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A concept is presented to design magnets using cylindrical-shaped permanent-magnet blocks, where
various types of magnetic fields can be produced by either rotating or varying the size of the magnetic
blocks within a given mechanical structure. A general method is introduced to calculate the 3D magnetic
field produced by a set of permanent magnets. An analytical expression of the 2D field and the condition to
generate various magnetic fields like dipole, quadrupole, and sextupole are derived. Using the 2D result as a
starting point, a computer code is developed to get the optimum orientation of the magnets to obtain the
user-specific target field profile over a given volume in 3D. Designs of two quadrupole magnets are
presented, one using 12 and the other using 24 permanent-magnet blocks. Variation of the quadrupole
strength is achieved using tuning coils of a suitable current density and specially designed end tubes. A new
concept is introduced to reduce the integrated quadrupole field strength by inserting two hollow cylindrical
tubes made of iron, one at each end. This will not affect the field gradient at the center but reduce the
integrated field strength by shielding the magnetic field near the ends where the tubes are inserted. The
advantages of this scheme are that it is easy to implement, the magnetic axis will not shift, and it will
prevent interference with nearby devices. Around 40% integrated field variation is achieved using this
method in the present example. To get a realistic estimation of the field quality, a complete 3D model using
a nonlinear B-H curve is also studied using a finite-element-based computer code. An example to generate
around an 80 T/m quadrupole field gradient is also presented.
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I. INTRODUCTION

The future particle accelerator projects like Compact
Linear Collider (CLIC), International Linear Collider,
and Future Circular Collider [1–3] need large numbers of
precision magnets. To meet this, efforts are on to build
compact, low-cost, and efficientmagnets tominimize the cost
implication of such megaprojects. Over the years, progress in
the field of permanent-magnet (PM) materials like Sm2Co17
and Nd2Fe14B have been quite impressive. A combination of
declining costs and improved material quality have made
permanentmagnets competitivewith conventional and super-
conducting magnets in many applications. High-field mag-
nets made from these materials have found applications in
high gradient adjustable quadrupoles, injection lines, correc-
tors, and damping ring magnets and undulators. Quadrupole,
dipole, and combined function magnets have been success-
fully installed in the Fermilab main injector tunnel [4,5].

Several storage-ring-based light sources, which are currently
being upgraded for an increase in brilliance, will require
strong quadrupoles with limited field tuning [6–8].
The design of multipole magnets using PM material was

already reported in the literature, where special emphasis
was given on quadrupole (QP) because of their widespread
use [9–11]. Such PM-based quadrupoles can generate
high-field gradients and have been under scrutiny mainly in
two areas: the main accelerator focusing magnet in linear
colliders and final-focus magnets in both circular and linear
accelerators.
Tunable quadrupoles using PMs have been built using

rotating PM rods or small movable shunts or using a tuning
rod concept [12,13]. The rotating QP consists of two
rotating inner segments and two fixed outer segments.
The rotating magnets provide the adjustment, while the
fixed QP provides the bulk of the focusing field. The
rotating segments move in opposite directions to adjust
the integrated quadrupole strength [14]. A hybrid QP
magnet design using a Halbach-type PM along with a
printed circuit has also been reported [15]. The degree of
tunability of either of these designs is around 20%. An
approach to create strong focusing systems using a high-
field, small-bore permanent-magnet quadrupole (PMQ)
was reported. A final-focus system uses three PMQs, each
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composed of 16 neodymium iron boride sectors in a
Halbach geometry. As the magnets are of a fixed field
strength, the focusing system is tuned by adjusting the
position of the three PMQs along the beam line axis, in
analogy to familiar camera optics [16]. The PMQ for the
drive beam decelerator was developed having a strength of
tuning range of 3.5–43 T/m [17]. A summary of the work
on both fixed and variable strength PMs suitable for use in
and around linacs can be found in Ref. [18].
The design of the high gradient quadrupole magnets for

the European Synchrotron Radiation Facility was presented
using conventional electromagnets, where the gradient
of 90 T/m was achieved for a 12.5 mm bore radius [19].
A compact QP with a field tunability of 20% for the cell-
coupled drift tube linac for Linac 4 at CERN was reported
in Ref. [13]. The typical length, bore radius, and integrated
QP field strength were 140 mm, 22.5 mm, and 1.6 T,
respectively. In all the above cases, the quadrupoles were
built using both an iron pole tip and PM blocks, and the
field variations were obtained by mechanically displacing
or rotating the magnetic blocks.
There is a need of truly cost-effective and easy-to-fabricate

magnets, which will not generate much heat load for future
particle accelerators. Considering all such facts, I designed
the magnets using cylindrical-shaped PM blocks, where
various types of magnetic fields can be generated by either
rotating or varying the size of the PM blocks within a given
mechanical structure. In this report, I introduce a general
method to calculate the 3D magnetic field produced by a set
of permanent magnets, which is easy to compute using a PC.
Cylindrical-shaped PM blocks are chosen so that the varia-
tion of the direction of magnetization can be adjusted by
mechanically rotating the blocks during the fabrication of the
magnet. Thiswill enable us to use themagnets having awider
variation in the direction of magnetization. Such cylindrical-
shaped PMs are available from several vendors in different
sizes. I have considered the followingmodels to demonstrate
the design of compact high gradient quadrupole magnets
with limited tunability.
(i) The generation of around a 25 T/m field gradient in a

bore radius of 23 mm using 12 cylindrical-shaped PMs of
7 mm radius each. I have considered a 1.14 T remanent
magnetic field for this calculation. In one mechanical
structure, cylindrical-shaped PMs of different radius like
7, 6, and 5 mm can be inserted to generate PMQs of
different strength like 25, 18.2, and 12.5 T/m, respectively.
It will help in large-scale magnet manufacturing. On top of
this, a 2–2.8 T/m gradient may be generated for tunability
using the proper shaped current carrying conductors with a
suitable current density. Using a bipolar power supply, a
2.8 T/m quadrupole gradient can be added or subtracted
from the main field strength. In this case, current-carrying
conductors are situated outside the magnet assembly, so air
cooling with a proper heat sink is sufficient to manage the
heat load. The gradient change can be faster here, as there is

no mechanical movement, and the change of magnet axis
will also be small.
(ii) I have also introduced a new concept to reduce the

integrated quadrupole field strength
R
∞−∞ g:dl by inserting

two cylindrical iron tubes, one near each end. This will not
affect the field gradient at the center but will shield the
magnetic field completely near the ends, where the tubes
are inserted. The effective length of the PMQ is very close
to the physical length, and this means the extent of the
fringe field is small. Initially, the end iron tubes are placed
outside the PMQ. Under this condition, the PMQ will
produce the maximum

R∞−∞ g:dl. The end tube can be
inserted inside the PMQ with the help of a motor. As the
end tube comes closer to the PMQ, it will reduce the
effective length of the magnet by shielding the magnetic
field inside the tube area and thereby reducing the inte-
grated field strength. Therefore, by varying the current in
the correction coils and the position of the end tubes, the
integrated field strength can be tuned to a considerable
amount. The movement of the end tube is simpler com-
pared to the movement of the magnet blocks or the magnet
poles, reported earlier [12,13]. The advantages of this
scheme are that it is easy to implement, the magnetic axis
will not shift, and it will prevent interference with nearby
devices by restricting the fringe field.
(iii) I also present an example of producing an 11 T/m

quadrupole gradient using 24 PM blocks. PM blocks, each
having 3.4 mm radius, when symmetrically placed on the
circumference of a cylindrical enclosure of 3 cm radius will
generate an 11.2 T/m field gradient. In this case, around
0.1% gradient variation, which is defined as a good field
zone, is extended up to 67% of the bore radius.
(iv) It is possible to generate around an 80 T/m field

gradient if the bore radius is reduced to 11.5 mm. The high
gradient is produced by using two layers of PMs. The inner
layer contains a set of 12 magnets, each having 3.5 mm
radius, and the outer layer contains a set of 12 magnets,
each having 6 mm radius.

II. CALCULATIONS

A. Calculation of three-dimensional (3D) magnetic
field produced by permanent magnets

In this section, I shall present the analytical expression of
the magnetic field produced by cylindrical-shaped PMs of a
finite length. The magnetization of the material Ms is
expressed in A/m and remanence Br in T. These are related
by Br ¼ μ0Ms. I have used the charge model to find the
field expression. The magnet is converted to an equivalent
charge distribution, and the field expression is evaluated by
treating the charge distribution as a field source. In the
charge-free region, the magnetostatic field equations can be
expressed as ∇ ×H ¼ 0 and ∇:B ¼ 0. Under such con-
ditions, a field can be obtained from the magnetic scalar
potential Φm using the relation H ¼ −∇Φm. Using the
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above condition along with the relation B ¼ μ0ðH þMÞ,
I obtained ∇2Φm ¼ ∇:M.
The solution of the equation can be written in terms of

the free space Green’s function, and the following expres-
sion is obtained:

ΦmðrÞ ¼
Z

Gðr; r/Þ∇/:Mðr/Þdv/ ¼ − 1

4π

Z ∇/:Mðr/Þ
jr − r/j dv/;

ð1Þ

where r and r/ are the observation and source points,
respectively,∇/ operates on the primed coordinates, and the
integration is over the volume for which the magnetization
exists. For uniformly magnetized materials, M is confined
to a volume and falls abruptly to zero outside the volume.
Therefore,

ΦmðrÞ ¼ − 1

4π

Z
v

∇/:Mðr/Þ
jr − r/j dv/ þ 1

4π

Z
s

Mðr/Þ:n̂
jr − r/j ds

/; ð2Þ

where s is the surface that bounds v and n̂ is the outward
unit normal to s.
In the present case, the volume charge density is zero,

and the surface charge density is

σm ¼ M:n̂ ¼ Msx̂:r̂: ð3Þ

Therefore, the magnetic field can be expressed as

BðrÞ ¼ − μ0
4π

Zz2
z1

Z2π

0

∇
�
Ms cosðϕ/Þ
jr − r/j

�
adϕ/dz/; ð4Þ

where ∇ acts on unprimed variables, a is the radius of the
magnet, and the extent of the magnet along z is from z1 to
z2. After simplification, the radial component of the
magnetic field is given by

Brðr;ϕ; zÞ

¼ μ0Msa
4π

Zz2
z1

Z2π

0

cosðϕ/Þfr − a cosðϕ − ϕ/Þg

× fr2 þ a2 − 2ra cosðϕ − ϕ/Þ þ ðz − z/Þ2g−ð3/2Þdϕ/dz/:

ð5Þ

Similarly, the azimuthal component of the magnetic field
is expressed by

Bϕðr;ϕ; zÞ

¼ μ0Msa2

4π

Zz2
z1

Z2π

0

cosðϕ/Þfsinðϕ − ϕ/Þg

× fr2 þ a2 − 2ra cosðϕ − ϕ/Þ þ ðz − z/Þ2g−ð3/2Þ
× dϕ/dz/: ð6Þ

The axial magnetic field component is given by

Bzðr;ϕ; zÞ

¼ μ0Msa
4π

Zz2
z1

Z2π

0

cosðϕ/Þðz − z/Þ

× fr2 þ a2 − 2ra cosðϕ − ϕ/Þ þ ðz − z/Þ2g−ð3/2Þdϕ/dz/:

ð7Þ
Now a numerical integration should be done to get the

3D field. However, an analytical solution of such a problem
exists in 2D. Therefore, first the 2D field is evaluated for a
cylindrical magnet, and then the analytical conditions
required to obtain the desired field are found out using
several such magnets. This solution will be the starting
point for obtaining the global solution for optimizing the
3D field, which in turn will provide the size and orientation
of the magnets.

B. Calculation of two-dimensional (2D) magnetic
fields due to permanent magnets

In this section, the 2D magnetic field produced by
permanent magnets is calculated. If the extent of the
magnet in the z direction is very large as compared to
the other directions and the magnetization vector is a
function of x and y, then it may be considered as 2D.
For a homogeneously magnetized magnet, the material can
be treated as a vacuum with an imprinted current density,
j ¼ ∇ ×Hc with Br ¼ μ0Hc, where Hc and Br are the
coercivity and remanence of the material, respectively.
In such a case, Hc and Br are constant within the material,
and ∇ ×Hc and ∇:Br are zero everywhere except at the
surface, where current sheets are present. The complex
conjugate of the magnet field produced at z0 by a magnet
located at z can be expressed by

B�ðz0Þ ¼
μ0
2πi

ZZ
jdxdy
z0 − z

with μ0j ¼ ∇ × Br; ð8Þ

Br ¼ Brx þ iBry and μ0j ¼
∂Bry

∂x − ∂Brx

∂y ; ð9Þ

B�ðz0Þ ¼
1

2πi

ZZ �∂Bry

∂x − ∂Brx

∂y
�

dxdy
z0 − z

¼ 1

2πi
ðI1 þ I2Þ:

ð10Þ
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Carrying out an integration over x first and then
integrating by parts,

I1 ¼
I

Brydy

z0 − x − iy
−
Z

Brydxdy

ðz0 − x − iyÞ2 : ð11Þ

The area of integration is considered to be a thin strip
of vacuum outside the magnet so that the line integral over
y vanishes. Applying the same technique, I2 is evaluated.
On simplification,

B�ðz0Þ ¼
1

2π

ZZ ðBrx þ iBryÞ
ðz0 − x − iyÞ2 dxdy

¼ 1

2π

ZZ
Br

ðz0 − zÞ2 dxdy: ð12Þ

It is clear from this expression that if the direction of
magnetization of a magnet rotates by an angle βwith respect
to the magnetization of a reference magnet, then the
magnetic field produced by the magnet will be rotated by
an angle−β compared to the field produced by the reference
magnet without a change in amplitude. This means the field
produced by the magnet can be obtained by replacing Br to
Breiβ in the above Eq. (12). In this way, the resultant field
produced by several identical magnets having different
directions of magnetization can be calculated [9,20].
Now, I calculate the resultant magnetic field produced by

P numbers of geometrically identical magnets placed
symmetrically on the circumference of a circle of radius
rc. So, the angular positions of all the magnets are

ΦmðNÞ ¼ ðN − 1Þ 2π
P

; where N varies from 1 toP:

Further simplifying the above field expression by using
the identity

1

ðz0 − zÞ2 ¼
X∞
n¼1

nzn−10

znþ1
for z0 < z; ð13Þ

B�ðz0Þ ¼
1

2π

ZZ X∞
n¼1

Brnzn−10

znþ1
dxdy: ð14Þ

Assume that the reference magnet placed at ðrc; 0Þ and
the direction of magnetization is along the X axis. Another
geometrically identical magnet placed on the circumference
of the circle at ðrc; αÞ and its magnetization makes an angle
β with the X axis as shown in Fig. 1.
The complex conjugate of the magnetic field produced at

z0 by the magnet can be expressed as

B�ðz0Þ ¼
1

2π

ZZ X∞
n¼1

Breiβnzn−10

rnþ1
c eiðnþ1Þα adadφ; ð15Þ

where a is the radius of each magnet. So, for P numbers of
geometrically identical magnets, the resultant magnetic
field will be

B�ðz0Þ ¼
1

2π

ZZ XP
N¼1

X∞
n¼1

BreifβN−ðnþ1ÞαNgnzn−10

rnþ1
c

adadφ

¼ Bx − iBy;

where αN ¼ ðN − 1Þ 2π
P

; N ¼ 1 toP: ð16Þ

Therefore, the following conditions must be satisfied to
produce a uniform magnetic field in the X direction:

n ¼ 1 and fβN − ðnþ 1ÞαNg ¼ 0. ð17Þ

Similarly, the condition to generate a uniform field in the
Y direction is

n ¼ 1 and fβN − ðnþ 1ÞαNg ¼ 3π/2. ð18Þ

The condition for producing a QP field ð∂By

∂x Þ is

n ¼ 2 and fβN − 3αNg ¼ 3π/2. ð19Þ

The condition for producing a sextupole field is

n ¼ 3 and fβN − 4αNg ¼ 3π/2. ð20Þ

I shall use these conditions to produce different field
patterns, like DP, QP, etc., by rotating the direction of
magnetization as given in Eqs. (17)–(20). Once the number
of magnets, P, is fixed, then the positions of the mag-
nets,αN ¼ ðN − 1Þ 2πP , are fixed and the orientation of the
magnetization, βN , will determine the field pattern.

FIG. 1. Position of the reference magnet at ðrc; 0Þ with
magnetization along the X axis and another magnet placed at
an arbitrary angle at ðrc; αÞ whose magnetization makes an angle
β with the X axis.
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III. SIMULATION RESULTS AND DISCUSSIONS

A. 2D simulation results using 12 PMs

To test the theoretical model, I have calculated the field
produced by 12 identical cylindrical permanent magnets
placed around the circumference of a cylindrically shaped
aperture of 3 cm radius, leading to an overall magnet radius
of 6 cm.
It is possible to use PMs of different radii of 5, 6, and

7 mm in the same mechanical structure with a proper
arrangement as shown in Fig. 2. If the positions of all 12
PMs and their orientations are made as per the prediction of
Eq. (19), then a central field gradient of 12.5–25 T/m can
be produced as obtained from the 2D calculation.

Figure 3 shows that the maximum 25 T/m field gradient
can be produced from a 2.3 cm bore radius magnet with a
good field zone of 1.2 cm radius, when 12 PMs each having
a radius of 7 mm are used. The field gradient is reduced to
18.2 and 12.5 T/m when the radii of each magnet are
reduced to 6 and 5 mm, respectively. A remanent magnetic
field of 1.14 T is considered for these calculations.
It is to be mentioned here that a given mechanical

structure having 12 PM blocks each of radius 7 mm can
generate a dipole field of 0.39 T, a QP gradient of 25 T/m,
and a sextupole gradient of 1311 T/m2 if the direction of
magnetization satisfies Eq. (18), (19), and (20), respec-
tively. Therefore, by placing a set of magnets with proper
orientations in a given mechanical structure, a dipole, a

FIG. 2. Schematic view of the base mechanical structure to accommodate 12 cylindrical-shaped permanent magnets and the position
of the current-carrying conductors needed for field tuning.

FIG. 3. Quadrupole field strength at the center of the magnet, when the radius of each PM is 5, 6, and 7 mm, respectively (a).
The gradient uniformity of 0.1% is extended up to a radius of 1.2 cm, which is called the radius of good field zone (b).

CONCEPTUAL DESIGN OF A COMPACT HIGH … PHYS. REV. ACCEL. BEAMS 21, 022401 (2018)

022401-5



quadrupole, or a sextupole can be generated. However, in
this report, emphasis is given for making a quadrupole
magnet of varying strength.
It is proposed to use AA 6061-T6 material for the

structure. Three tapped grub screws for each magnet are
provided. Antifriction pads of circular arc are sandwiched
between the grub screw and the magnet to prevent the
rotation of each magnet as shown in Fig. 2. Forces acting on
magnet no. 1 are calculated using Maxwell stress. The
forces in the X, Y, and Z directions are 264.4, −0.14, and
−0.04 N, respectively. The torques around the 0, 0, 0 point
are −19.9, −19.67, and −1.40 Nmm around the X, Y, and
Z direction, respectively.
Now, I shall analyze how to vary the quadrupole strength

of the magnet. For this purpose, the model of 12 PMs, each
having 6 mm radius, is chosen. An option for creating a
gradient field of 2.79 T/m is provided using optimized
gradient tuning coils having a current density of 10 A/mm2.
A copper bar 2 cm thick is bent into a circular arc of 4 cm
inner radius with an angular extent of 60°, which acts as a
conductor for the gradient tuning coil. Four such conductors
are symmetrically placed outside the magnet assembly.
In the first quadrant, the arc of the conductor started at
30° and ends at −30° in the fourth quadrant as shown in
Fig. 2. This arrangement of four conductors generates a

gradient field in ∂By

∂x , and its strength is 2.79 T/m when the
current density in the conductor is set to 10 A/mm2. As it is a
single turn coil, its inductance is less, which allows faster
variation of the field gradient. These kinds of coils arewidely
used in superconducting magnets with a very high current
density. Their positional accuracy and the 3D effect are well
known and were reported earlier [21,22].
The magnetic field gradient produced by the excitation

of the gradient tune coil in addition to the 12 PMs along
with the multipole present is shown in Fig. 4. The field
gradient can vary from 18.2 to 21 T/m by varying the
current density in the tune coil from 0 to 10 A/mm2.

The directions of the current in the four tune coils are set
using the sequence of−,þ,−, andþ along the Z direction,
respectively. The current density can be varied from −10 to
10 A/mm2 by using a bipolar power supply. This will vary
the gradient from 15.4 to 21 T/m. This new and simple
concept generates a field gradient, whose strength can be
adjusted by varying the current in the coil. It will not
generate much heat load. If a ð1 × 1Þ cm2 copper conductor
is used, then the maximum heat generated per coil will be
472 W for a current density of 10 A/mm2. However, for all
practical purposes, a 3.58 A/mm2 current density will be
sufficient to meet the beam tuning requirement. Under this
condition, a 1.0 T/m gradient will be obtained, and the heat
generated per coil will be 61 W. Moreover, the values of all
the other multipoles normalized with quadrupole are within
7 × 10−5. The excitation of the tuning coil is not generating
any unwanted effect. However, a detailed 3D analysis
needs to be done to get the realistic estimation of the
multipole.

B. Estimation of magnetization and positional error

For a practical installation, the tolerance in positional
accuracy and the error in magnetization angle orientation
shall be within achievable limits. Magnetic errors are
imperfections of PM characteristic like a fluctuation of the
direction of magnetization from the ideal one. A positional
error is linked to an assembly imperfection. It is assumed that
these errors are random in nature. A tolerance study is carried
out by randomly varying the direction of magnetization of
each magnet.
A numerical analysis is presented here for various

parameter variations. For this purpose, I have chosen the
model of 12 PMs each having a 6 mm radius. The values of
normalized multipole components are presented in Fig. 5
for the model having 12 PMs, each having a 6 mm radius,
for the cases where the direction of magnetization of each
magnet randomly varies by �0.25°, �0.50°, �0.75°, and

FIG. 4. Variation of the gradient in the good field zone for only 12 PMs each of 6 mm radius and after the addition of agradient tune
coil of 10 A/mm2 current density (a). In both cases, the values of the various multipole normalized with quadrupole strength are very low
as desired (b).
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�1.0°, respectively, from its ideal orientation. The simu-
lation result predicts that the higher-order multipoles are
within �5 × 10−4 for a �0.50° random variation of the
angle of magnetization of each magnet from the ideal one.
These kind of results are acceptable for accelerator magnets.
A set of imperfect positions of 12 PMs are generated

assuming the random error distributions, and the multipole
content of the imperfect magnet is estimated from simu-
lation results. Figure 6 shows the contribution of the
random positional error of �25, �35, and �50 μm,
respectively, to the normalized multipole components.
Following these results, the mechanical tolerances of the

positions of each magnet is set to �35 μm, and the
allowable random deviation of the angle of magnetization
is set to �0.50°. These are standard tolerances that are
generally used for the building of accelerator magnets.
In our recent work, we have presented a highly scalable

and versatile family of dipole magnet designs suitable for
high-resolution magnetic resonance imaging, constructed
entirely from cylindrical permanent-magnet rods. With

optional correction rods that start out in a zero field
configuration, we have shown that these designs can be
tuned to compensate for manufacturing errors by adjust-
ing the rotations of these rods [23].

C. 3D simulation results using 12 PMs

The dimensions and the number of PM blocks required
to build a magnet depends on the specified requirement of
the field gradient and the good field zone. An analytical
expression of a 3D field produced by cylindrical-shaped
PMs is given by Eqs. (5)–(7). Using the 2D result as a
starting point, a computer code is developed to get the
orientation of the magnet to obtain the user-specific field
pattern and field uniformity over a given volume in 3D.
The algorithm provides a globally optimal arrangement of
magnets for a given field pattern and uniformity [23,24].
The analytical expression of the field produced by the PM
is quite accurate. Therefore, an analytical study based on a
2D model is found to provide reasonably accurate values of
these parameters. The optimal direction of magnetization
obtained for the 3D case is slightly different from the 2D
result. However, in the 3D optimized case, an additional
horizontal field is produced and a better gradient uniformity
is obtained at the cost of a reduced gradient value. As the
additional horizontal field is undesirable for accelerator
application, 2D analytical results are used for further 3D
analysis. In the case of the analytical field expression, a
fixed remanent field is used rather than a nonlinear B-H
curve. Therefore, to get a realistic estimation of field
quality, a complete 3D model using a nonlinear B-H curve
is studied using a finite-element-based computer code,
OPERA [25].
The general field expression of the accelerator magnet

can be expressed by

B ¼ By þ iBx ¼
X∞
n¼1

nðBn þ iAnÞ
�
xþ iy
Rref

�
n−1

; ð21Þ

where An and Bn are the skew and normal components,
respectively, for 2n pole magnets and Rref is the reference
radius of measurement. The vertical field in the good field
zone of the magnet over a circle of radius r can be
expressed as

By ¼ B1 þ
X∞
n¼2

nrn−1fBn cosðn − 1Þθ − An sinðn − 1Þθg:

ð22Þ
QPM field strength 2B2 r (¼gr, where g is the QPM

gradient) was found out by measuring the field on a circle
of radius r and by performing FFT. The field strength is
computed from the center of the QPM to 20 cm away on
either side from the center of the magnets, where the fringe
field is negligible. The length of the magnet is 20 cm, and
its span is from −10 to 10 cm along the Z axis.

FIG. 5. Values of normalized multipole components for the
model having 12 PMs each having a 6 mm radius for the cases
where the direction of magnetization of each magnet randomly
varies by �0.25°, �0.50°, �0.75°, and �1.0°, respectively, from
its ideal orientation.

FIG. 6. Values of normalized multipole components for the
model having 12 PMs, each having a 6 mm radius, for the cases
where the position of each magnet randomly varies by�25,�35,
and �50 μm, respectively, from its ideal position.
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Figure 7 shows the arrangement of the 12 PMs whose
direction of magnetization are as per the expression given
in Eq. (19). The field (in Gauss) pattern within the radius of
1.4 cm is also plotted.
The variation of the gradient along the length of the

magnet is shown in Fig. 8. The effective length of the

magnet, Leffective ¼
R

g:dz

g0
¼ 20.02 cm, is calculated using

the data. The length of the magnet is 20 cm. Therefore, the
effective length is almost equal to the length of the magnet.
A default B-H curve with a maximum remanent field of
1 T is used for the analysis. Therefore, the gradient is
slightly lower than that obtained from the 2D calculation.

D. Vary the integrated field strength using
end tubes

In this section, a new concept will be studied to reduce
the integrated quadrupole field strength,

R∞−∞ g:dl, by
inserting two cylindrical iron tubes, one near each end.
This will not affect the field gradient at the center but
completely shield the magnetic field near the end, where
the tube is inserted. The effective length of the PMQ is very
close to the physical length, which means that the extent of
the fringe field is small. Initially, the end iron tube will be
placed outside the PMQ. In this condition, the PMQ will
produce the maximum

R∞−∞ g:dl.
The end tube can be inserted inside the QPM with the

help of a motor. As the end tube comes closer to the PMQ,
it will reduce the effective length of the magnet by shielding
the magnetic field inside the tube area and thereby reduce
the integrated field strength. Figure 9 shows the two
movable end tubes, one at each end.
High-precision motorized actuators of 25 mm travel

range are readily available. A positional accuracy of 10 μm
can be achieved by a stepper motor coupled to a precision
ground lead screw-nut mechanism. The spindle of the
actuator, which moves forward and backward when the

FIG. 7. Arrangement of 12 PMs and the field in the good field
radius at the center of the magnet (Z ¼ 0).

FIG. 8. Variation of the field gradient in T/m along the length of
the magnet.

FIG. 9. Position of 2-cm-long end tubes, one at each end of the 12 PM block assembly. The integrated field strength can be varied by
varying the distance of the end tubes from the edge of the magnet.
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motor rotates, is made nonrotating to bring in extra
precision. The end tube can be fixed with an aluminum
arm and can be positioned with �20 μm accuracy with the
help of a motorized actuator. Forces acting on the iron
cylinder are −0.64, 1.13, and 88.02 N in the X, Y, and Z
direction, respectively. High-precision motorized actuators
can handle such force. A schematic diagram of the magnet
assembly along with the movement mechanism of the end
tube is shown in Fig. 10.
To verify the prediction, a 2D simulation has been

performed using the finite element code PANDIRA [26].
A model of the quadrupole is built using 12 PM blocks
and added tuning coils outside the magnet assembly.
The iron tube was then placed at the center of the magnet.
Figure 11 shows the field lines obtained from this analysis.

These results confirm our prediction that the iron tube can
effectively shield the magnetic field without introducing
any unwanted multipoles. Field lines are redistributed in the
iron tube and not allowed to enter in the good field zone.
Now, the analysis is extended for the 3D case. A complete
3D model is built and 2-cm-long iron tubes are placed, one
at each end of the magnet as shown in Figs. 9 and 10. These
end tubes are movable. The distances of the end tubes are
measured from the edge of the magnet. If the tubes are
outside (inside) the magnet, then the distance is defined as
positive (negative). The distance is defined as infinity (inf)
in the absence of end tubes. A standard nonlinear B-H loop
is used for the end iron tube. Earlier, we have experimen-
tally measured the variations of integrated quadrupole field
strength in the presence of nearby magnets for various field
excitations and also by varying the distance between the
magnets using a rotating coil [26,20]. We have found that,
in the presence of the accompanying magnet in the ring, the
integrated quadrupole field strength reduces. The present
concept has been derived from our earlier experimental
results [27].
Figure 12 shows the variation of the gradient along the

length of the magnet, when the distances of the end tube
vary. The integrated field strength is calculated by integrat-
ing the gradient over the length of the magnet. In the
absence of end tubes, which means the distance is inf, the
fringe field is extended up to 5 cm from the edge on each
side and the maximum integrated quadrupole field strength
is obtained. As the end tubes are brought closer, it screens
the field, and thereby the integrated field strength is
reduced.
However, the peak gradient remains almost the same.

The variation of integrated quadrupole gradient
R
g:dl in T

FIG. 10. A schematic diagram of the magnet assembly along
with the movement mechanism of the end tube.

FIG. 11. Field lines obtained from the 2D simulation in the
presence of an iron tube at the bore of a quadrupole magnet are
shown in the figure. Shielding of the magnetic field in the good
field zone is evident.

FIG. 12. Variation of the gradient along the length of the
magnet of 20 cm length in the presence of end tubes. The
distances of each end tube from the edge of the magnet are inf, 1,
0, −1, and −2 cm, respectively. The gradient for 18 cm magnet
length and each end tube placed at the edge is also plotted.
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with the distance of the end tubes measured from the edge
of the magnet is shown in Fig. 13. It is observed that theR
g:dl is reduced from 3.4 to 2.4 Twhen the end tubes each

of 2 cm length are brought from a far distance to −2 cm
inside the magnet. If a further reduction of

R
g:dl is

required, then the length of the end tube should be
increased. As a matter of fact, if the length of each end
tube is taken half of the length of the magnet, then it can
reduce the

R
g:dl to a negligible value when the tubes are

brought inside the magnet. A very interesting fact observed
from Fig. 12 is that the variation of the gradient along the
length of the magnet remains very similar for the following
two cases:
(i) Case 1.—The length of the magnet is 20 cm, and

each end tube is placed −1 cm inside the magnet from
the edge.
(ii) Case 2.—The length of the magnet is 18 cm, and

each end tube is placed at the edge of the magnet
(dist ¼ 0 cm).
This is because when the end tube of 2 cm length is

placed −1 cm inside the magnet of length 20 cm, it screens
the field for 1 cm length on each side. It thereby effectively
reduces the length of the magnet to 18 cm (20-1-1 ¼ 18).
The calculated

R
g:dl is 2.729 and 2.721 T for case 1 and

case 2, respectively, and the effective length is 16.18 and
16.13 cm, respectively. It is pertinent to mention that the
effective length of a magnet of 20 cm length is 20.011 cm in
the absence of an end tube. But, the effective length is
reduced to 18.19 cm when the end tube is placed at each
end of the magnet.
Multipole components, integrated over the magnet, nor-

malized with the quadrupole component in the case of a
magnet without an end tube and when the tubes are placed at
0,−1, and −2 cm from the edge of the magnet are shown in
Fig. 14. It indicates that the higher-order multipoles are
within �2 × 10−4 except the octupole component (n ¼ 4),
which is of the order of 6 × 10−4.

To understand the increase of the octupole component,
the variation of the octupole component in arbitrary unit
along the length of the magnet in the case of a magnet
without end tubes and when two end tubes are placed at
−2 cm from the edge of the magnet is plotted in Fig. 15.
A magnetic field is calculated on the circle of a reference
radius at various points along the length of the magnet.
After doing FFT, various multipoles are calculated along
the length of the magnet. At the center of the magnet, the
value of the octupole component is negligible as expected.
In the absence of an end tube, at the edge it gradually
becomes negative and then becomes gradually positive
just outside the magnet, and finally, away from the magnet,
it becomes zero. The crossover from negative to positive
takes place at z ¼ 10 cm, and it is symmetric around it.
So, when the components are integrated along the length,
they cancel each other and give a very low value. However,

FIG. 13. Variation of integrated quadrupole gradient
R
g:dl in T

with the distance of the end tubes from the edge of the magnet.
The joining line is a guide to the eyes.

FIG. 14. Multipole components, integrated over the magnet,
normalized with the quadrupole component in the case of a
magnet without an end tube and when the tubes are placed at 0,
−1, and −2 cm from the edge of the magnet.

FIG. 15. Variation of the octupole component in arbitrary units
along the length of the magnet in the case of a magnet without
end tubes and when two end tubes are placed at −2 cm from the
edge of the magnet.
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the presence of the end tube at the edge distorts the field
component. The value of the octupole increases, and it
becomes asymmetric around z ¼ 10 cm. The negative
component is not able to completely cancel the positive
component because of asymmetry. This gives rise to a net
positive component of the octupole component in the
presence of an end tube.

E. Generation of 80 T/m QP gradient

It is possible to generate around a 80 T/m field gradient
if the bore radius is reduced to 11.5 mm. The high gradient
is produced by using two layers of PMs. The inner layer
contains a set of 12 magnets each having a 3.5 mm radius,

and magnets are placed on the circumference of a circle of
15 mm radius. The outer layer contains a set of 12 magnets
each having a 6 mm radius, and magnets are placed on the
circumference of a circle of 25 mm radius. This combina-
tion of two layers of magnets produces a QP gradient of
80.83 T/m.
Figure 16 shows the arrangement of magnets in two

layers for producing an 80.83 T/m quadrupole gradient.
The radius of each magnet for the inner and outer layers is
3.5 and 6 mm, respectively.
The variation of the quadrupole field gradient at the

center of the magnet in the case of two layers is shown in
Fig. 17(a). It is observed that the 0.1% gradient uniformity
is extended up to a radius of 6 mm, which is called the
radius of good field zone. Values of the various harmonics
normalized with the quadrupole strength are also presented
in Fig. 17(b). All the higher-order harmonics are of the
order of 10−5 except the 12th pole component, which is
1.5 × 10−4. These harmonics are acceptable for accelerator
magnets.

F. 2D and 3D simulation results using 24 PMs

In this section, the simulation results obtained using 24
cylindrical-shaped PMs will be presented. All 24 magnets
are symmetrically placed on the circumference of a cylinder
of radius 3 cm, and each magnet has a 3.4 mm radius. In the
case of the 3D analysis, the length of the magnet is taken
as 20 cm.
The assembly of 24 PMs can generate a 11.2 T/m peak

gradient at the center of the magnet. An additional 2.8 T/m
gradient can be obtained by applying a 10 A/mm2 current
in the tuning coils as shown in Fig. 18.
The good field zone of 0.1% gradient variation is

extended up to a 1.78 cm radius for the assembly of 24
PMs as shown in Fig. 19.

FIG. 17. Variation of the quadrupole field gradient at the center of the magnet in the case of two layers (a). Values of the various
harmonics normalized with quadrupole strength are also presented (b).

FIG. 16. Arrangement of magnets in two layers for producing
an 80.83 T/m quadrupole gradient. The radius of each magnet for
the inner and outer layers is 3.5 and 6 mm, respectively.
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Multipole components, as obtained from the 2D
calculation, normalized with the quadrupole component
are shown in Fig. 20. All the multipoles for the assembly
of 24 PMs are of the order of 10−6 except the DP
component, which is 2.7 × 10−5, whereas, for the 12 PMs
assembly, these values are of the order of 10−5 for the 2D
calculation.
Therefore, as the number of PMs is increased from 12 to

24, the quadrupole field gradient reduces but the good
field zone increases and higher-order multipoles reduce.
So, when the number of magnets is increased at the cost of
the field gradient, then the magnet assembly will move
towards the ideal quadrupole magnet with very low higher
harmonics.
A complete 3D model is built to study the integrated

field gradient and the effective length of the magnet.

The 3D arrangement of 24 PMs in a quadrupole magnet
and the field in Gauss in the good field zone at the center
of the magnet (Z ¼ 0) are shown in Fig. 21. The field
pattern in Gauss in the PM blocks is also shown in the
same figure.
Measuring the field on a circle of radius r and by doing

a FFT, the QP gradient was found out. The field strength is
computed from the center of the QPM to 20 cm away
along either side from the center of the magnets, where the
fringe field is negligible. The length of the magnet is
20 cm, and its span is from −10 to 10 cm along the Z axis.
The variation of the field gradient in T/m along the length
of the magnet for the 24 PMs assembly QP is shown in
Fig. 22. Using the data, the effective length of the magnet

is calculated to be 20.02 cm ðLeffective ¼
R

g:dz

g0
Þ. The length

of the magnet is 20 cm. So for both 12 and 24 PMs

FIG. 18. Variation of the gradient in the good field zone at the
center of the magnet for the assembly of 24 PMs each of 3.4 mm
radius and after the addition of a gradient tune coil of 10 A/mm2

current density as obtained from the 2D calculation.

FIG. 19. Gradient uniformity of 0.1% is extended up to a radius
of 1.78 cm, for the assembly of 24 PMs, which is called the radius
of good field zone.

FIG. 20. Multipole components, as obtained from the 2D
calculation, normalized with the quadrupole component are
shown for the assembly of 24 PMs.

FIG. 21. The 3D arrangement of 24 PMs in a quadrupole
magnet and the field in Gauss (G) in the good field zone at the
center of the magnet (Z ¼ 0). Field patterns in Gauss in the PM
blocks are also shown. Half symmetry of the model is used for the
calculation.
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assembly, the effective length is very close to the length of
the magnet.

IV. CONCLUSION

I present a method to design magnets using cylindrical-
shaped permanent magnets, where various types of mag-
netic field can be produced by either rotating or varying the
size of the magnets within a given mechanical structure
with a special emphasis on making a QPM. Cylindrical-
shaped PM blocks is chosen so that the variation of the
direction of magnetization can be adjusted by mechanically
rotating the blocks during fabrication. In a given mechani-
cal structure having 12 PM blocks, each of radius 7 mm,
can generate a dipole field of 0.39 T, a quadrupole gradient
of 25 T/m, and a sextupole gradient of 1311 T/m2 if the
direction of magnetization satisfies Eq. (18), (19), and (20),
respectively. In one mechanical structure, 12 cylindrical-
shaped magnets of different radius like 7, 6, and 5 mm are
used to generate a quadrupole gradient of 25, 18.2, and
12.5 T/m, respectively. On top of this, a 2 − 2.8 T/m
gradient is generated for tuning using the proper shaped
current-carrying conductor. A tolerance study is carried out
by randomly varying the direction of magnetization and the
position of each magnet from the ideal one. Following these
results, the mechanical tolerance of the positions of each
magnet is set to �35 μm, and the allowable random
deviation of the angle of magnetization is set to �0.50°.
A new concept is introduced to reduce the integrated

quadrupole field strength by inserting two cylindrical iron
tubes, one near each end. The advantages of this scheme
are that it is easy to implement, the magnetic axis will not
shift, and it will prevent interference with nearby devices
by restricting the fringe field. In the present model, the
integrated quadrupole field strength can vary from 3.4 to
2.4 T when the end tube of 2 cm length is brought from a
far off distance to −2 cm inside the magnet at each end
for a 12 PM block assembly each having a 6 mm radius.

By increasing the length of the end tubes, a further
reduction of the integrated field strength is possible.
This concept is applicable for other different shaped
magnets as well.
The QP field gradient of 80 T/m is produced by using

two layers of PMs. The inner layer contains a set of 12
magnets, each having a 3.5 mm radius, and the outer layer
contains a set of 12 magnets, each having a 6 mm radius.
The assembly of 24 PMs each having a 3.4 mm radius

can generate an 11 T/m peak gradient at the center of the
magnet. The good field zone of 0.1% gradient variation is
extended up to 1.78 cm radius, which is 67% of the bore
radius. Therefore, as the number of PMs is increased from
12 to 24, the quadrupole field gradient reduces but the good
field zone increases and higher-order multipoles reduce.
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