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The Vlasov-Poisson model is one of the most effective methods to study the space charge dominated
beam evolution self-consistently in a periodic focusing channel. Since the approach to get the solution with
this model is not trivial, previous studies are limited in degenerated conditions, either in smoothed channel
(constant focusing) [I. Hofmann, Phys. Rev. E 57, 4713 (1998)] or in alternating gradient focusing channel
with equal initial beam emittance condition in the degrees of freedom [I. Hofmann et al., Part. Accel. 13,
145 (1983); Chao Li et al., THOBA02, IPAC2016]. To establish a basis, we intentionally limit this article to
the study of the pure transverse periodic focusing lattice with arbitrary initial beam condition, and the same
lattice structure in both degrees of freedom, but with possibility of different focusing strengths. This will
show the extension of the existing work. The full Hamiltonian is invoked for a pure transverse focusing
lattice in various initial beam conditions, revealing different mode structure and additional modes beyond
those of the degenerated cases. Application of the extended method to realistic lattices (including
longitudinal accelerating elements) and further details will then reveal many new insights, and will be
presented in later work.
DOI: 10.1103/PhysRevAccelBeams.21.024204

I. INTRODUCTION

A fundamental understanding of the equilibrium and
stability properties of high intensity beam in linear and
circular accelerators is crucial for the development of
advanced particle accelerator applications [1–3]. Thus,
great attention has been paid in the past to the collective
beam instability caused by space charge in high intensity
machines. From the analytical point of view, the stability
study of the intense beam requires a self-consistent process
in which the Vlasov and Poission equations have to be
satisfied simultaneously. Researches following the self-
consistent Vlasov-Poisson description are known as col-
lective beam dynamics [4–6]. The solution for such
coupled Vlasov-Poisson system is not trivial and the
researches on the subject started from simplified
approaches and models, typical examples are systems with
low degrees of freedom and smooth approximation leading
to a constant focusing channel assumption. As to the
smooth approximation—the constant focusing channel,

the oscillating mode of a uniform 2D beam with only
one degree of freedom was first studied by Sacherer and
Smith [7,8], in which the dispersion relationship was
derived to show the unstable parameter region indicated
by the existence of an imaginary part of the eigenfrequency.
In the 1970s, R. L. Gluckstern extended Sacherer’s work to
the beam system with two degrees of freedom [9,10],
assuming 4D Kapchinskij-Vladimirskij (KV) input beam
distribution [11], but limited to the specific condition that
the external focusing forces are constant and the emittances
in two degrees of freedom are equal. Hofmann extended
Gluckstern’s work to various initial beam emittance ratios
in two degrees of freedom and gave the general dispersion
relationship formulation when different orders of pertur-
bation due to space charge of the initial distribution are
injected into a constant focusing channel [6].
However, smooth approximation removes all details

inside the transverse focusing period and nearly all actual
ring and linear accelerator lattices contain details inside the
transverse focusing period that we want to understand, such
as, the separated functionality of the actual transport,
inclusion of driving functions other than just transverse
focusing elements, etc.
In a nonsmoothed periodic alternative gradient focusing

channel, the collective modes based on the Vlasov-Poisson
approach and 4D KV initial beam assumption were first
studied by Laslett and Smith [12] at Lawrence Berkeley
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Laboratory. The first general report is given by Hofmann
et al. in 1983 [4] and revisited by Chao Li et al. in 2016 [5].
However, these results are for a limited case with equal
external focusing and emittances in two degrees of freedom.
To establish a basis, we intentionally limit this article to

the study of the pure transverse periodic focusing lattice.
This will show the extension of the existing work. The full
Hamiltonian is invoked for a pure transverse focusing
lattice, revealing different mode structure and additional
modes beyond those obtained from the smooth approxi-
mation [6] and those from limited beam initial conditions
[4,5,12]. Application of the extended method to realistic
lattices (including longitudinal accelerating elements) and
further details will then reveal many new insights, and will
be presented in later work.
In this paper, following the former studies [5], the

Vlasov-Poisson model is extended to pure transverse
periodic focusing channels with no smooth approximation
and arbitrary emittance ratio between two degrees of
freedom. The eigenmodes up to the 4th order are analyti-
cally constructed and eigenvalues are numerically obtained
for collective stability analysis. Since the KV beam initial
distribution supplies only linear space charge inside the
beam and lacks detuning and damping mechanisms except
only from numerical noise, conclusions obtained from KV
beam analysis have to be carefully checked to extend to
other beam distributions. In Sec. II, we carefully define the
terminologies of different kinds of resonances we identify
in this paper, and specify the structure resonance mech-
anisms we will mainly discuss. In Sec. III, the basic idea to
construct collective modes and the mathematical approach
to get the related eigenvalues are given. The parameter
region where structure resonance takes place is termed as
collective unstable stop band. In Sec. IV, we show that
results obtained degenerate to results discussed in Ref. [6]
if the smooth approximation is adopted. Discussion is given
in Sec. V.

II. NOMENCLATURE OF RESONANCES
IN ION ACCELERATORS

In periodical dynamics system with period length S,
Zðsþ SÞ ¼ MðSÞZðsÞ, the term “phase advance” is
defined as the phase that the oscillator sweeps in phase
space ðZðsÞ; Z0ðsÞÞ; MðSÞ is usually defined as the transfer
matrix requiring MðsÞ ¼ Mðsþ SÞ. In a general sense, the
eigenvalues of transfer matrix Abs½MðSÞ� indicates the
stability of the system and the eigenphase Arg½MðSÞ� gives
the related phase advance. In ion accelerators, we focus on
three motions: single particle motion xðsÞ, beam envelope
oscillation RðsÞ, and collective motion Ij;k;lðsÞ (defined in
Sec. III), which have to be carefully evaluated simulta-
neously. As a consequence, three types of “phase advance”
can be defined in the isolated phase spaces (xðsÞ,x0ðsÞ),
[RðsÞ, R0ðsÞ], and [Ij;k;lðsÞ, I0j;k;lðsÞ] respectively.

Single particle phase advance σs is used for single
particle dynamics. The nonlinear effects from external
elements and internal space charge cause different particles
to have different particle phase advance σs, leading to a
beam phase advance spread. In rings, this phase advance
spread in equivalent to tune spread.
Envelope phase advanceΦe is used to depict the envelope

RðsÞ oscillation characteristics. In a periodic channel with
matched beam condition, the envelope oscillates once in one
focusing period, which makes one whole elliptical trajectory
in (R, R0) phase space. Thus this envelope phase advance
Φe ¼ 360°. Φe naturally represents the periodicity of the
lattice. The words “envelope oscillation period” and “lattice
period” are considered equivalent.
Collective mode phase advance Φj;k;l is used to depict

the collective modes Ij;k;l. In this manuscript, one of the key
issues is to model the collective motions and to show how
to get these collective mode phase advances—Φj;k;l.
Phase advance with and without beam current σ0, σ are

the standard notation; σ0 and σ are used to evaluate the
average focusing strength in one focusing period without
and with space charge. They play the same role as working
point and detuned working point in rings. In periodic
linacs, they are obtained from the integration of the betatron
function numerically.
In general, the terminology resonance is expressed as

ratios between normalized frequencies in the form ω1/ω2 ¼
n/m, where m and n are arbitrary integers. If appropriate
driving forces were applied on such systems, driven
resonances take place between the two motions. In a
simplified periodic lattice, normalized by the period length
S, three frequencies can be defined: ωs ¼ σs/360°, ωe ¼
Φe/360° ¼ 1, and ωj;k;l ¼ Φj;k;l/360° due to motions of
single particle motion, envelope and collective modes.
Since we are mainly concentrating on the collective beam
behavior, resonances related to single particle behavior σs
will not be discussed in the paper but in a separate research
on beam halo formation. Thus in the following, we will
mainly discuss the resonances between any two collective
modes Φj;k;l or between any Φj;k;l and Φe.
Following the former study of envelope dynamics

[13,14], the collective unstable stop band is derived from
parametric resonancewith the conditionΦj;k;l/Φe ¼ n/2 or
confluent resonance when two eigenphases satisfy Φ1

j;k;l þ
Φ2

j;k;l ¼ nΦe. We adopt the terminology structure reso-
nance to include both parametric resonances and confluent
resonances. Physically, we emphasize again that the para-
metric resonance refers in particular to resonance between
collective mode Φj;k;l and lattice period Φe; whereas the
confluent resonance refers in particular to resonance
between different collective modes Φj;k;l. Generally, para-
metric resonance is indicated by eigenphase Φj;k;l locking
to n � 180° lines and confluent resonance is indicated by the
merging of two eigenphases. The collective motions can be
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grouped into positive energy oscillation modes and neg-
ative energy oscillation modes. It is believed that when the
(positive—negative) energy oscillation modes merge, it is a
peculiarity of the KV beam and these unstable modes are
usually ignored.

III. COLLECTIVE MODES ANALYSIS WITH
VLASOV-POISSON MODEL

In this section, we summarize the basic methods and
approaches to get the collective modes based on the
coupled Vlasov-Poisson model. Following the former
researches, the 4D KV (the only known beam profile that
is self-consistent and can be treated analytically in linear
channel) initial beam evolution in a periodic linear focusing
channel—coasting beam—is used to model the beam
behavior. The classical linearized perturbation theory
[15] is used to obtain the collective motions—eigenmodes.
Defining the KV beam function in phase space as f0ðH0Þ,
and the unperturbed particle Hamiltonian is noted as H0,
equilibrium condition requires

f0ðx; px; y; pyÞ ¼ fðH0Þ;

H0 ¼
1

2
½kxðsÞx2 þ p2

x� þ
1

2
½kyðsÞy2 þ p2

y�
þ Vscðx; yÞ ð1Þ

where kxðsÞ and kyðsÞ represent the external focusing
strength supplied by the focusing elements; px and py

are generalized momentum in x and y direction; Vscðx; yÞ is
the space charge potential without any perturbation.
The distribution function f0 has to meet the Vlasov
equation and space charge potential has to meet the
Poisson equation that

∂f0
∂s þ ½f0; H0� ¼ 0; ∇2Vscðx; yÞ ¼

1

ϵ0

Z Z
f0dxdy;

ð2Þ

where ½; � is the Poisson bracket operator. The existence of
an arbitrary perturbation f1 will lead to the perturbed space
charge potential V1

scðx; y; sÞ. Thus, the first order linearized
Vlasov and Poisson equation can be obtained

∂f1
∂s þ ½f1; H0� þ ½f0; V1

sc� ¼ 0;

∇2V1
scðx; yÞ ¼

1

ϵ0

Z Z
f1dxdy: ð3Þ

which indicates the evolution of perturbation f1 will be
affected both by the space charge potential Vsc generated
by f0 and perturbed space charge potential V1

sc generated
by f1. Meanwhile, (f0 Vsc) and (f1 V1

sc) both have to meet
the Poisson equation and boundary conditions to ensure the

self-consistence. Thus, with appropriate coupled equations
constructed, the eigenmodes analysis of the perturbed
system can be used to check if f1 would be self-motivated
and self-magnified by the space charge potential V1

sc
generated by f1 itself—if so, this would constitute an
instability.
Generally, it is assumed that the perturbed space charge

potential function is polynomial form in the interior of the
beam. This actually assumes that the beam surface is
distorted in real space by the space charge potential to a
regular pattern. It will be shown that with different
perturbation potentials V1

scðx; y; sÞ, various collective
motions Ij;k;lðsÞ—definition as shown in Eq. (9)—can
be constructed, which physically represent the integrals
of the surface electric field discontinuity from period to
period. To ensure self-consistence, the constructed Ij;k;lðsÞ
have to meet the Poisson equation and boundary condi-
tions, and finally the transfer of the collective motions
IðsÞ ¼ ½Ij;k;lðsÞ; Ij;k;lðsÞ0� in one period is in the form
I0ðsÞ ¼ MðsÞIðsÞ, which is exactly the Mathieu equation.
The stability of the system IðsÞ ¼ MðsÞIðsÞ is decided with
the eigenvalues λ of the Jacobi matrix MðSÞ in one period
(Floquet’s theory). In a general case, with N constructed
integrals Ij;k;lðsÞ, the obtained 2N � 2N Jacobi matrixMðsÞ
can be grouped into N pairs of eigenvalues λi, λ�i and
eigenphasesΦi,Φ�

i . Each pair of eigenvalues are reciprocal
pairs and complex conjugates that jλij ¼ 1/jλ�i j, Φi þ
Φ�

i ¼ 0°; It means that the total 2N dimension phase
space composed of [Ij;k;lðsÞ; Ij;k;lðsÞ0] is derived from a
Hamiltonian system and has to meet the Liouville theorem.
If the phase space in one direction is stretched, the other is
always compressed. Fig. 1 shows the possible eigenvalues
for map MðSÞ. Whenever the structure resonance takes
place, the eigenvalues will leave the unit circle with the
condition λ ≠ 1—collective instability. Since Φj;k;l and

FIG. 1. Locations of possible eigenvalues for mapMðSÞ, where
S is period length.
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Φ�
j;k;l describe the same physics, in the following, only

Φj;k;l > 0° is kept for discussion.

A. Collective modes in time dependent
periodic channel

Hofmann et al. showed the basic mathematical
approaches to construct the dynamics caused by the
perturbation f1 in periodic focusing channels, limited to
equal emittance and equal external focusing in two degrees
of freedom in Ref. [4]. Here, with similar method, we
extend the mathematical approaches to cover problems
with various beam conditions by citing a new parameter
noted as emittance ratio Γ ¼ ϵy/ϵx in two degrees of
freedom and retain the nonsmoothed condition—full time
(position) dependent. In the following, we introduce the
basic model and approaches briefly.
Denoting s as the longitudinal variable (physically, s

plays the role as time here) along the channel, with
Courant-Snyder transformation, the single particle
Hamiltonian Eq. (1) can be normalized in the form

H ¼ 1

2βx
ðp2

x þ x2Þ þ Γ
2βy

ðp2
y þ y2Þ þ V1

scðx; y; sÞ
ϵx

; ð4Þ

where V1
scðx; y; sÞ denotes the generalized electrostatic

space charge potential perturbation function on the ideal
self-consistent KV beam. The KV distribution function has
the form

f0 ¼
N
π2Γ

δ

�
x2 þ p2

x þ
y2 þ p2

y

Γ
− 1

�
; Γ ¼ ϵy/ϵx;

ð5Þ
where δ denotes the Dirac delta function. Note f1 ¼ δf0
is the perturbation of the density distribution function.
For clarity and simplicity, we inherit the symbols used in
Ref. [4], skip the tedious mathematics and just show the
basic ideas and indispensable equations here.
Physically, there are only two sets of constraint con-

ditions that the system is subject to. The first one is the
Poisson equation Eq. (3), which shows that the perturbation
f1 and the related perturbed space charge potential
V1
scðx; y; sÞ have to be treated consistently. The second

set of constraint equations requires the continuity of the
space charge electric field at the beam boundary. From one
side, the electric field jump is expressed as

Δ
∂V1

sc

∂ξ ¼ Q
ϵx

Z
s

0

� ∂
∂ψ 0

x
þ 1

Γ
∂

∂ψ 0
y

�
V1
sc

× ½cos ζ cosðψ 0
x − ψxÞ;ffiffiffi

Γ
p

sin ζ cosðψ 0
y − ψyÞ; s0�ds0: ð6Þ

in elliptical coordinate system. From the other side,
assuming the space charge potential V1

scðx; y; sÞ inside
the beam up to the nth order in form of

ðV1
scÞn ¼

Xn
m¼0

AmðsÞxn−mym þ
Xn−2
m¼0

Að1Þ
m ðsÞxn−mym þ � � � ;

ð7Þ

the solution for perturbed space charge potential
V1
scðx; y; sÞ outside of the beam is a superposition of

angular harmonics which vanish at infinity as

e−lðξ−ξ0Þ cos lζ; e−lðξ−ξ0Þ sin lζ: ð8Þ

Combining the Eqs. (6), (7), (8) together, the second set of
constraint equations can be derived. Finally, the constructed
integrals Ij;k;lðsÞ, composing of the dynamic system
and representing the motion of the collective modes, are
expressed with the general form

Ij;k;lðsÞ ¼
Z

s

0

Ajðs0Þ sin½kðψ 0
x − ψxÞ − lðψ 0

y − ψyÞ�ds0;

ð9Þ

The dynamics equation that the Ij;k;l have to obey is

1

Ck;lðsÞ
d
ds

�
1

Ck;lðsÞ
dIj;k;lðsÞ

ds

�
þ Ij;k;lðsÞ ¼ −

1

Ck;lðsÞ
AjðsÞ:

ð10Þ

where Ck;lðsÞ ¼ ½ k
βxðsÞ þ l

βyðsÞ�.
In the following, V1

sc will be replaced by V for simplicity.
It is noteworthy that for a given order n in Eq. (7), the even
mode and odd mode, which directly represents the tilt of the
beam elliptical distribution in real space, conveniently may
be treated separately, on the basis of whether the index m is
restricted to even or to odd integer values.

B. General treatment of collective modes

1. The 1st order modes

For the 1st order mode, the perturbed space charge
potential inside near the beam boundary is assumed as
V1 ¼ A1ðsÞx (or V1 ¼ A1ðsÞy). The influence of the 1st
order mode will be recognized as a simple oscillation of the
beam as a whole [16]. It does not lead to any collective
instability.

2. The 2nd order modes

For the 2nd order mode, the related perturbed space
charge potential inside near the beam boundary is in the
form V2e ¼ A0ðsÞx2 þ A2ðsÞy2 and V2o ¼ A1ðsÞxy respec-
tively, where subscript e and o refer to even and odd modes.
Table I gives the explicit forms of the eigenphases with and
without beam current, structure resonance driving terms,
and the related forms of the perturbed space charge
potential. Figure 2 shows the eigenvalues and eigenphases
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evolution when the space charge effect is increased (right to
left) for the 2nd order mode. Compared with the case
σx ¼ σy, Γ ¼ 1 [14], where only confluent resonance can
be excited, here both the confluent resonance and para-
metric resonance can be excited. Clearly, since the FODO
channel used here is limited to σx0 ¼ σy0 ¼ σ0, once
σ0 < 90°, the 2nd order even mode instability can be
avoided. For the 2nd odd mode, with the initial condition
we chose, the Φ1;1;1 just slightly passes through the 180°
line and will not lead to any instability.
It is worthwhile to point out that the well-known

envelope instability stop band obtained from the perturbed
envelope dynamics actually gives exactly the same result as
the 2nd order even mode. It is not surprising, because the
dynamics of the perturbed envelope equations exactly
describes the same physics as the 2nd order even mode,

although they are derived with different basic assumptions
and approaches. The Φ0;2;0 that touches the 180° line faster
is also named the quadrupole mode; the slower oneΦ2;0;2 is
named the breathing mode. It has been proved that this
instability in particularly refer to a bifurcation process [17]
in a degenerate 1D envelope dynamics. Here, we suppose
that bifurcation process can be extended to instabilities due
to higher order modes.

3. The 3rd order and 4th order modes

As suggested by Eq. (7), the perturbed space charge
potential inside the beam for the 3rd and 4th order can be
obtained explicitly. Similar process is adopted to construct
the periodic discontinuity of the electric field Ij;k;lðsÞ. It is
important to point out that the lower order perturbation
Vn−2 has to be contained in the nth order perturbation Vn to

TABLE I. 2nd order eigenmodes, eigenphases, and their driving terms.

Periodic integral Eigenphases Driving term Eigenphases (zero current) Perturbed potential

I0;2;0 Φ0;2;0 cos 2ðψ 0
x − ψxÞ 2σx0 A0ðsÞx2

I2;0;2 Φ2;0;2 cos 2ðψ 0
y − ψyÞ 2σy0 A2ðsÞy2

I1;1;1 Φ1;1;1 cos½ðψ 0
x − ψxÞ þ ðψ 0

y − ψyÞ� σx0 þ σy0 A1ðsÞxy
I1;1;−1 Φ1;1;−1 cos½ðψ 0

x − ψxÞ − ðψ 0
y − ψyÞ� σx0 − σy0 A1ðsÞxy

FIG. 2. Eigenvalues Absjλj and eigenphases Argjλj of the 2nd even mode, (a) and (b), and odd mode, (c) and (d)vs tune depression
σy/σy0, for a FODO channel with the parameter σx0 ¼ σy0 ¼ 100°, emittance ratio Γ ¼ 1/2, filling factor η ¼ 0.5.
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meet the boundary conditions. This indicates that the lower
order stop bands are components of the higher order stop
bands. To be less confusing, the order of collective
instability discussed in the following refers in particular
to the highest term in Vn. The reason why the effect Vn−2
could be separated will be explained latter.
Table II shows the periodic integrals Ij;k;l, the corre-

sponding eigenphases Φj;k;l, the forms of driving forces,
and the forms of perturbed space charge potential of the 3rd

order even mode, V3e ¼ A0ðsÞx3 þ A2ðsÞxy2 þ Að1Þ
0 x. Six

periodic perturbation integrals are constructed, which
requires evaluation of the eigenvalues of a 12 × 12
Jacobi matrix MðSÞ. However, MðSÞ actually is made up

of a 2 × 2 sub-matrix, which is related to the term Ið1Þ0;1;0, and
a 10 × 10 sub-matrix composed of other integrals. The term

Ið1Þ0;1;0, particular to the potential perturbation Að1Þ
0 ðsÞx, does

not lead to any instability. Thus, only the other 5 integrals
Ij;k;l contribute to it. For the 3rd order odd mode due to V3o,
the unstable stop band given is the same as the even mode,
because of the symmetry (interchanging x and y). Figure 3
shows the 3rd order unstable stop band in FODO channel.
The parametric resonances and confluent resonances are
clearly identified. The stop band due to Φ0;1;0 ¼ Φ2;1;−2,
which covers the whole parameter space, is a (positive—
negative) energy oscillation merging mode (see Fig. 5) [18].
According to Ref. [19] the instability of such confluent

(positive—negative) energymodes is a peculiarity of the KV
distribution as a delta function distribution and such modes
disappear for beams with monotonically decreasing distri-
bution functions. Clearly, in the current case σ0 ¼ σx0 ¼ σy0,
the main third order collective unstable modes caused by
parametric resonance can be avoided by choosing σ0 < 60°.
However, if the channel has unequal external focusing
σx0 ≠ σy0, then the parametric resonance stop band will
shift and a new condition is required to avoid it.
Similarly, Table III shows the periodic integrals Ij;k;lðsÞ,

the corresponding eigenphases Φj;k;l, the forms of driving
forces, and the forms of perturbed space charge potentials
for the 4th order even mode V4e¼A0ðsÞx4þA2ðsÞx2y2þ
A4ðsÞy4þAð1Þ

0 ðsÞx2þAð1Þ
2 ðsÞy2. The constructed 10 Ij;k;lðsÞ

result in 20 × 20 matrix MðSÞ, which is composed of a
4 × 4 sub-matrix and 16 × 16 sub-matrix. The 4 × 4 sub-

matrix is constructed with the term (Ið1Þ0;2;0) and I
ð1Þ
2;0;2), which

comes from the perturbed potential Að1Þ
0 ðsÞx2 and Að1Þ

2 ðsÞy2.
Not surprisingly, it gives the same unstable components as
the second order even mode. In another words, the 2nd
order even mode of instability is naturedly included in the
4th order even mode because of the requirement of beam
boundary conditions. Thus, it is a fake proposition to
identify which collective mode (2nd even mode or 4th even
mode) takes a dominate position in the 2nd order even
mode stop band [20,21] [22]. Excluding the 2nd order

TABLE II. 3rd order even eigenmodes, eigenphases, and their driving terms.

Periodic integral Eigenphases Driving term Eigenphases (zero current) Perturbed potential

I0;1;0 Φ0;1;0 cosðψ 0
x − ψxÞ σx0 A0ðsÞx3

I0;3;0 Φ0;3;0 cos 3ðψ 0
x − ψxÞ 3σx0 A0ðsÞx3

I2;1;0 Φ2;1;0 cosðψ 0
x − ψxÞ σx0 A2ðsÞxy2

I2;1;2 Φ2;1;2 cos½ðψ 0
x − ψxÞ þ 2ðψ 0

y − ψyÞ� σx0 þ 2σy0 A2ðsÞxy2
I2;1;−2 Φ2;1;−2 cos½ðψ 0

x − ψxÞ − 2ðψ 0
y − ψyÞ� σx0 − 2σy0 A2ðsÞxy2

Ið1Þ0;1;0 Φð1Þ
0;1;0

cosðψ 0
x − ψxÞ σx0 Að1Þ

0 ðsÞx

FIG. 3. Eigenvalues (a) and eigenphases (b) of the 3rd even mode vs tune depression σy/σy0 for FODO channel (filling factor η ¼ 0.5,
emittance ratio Γ ¼ 1/2) with the parameter σx0 ¼ σy0 ¼ 80°.
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terms, the eigenvalues and eigenphases, obtained from the
16 × 16 submatrixMðSÞ, are shown in the two top subfigures
in Fig. 4 with σx0 ¼ σy0 ¼ 80° in FODO channel. The stop
band caused by confluent resonanceΦ4;0;2 ¼ Φ2;2;0 covering
the whole parameter range, is the (positive—negative)
energy oscillation merging mode. Clearly, the parametric
resonance condition Φj;k;l ¼ 360° and Φj;k;l ¼ 180° both
have the opportunity to be excited if σ0 > 90°.
Table IV shows the periodic integrals Ij;k;l, the corre-

sponding eigenphasesΦj;k;l, the form of driving forces, and

the perturbed space charge potentials for the 4th order

odd mode, V4o ¼ A1ðsÞx3yþ A3ðsÞxy3 þ Að1Þ
1 ðsÞxy. The

eigenvalues and eigenphases of the 4th order odd modes
are shown in the two bottom subfigures in Fig. 4 with
σ0 ¼ σy0 ¼ σx0 ¼ 80° in FODO channel. Similar to the 4th
order even mode, the 4th order odd stop band covering the
whole parametric space caused by Φ3;1;1 ¼ Φ1;1;1 is con-
sidered as a merging of (positive—negative) oscillation
modes merging. The main parametric resonance stop band
can be avoided with the condition σ0 < 45°. Again, if with

TABLE III. 4th order even eigenmodes, eigenphases, and their driving terms.

Periodic integral Eigenphases Driving term Eigenphases (zero current) Perturbed potential

I0;2;0 Φ0;2;0 cos 2ðψ 0
x − ψxÞ 2σx0 A0x4

I0;4;0 Φ0;4;0 cos 4ðψ 0
x − ψxÞ 4σx0 A0x4

I2;2;0 Φ2;2;0 cos 2ðψ 0
x − ψxÞ 2σx0 A2x2y2

I2;2;2 Φ2;2;2 cos½2ðψ 0
x − ψxÞ þ 2ðψ 0

y − ψyÞ� 2σx0 þ 2σy0 A2x2y2

I2;2;−2 Φ2;2;−2 cos½2ðψ 0
x − ψxÞ − 2ðψ 0

y − ψyÞ� 2σx0 − 2σy0 A2x2y2

I2;0;2 Φ2;0;2 cos 2ðψ 0
y − ψyÞ 2σy0 A2x2y2

I4;0;2 Φ4;0;2 cos 2ðψ 0
y − ψyÞ 2σy0 A4y4

I4;0;4 Φ4;0;4 cos 4ðψ 0
y − ψyÞ 4σy0 A4y4

Ið1Þ0;2;0 Φð1Þ
0;2;0

cos 2ðψ 0
x − ψxÞ 2σx0 Að1Þ

0 x2

Ið1Þ2;0;2 Φð1Þ
2;0;2

cos 2ðψ 0
y − ψyÞ 2σy0 Að1Þ

2 y2

FIG. 4. Eigenvalues and eigenphases of the 4th order even, (a) and (b), and odd mode, (c) and (d), vs tune depression σy/σy0 for FODO
channel (filling factor η ¼ 0.5, emittance ratio Γ ¼ 1/2) with the parameter σx0 ¼ σy0 ¼ 80°.
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different external focusing characteristics, the parametric
resonance stop band will shift and a new condition is
required to avoid it.
Clearly, with higher order terms added in the potential

polynomial V, more collective modes Ij;k;l could be
constructed, leading to higher order stop bands. In fact,
these stop bands would cover the whole parameter space if
infinite orders of perturbation were plugged in. However,
the effect of these higher order modes could be easily

washed out by the nonlinearity in the density profile, and
when traversed, in general cause a small accumulative
scattering effect.

IV. COLLECTIVE MODES WITH
SMOOTH APPROXIMATION

The smooth approximation is widely used in former
studies in the collective mode analysis in accelerators.

TABLE IV. 4th order odd eigenmodes, eigenphases, and their driving terms.

Periodic integral Eigenphases Driving term Eigenphases (zero current) Perturbed potential

I1;1;1 Φ1;1;1 cos½ðψ 0
x − ψxÞ þ ðψ 0

y − ψyÞ� σx0 þ σy0 A1x3y
I1;1;−1 Φ1;1;−1 cos½ðψ 0

x − ψxÞ − ðψ 0
y − ψyÞ� σx0 − σy0 A1x3y

I1;3;1 Φ1;3;1 cos½3ðψ 0
x − ψxÞ þ ðψ 0

y − ψyÞ� 3σx0 þ σy0 A1x3y
I1;3;−1 Φ1;3;−1 cos½3ðψ 0

x − ψxÞ − ðψ 0
y − ψyÞ� 3σx0 − σy0 A1x3y

I3;1;1 Φ3;1;1 cos½ðψ 0
x − ψxÞ þ ðψ 0

y − ψyÞ� σx0 þ σy0 A3xy3

I3;1;−1 Φ3;1;−1 cos½ðψ 0
x − ψxÞ − ðψ 0

y − ψyÞ� σx0 − σy0 A3xy3

I3;1;3 Φ3;1;3 cos½ðψ 0
x − ψxÞ þ 3ðψ 0

y − ψyÞ� σx0 þ 3σy0 A3xy3

I3;−1;3 Φ3;−1;3 cos½−ðψ 0
x − ψxÞ þ 3ðψ 0

y − ψyÞ� −σx0 þ 3σy0 A3xy3

Ið1Þ1;1;1 Φð1Þ
1;1;1

cos½ðψ 0
x − ψxÞ þ ðψ 0

y − ψyÞ� σx0 þ σy0 Að1Þ
1 xy

Ið1Þ1;1;−1 Φð1Þ
1;1;−1

cos½ðψ 0
x − ψxÞ − ðψ 0

y − ψyÞ� σx0 − σy0 Að1Þ
1 xy

FIG. 5. The 3rd, (a) and (b), and the 4th, (c) and (d), order even modes eigenvalues and eigenphases as function of tune depression,
when the external focusing is smoothed. The tune ratio is σy/σx ¼ 0.48, rms beam size ratio is a/b ¼ 1.54. It gives the same result as
Fig. 5 and Fig. 7 shown in Ref. [6].
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In the collective beam dynamics, the smooth approximation
represents the constant focusing assumption [23], in
which the matched beam rms size RðsÞ is constant, which
simplifies the derivation and analysis in most of the
cases. With the self-consistent Vlasov-Poisson approach,
Hofmann studied the dispersion relationship [6,19] up to
the fourth order systematically with smooth approximation.
It is proved that the results from structure resonance
discussed in this paper degenerates to Hofmann’s result
[6], if constant focusing channel is used. Fig. 5 shows two
examples, obtained from structure resonance with constant
focusing condition, and the eigenphases are plotted with
logarithmic coordinate system. It shows the characteristics
of the 3rd and 4th order even modes versus tune depression.
The colored curve represents the normalized eigenphase
Φj;k;l/σy0. The black curve represents the single particle
resonance line mνx � nνy (ν ¼ σ/νy0).
Two parametric stop bands are seen when the tune

depression is below 0.82 (Φ3;1;−2 ¼ 0°) in Fig. 5(b) and
the tune depression below0.3 (Φ4;2;−2 ¼ 0°) in Fig. 5(d). The
Φj;k;l ¼ 0° stop band is also considered as the modes
merging with their conjugates. For the 4th order even mode
there are another two stop band components resulting from
the (positive—negative) energymodemerging. These results
obtained by structure resonance in a smoothed channel are
the same as those given by Hofmann in Ref. [6].

Since the beam envelope is constant in the smoothed
channel, the consequence is that beam only suffers from
the parametric resonance Φj;k;l ¼ n � 180°, n ¼ 0 [24]
and positive energy oscillation and negative energy
oscillation modes merging resonance. As discussed, the
latter is a peculiarity of the KV distribution and usually is
ignored. Whereas, in the nonsmoothed channel, the
parametric Φj;k;l ¼ n � 180°, n ≠ 0 and confluent reso-
nance between negative modes can also be excited,
typical example is shown in Fig. 2.
Figure 6 shows the 3rd order and 4th order even modes

obtained from a smooth approximation channel, which
are with the same parameters as in Figs. 3 and 4.
Comparing Fig. 3 and the two upper subfigures in
Fig. 6, or comparing the two upper subfigures in
Fig. 4 and the two lower subfigures in Fig. 6, show
how the eigenvalues of the 3rd and 4th even modes are
affected by the smooth approximation. The parametric
resonance stop band due to Φ2;2;−2 ¼ 0° of the 4th order
modes agrees well in smoothed and nonsmoothed FODO
channels. Extra stop bands appear in nonsmoothed
FODO channel. The (positive—negative) merging mode
Φ2;1;−2 ¼ Φ0;1;0 of the 3rd order and Φ4;0;2 ¼ Φ0;2;0 of the
4th order, in both smoothed and nonsmoothed FODO
channels can be ignored as discussed.

FIG. 6. Eigenvalues and eigenphase evolution of the 3rd order evenmode, (a) and (b), and the 4th order evenmode, (c) and (d) vs the tune
depression in a smoothed constant focusing channel where fill factor η ¼ 0.5, emittance ratio Γ ¼ 1/2, phase advance σx0 ¼ σy0 ¼ 80°.
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V. DISCUSSION

One question we need to answer from the former study
[14] is that, if just considering the 2nd order even mode with
symmetric beam condition (σx ¼ σy, σx0 ¼ σy0), why only
parametric resonance takes place in the symmetric solenoid
channels, and only confluent resonance takes place in the
antisymmetric FODO channels. Now it is seen that the
symmetry of thewhole beam systemplays as a key role.With
an unsymmetric beam condition in the two degrees of
freedom, both resonances can be excited, accompanied with
stop band position shifting and width changing.
Again, the theory of structure resonance is based on

linearized Vlasov-Poisson with KV initial distribution
function. The eigenvalues discussed are always canonical
conjugate pairs, which reflects the fact that the perturbed
dynamics system is still in the frame of the Hamiltonian
system. The 4D beam phase space can be distorted but the
total area is still conserved. In numerical simulation, the
n-fold projection phase space pattern that leads to rms
emittance growth or exchange between different degrees of
freedom can be foreseen.
Another thing is that one may suspect that the δ function

nature of KV distribution is responsible for these instabilities
and the question arises as to how the unstable modes patterns
change if the distribution is broadened and the loss cone in the
KV beam is partially filled up. Certainly, nonlinear damping
will be present to stabilize the beam, and “equilibrium” of a
coasting beam would be reached as a compromise between
resonance response, damping, and eventual saturation as the
beam changes andmoves out of the resonance. However, in a
general sense, it is almost not possible to launch the study
analytically, thus numerical simulations are always used to
check the validity of theory prediction.
From the practical point of view, we propose that

the accelerators should be designed or operated in the
resonance free region, or with appropriate care when
traversing resonances, to avoid emittance growth and beam
halo leading to hardware damage. In future studies, we
plan to show how beams are affected in the structure
resonance stop bands with PIC simulations, and to inves-
tigate the effects of additional elements inside the trans-
verse focusing period, such as rf gaps and additional types
of focusing elements, and different forms of the transverse
focusing lattice such as unequal focusing strengths.
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