν<
ρν>

2F1

�
b;a;1þν;

ρ2<
ρ2>

�
; ðB6Þ

where a ¼ ð1þ 2μþ 2νÞ/4, b ¼ ð1 − 2μþ 2νÞ/4. The
case ρ ¼ ρ0 is obtained by taking the ρ0 → ρ limit. In
passing, we note that the hypergeometric functions appear-
ing here can be expressed in terms of the complete elliptic
integrals E and K.

APPENDIX C: NUMERICAL EVALUATION OF
THE REGULARIZED INTEGRAL EQUATION

The regularized equation (22) can be discretized upon
setting ρn0 ¼ ðn0 − 1/2ÞΔρ:
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Sm;n þ iÎ
X∞

m0¼−∞

Xnmax

n0¼1

Z
ρn0þ1

ρn0

hn0 ðρ0Þ
ΔΩ̂ −m0ρ0

dρ0 ¼ 0; ðC1Þ

where Sm;n ¼ SmðρnÞ are the value of the unknown radial
function on the grid ρn points and

hn0 ðρ0Þ ¼ Sm0;n0þ1An0þ1

ρ0 − ρn0

Δρ
− Sm0;n0An0

ρ0 − ρn0þ1

Δρ
ðC2Þ

is a linear interpolation of the numerator in the integrand of

(22)betweengridpointswithAn0 ¼ e−h1ρ
4

n0Gm;m0 ðρn; ρn0 Þρ2n0 .
For simplicity, in the notation of A we have omitted the
dependence on m;m0; n. If Ω has a finite imaginary part we
have for m0 ≠ 0

Z
p2

p1

p − r
Ω −m0p

dp ¼ p1 − p2

m0 −
Ω −m0r
m02 log

m0p2 −Ω
m0p1 −Ω

ðC3Þ

and

Z
p2

p1

p − r
Ω

dp ¼ ðp2 − p1Þðp2 þ p1 − 2rÞ
2Ω

ðC4Þ

for m0 ¼ 0. Define the auxiliary functions

F�
m0;n0 ¼

Z ðn0þ1/2ÞΔρ

ðn0−1/2ÞΔρ

ρ − ðn0 � 1/2ÞΔρ
Ω −m0ρ

dρ; ðC5Þ

to obtain

SmðρÞþ i
Î
Δρ

X∞
m0¼−∞

Xnmax

n0¼1

×
Z

ρn0þ1

ρn0
½Sm0;n0þ1An0þ1F−

m0;n0 −Sm0;n0An0F
þ
m0;n0 �¼0; ðC6Þ

and finally

Sm;n þ iÎ
Xmmax

m0¼−mmax

Xnmax

n0¼1

Bm;n;m0;n0Sm0;n0 ¼ 0; ðC7Þ

with Bm;n;m0;n0 ¼ ½F−
m0;n0−1 − Fþ

m0;n0 �An0 /Δρ for n0 > 1 and
n0 < nmax. While Bm;n;m0;n0¼1 ¼ −Fþ

m0;n0¼1
An0¼1/Δρ

and Bm;n;m0;n0¼nmax
¼ F−

m0;nmax−1
An0¼nmax

/Δρ.
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