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Transverse beam echoes can be excited with a single dipole kick followed by a single quadrupole kick.
They have been used to measure diffusion in hadron beams and have other diagnostic capabilities. Here
we develop theories of the transverse echo nonlinear in both the dipole and quadrupole kick strengths. The
theories predict the maximum echo amplitudes and the optimum strength parameters. We find that the echo
amplitude increases with smaller beam emittance and the asymptotic echo amplitude can exceed half the
initial dipole kick amplitude. We show that multiple echoes can be observed provided the dipole kick is
large enough. The spectrum of the echo pulse can be used to determine the nonlinear detuning parameter
with small amplitude dipole kicks. Simulations are performed to check the theoretical predictions. In the
useful ranges of dipole and quadrupole strengths, they are shown to be in reasonable agreement.
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I. INTRODUCTION

Echoes are ubiquitous phenomena in physics. Spin
echoes were discovered by Hahn [1] and since then, spin
echoes have evolved into use as sophisticated diagnostic
tools in magnetic resonance imaging [2]. Photon echoes
were observed from a ruby crystal after excitation by a
sequence of two laser pulses, each about 0.1 μs long [3].
Later, plasma wave echoes were predicted and then
observed in a plasma excited by two rf pulses [4,5]. A
system of ultracold atoms confined within an optical trap
exhibited echoes when excited by a sequence of microwave
pulses [6]. About a decade ago, fluid echoes were observed
in a magnetized electron plasma [7]. More recently, so-
called fractional echoes were observed in a CO2 gas excited
by two femtosecond laser pulses [8]. Echoes were first
introduced into accelerator physics more than two dec-
ades ago [9,10]. This was followed by the observation of
longitudinal echoes in unbunched beams first at the
Fermilab Antiproton Accumulator [11] and later at the
Super Proton Synchrotron (SPS) [12]. Transverse echoes
were seen at the SPS [13], but more detailed studies with
transverse bunched beam echoes were performed at the

Relativistic Heavy Ion Collider (RHIC) [14]. A detailed
analysis of these experiments to extract diffusion coef-
ficients was recently reported in [15].
In all echo phenomena, the system (atoms, plasma,

particle beam, etc.) is first acted on by a pulsed excitation
(e.g. a dipole kick on a beam) that excites a coherent
response which then decoheres due to phase mixing.
However, the information in the macroscopic observables
(coordinate moments for a particle beam) is not lost, but
can be retrieved by the application of a second pulsed
excitation (e.g. a quadrupole kick). Some time after the
response to the second excitation has disappeared, a
coherent response, called the echo, reappears. The
strength of the echo signal in a beam depends on the
beam parameters and on the strengths of the kicks from
the magnets. The echo response is exquisitely sensitive to
the presence of beam diffusion. This sensitivity simulta-
neously presents both opportunities and challenges. The
short time scale over which beam echoes can be measured
(typically within a few thousand turns in an accelerator
ring) implies that diffusion can be measured very quickly
compared to the conventional method of using movable
collimators e.g. [16], which can take hours. However, the
echo signal can also be destroyed by strong diffusion. It is
therefore necessary to understand how to maximize the
echo response by appropriate choices of beam parameters
and excitation strengths.
In this paper we develop a theory of echoes in one

degree of freedom with nonlinear dependence on dipole
and quadrupole strengths, with the goal of maximizing
the echo signal. A nonlinear theory had been developed
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earlier in [10]. Here we follow a different approach, the
method as described in [17] where it was restricted to a
linear theory. Our results are more general than those in
[10], but reduce to them in limiting cases. In Sec. II, we
develop a theory (labeled QT) that is linear in the dipole
kick, but nonlinear in the quadrupole kick strength. This
is followed in Sec. III with a simplified echo theory
(labeled DQT) that is nonlinear in both dipole and
quadrupole kick strengths; a more complete theory is
described in Appendix A. Section IV discusses simula-
tions performed to check the theoretical results. Section V
shows how the spectrum of the echo pulse can be used to
extract the detuning parameter and we end in Sec. VI with
our conclusions.

II. NONLINEAR THEORY OF
QUADRUPOLE KICKS

The simplest way to generate a transverse beam echo is
to apply a short pulse dipole kick, usually done with an
injection kicker, to a beam in an accelerator ring with
nonlinear elements so that the betatron tune is amplitude
dependent. The centroid motion decoheres due to the tune
spread [18] and at some time τ after the dipole kick, the
beam is excited with a short pulse quadrupole kick. For
simplicity we will consider a single turn quadrupole kick,
although this is strictly not necessary and this kick could
last a few turns. Following the quadrupole kick, the
decoherence starts to partially reverse and at time 2τ after
the dipole kick, the first echo appears. Depending on beam
parameters and kick strengths, multiple echoes can appear
at times 4τ, 6τ, etc.
The echo amplitude depends on several parameters,

especially the dipole and quadrupole kick strengths.
Our approach will be to develop an Eulerian theory by
following the flow of the density distribution, similar to
the development in [17] where both kicks were treated
in linearized approximations. In this section, we
develop a theory (labeled QT) that is linear in the
dipole strength but nonlinear in the quadrupole
strength. We will compare our results with those from
an alternative method of following the particle’s phase
space motion that had been developed earlier [10]. As
mentioned in the Introduction, the treatment here is for
motion in one transverse degree of freedom, so the
effects of transverse coupling as well as coupling to the
effects of synchrotron oscillations and energy spread
are ignored here. We also do not consider here how
diffusion reduces the echo amplitudes or the impact of
collective effects at high intensity. These are important
effects which will be considered elsewhere.
We start with the usual definitions of the phase space

variables in position and momentum ðx; pÞ and the corre-
sponding action and angle variables ðJ;ϕÞ

x¼
ffiffiffiffiffiffiffiffi
2βJ

p
cosϕ; p¼βx0 þαx¼−

ffiffiffiffiffiffiffiffi
2βJ

p
sinϕ; ð2:1Þ

J ¼ 1

2β
½x2 þ p2�; ϕ ¼ Arctan

�
−p
x

�
: ð2:2Þ

We will assume that the nonlinear motion of the particles
can be modeled by an action dependent betatron frequency
and for simplicity we assume the form

ωðJÞ ¼ ωβ þ ω0J ð2:3Þ

where ωβ is the bare angular betatron frequency, and ω0

is the frequency slope which is determined by the lattice
nonlinearities. This model therefore assumes that the
effects of nearby resonances are negligible. We assume
that the initial particle distribution is a Gaussian in ðx; pÞ or
equivalently an exponential in the action

ψ0ðJÞ ¼
1

2πε0
exp

�
−
J
ε0

�
ð2:4Þ

with initial emittance ε0. At time t ¼ 0, an impulsive single
turn dipole kick Δp ¼ βKΔx0 ¼ βKθ changes the distribu-
tion function (DF) to ψ1ðJ;ϕÞ ¼ ψ0ðx; p − βKθÞ where βK
is the beta function at the dipole and θ is the kick angle. To
first order in the dipole kick, we have

ψ1ðJ;ϕÞ ¼ ψ0ðJÞ þ βKθψ
0
0ðJÞ

ffiffiffiffiffi
2J
β

s
sinϕ: ð2:5Þ

Following the dipole kick, the action remains constant
while the angle ϕ evolves by a free betatron rotation.
Hence, at time t after the dipole kick, the DF is

ψ2ðJ;ϕ;tÞ¼ψ0ðJÞþβKθψ
0
0ðJÞ

ffiffiffiffiffi
2J
β

s
sin½ϕ−ωðJÞt�: ð2:6Þ

Just before the quadrupole kick at time τ, the DF is
ψ3ðJ;ϕ; τÞ ¼ ψ2ðJ;ϕ; t ¼ τÞ. The first term ψ0ðJÞ in the
perturbed DF does not contribute to the dipole moment,
and it will be dropped in the rest of this section. The
quadrupole kick Δp ¼ −qx changes the distribution to
ψ4ðx; p; τÞ ¼ ψ3ðx; pþ qx; τÞ. Here q ¼ βQ/f is the
dimensionless quadrupole strength parameter, with βQ
the beta function at the quadrupole and f the focal length
of this quadrupole. In practical applications q ≪ 1 and we
will assume this to be true in the development here.
Due to this quadrupole kick, the action and angle

arguments of the density distribution change to
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J →
1

2β
½x2 þ ðpþ qxÞ2�≡ J½1þ Aðq;ϕÞ�;

Aðq;ϕÞ ¼ ð−q sin 2ϕþ q2cos2ϕÞ; ð2:7Þ

ϕ → Arctan

�
−
pþ qx

x

�
¼ Arctanðtanϕ − qÞ: ð2:8Þ

To proceed, we have to approximate the form of the
transformed angle variable. A Taylor expansion shows that

Arctanðtanϕ − qÞ

¼ ϕ − qcos2ϕ −
1

4
q2
�
sin 2ϕþ 1

2
sin 4ϕ

�
þOðq3Þ:

ð2:9Þ

For reasons of simplicity, we will keep terms toOðqÞ in this
expansion. For self-consistency, we consider Aðq;ϕÞ to the
same order and approximate Aðq;ϕÞ ≈ −q sin 2ϕ. While
the Jacobian of the exact transformation has a determinant
of one, the approximate transformations has the determi-
nant ¼ 1þOðq2Þ.

The DF right after the quadrupole kick with the
approximation above is given by

ψ4ðJ;ϕ; τÞ ¼ βKθψ
0
0ðJ½1 − q sin 2ϕ�Þ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jð1 − q sin 2ϕÞ

β

s
sin ½ϕ−τ − qcos2ϕ�;

ð2:10Þ

ϕ−τ ¼ ϕ − ωðJ½1 − q sin 2ϕ�Þτ: ð2:11Þ

Following the quadrupole kick, the DF at time t (from the
instant of the dipole kick) is

ψ5ðJ;ϕ; tÞ ¼ ψ4ðJ;ϕ−ΔϕÞ; ϕ−Δϕ ≡ ϕ − Δϕ;

Δϕ ¼ ωðJÞðt − τÞ: ð2:12Þ

We note that as defined here, Δϕ depends on the action J
but is independent of the angle ϕ. Under the change
ϕ → ϕ−Δϕ, the angle variable ϕ−τ transforms as ϕ−τ →
ϕ−Δϕ − τωþ qτω0J sin 2ϕ−Δϕ. The dipole moment at
time t is

hxiðtÞ ¼
ffiffiffiffiffi
2β

p Z
dJ

Z
dϕ

ffiffiffi
J

p
cosϕψ5ðJ;ϕ; tÞ

¼ 2βKθ

Z
dJ

Z
dϕ

ffiffiffi
J

p
cosϕψ 0

0ðJ½1 − q sin 2ϕ−Δϕ�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J½1 − q sin 2ϕ−Δϕ�

q

× sin

�
ϕ−Δϕ −

1

2
qð1þ cos 2ϕ−ΔϕÞ − τωþ qτω0J sin 2ϕ−Δϕ

�
: ð2:13Þ

We proceed by simplifying the trigonometric terms in the
argument of the first sine function in the last line above

−
1

2
cos 2ϕ−Δϕ þ τω0J sin 2ϕ−Δϕ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðτω0JÞ2 þ 1

4

r
sin

�
2ϕ−Δϕ − Arctan

�
1

2τω0J

��

≈ τω0J sin 2ϕ−Δϕ ð2:14Þ

where the last approximation follows by noting that the
decoherence time τD ≃ ω0ε0 is much shorter than
the delay time τ; hence τω0ε0 ≃ τ/τD ≫ 1. Next, we
expand the square root to first order in q asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½1 − q sin 2ϕ−ΔϕÞ�
p

≈ ½1 − 1
2
q sin 2ϕ−Δϕ�.

Hence we can write

hxðtÞi ¼ −
βKθ

2πε20

Z
J exp

�
−
J
ε0

�
fS1 − S2 þ S3 − S4gdJ

≡ T1 − T2 þ T3 − T4: ð2:15Þ

The terms Si are obtained after integrating over ϕ and are
given by

S1 ¼ −2πIm
�
exp

�
i
�
Δϕ − τω −

1

2
q
��

J1ðqτω0JÞ
�
;

ð2:16Þ

S2 ¼ 2πIm

�
exp

�
i

�
Δϕþ τωþ 1

2
q

��
J0ðqτω0JÞ

�
;

ð2:17Þ

S3 ¼ −
π

2
qRe

�
exp

�
i

�
−Δϕþ τωþ 1

2
q

��
J0ðqτω0JÞ

− exp

�
i

�
Δϕ − τω −

1

2
q

��
J2ðqτω0JÞ

�
; ð2:18Þ

S4 ¼
π

2
Re

�
exp

�
−i
�
Δϕþ τωþ 1

2
q

��
J−1ðqτω0JÞ

þ exp½iðΔϕþ τωÞ�J1ðqτω0JÞ
�
; ð2:19Þ
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where the integrals over ϕ were calculated by first
expanding into Bessel functions and using

Z
dϕ exp½imϕ� exp½ia sinð2ϕ − 2ΔϕÞ�

¼
Z

dϕ exp½imϕ�
X
k

JkðaÞ exp½ikð2ϕ − 2ΔϕÞ�

¼ 2πJ−m/2ðaÞ exp½imΔϕ�: ð2:20Þ

We clarify that J denotes the action while Jn with a
subscript n denotes the Bessel function.
To integrate over the action J, we introduce the dimen-

sionless integration variable z ¼ J/ε0 and define the fol-
lowing dimensionless parameters that are independent of
the action:

Φ ¼ ωβðt− 2τÞ; ξðtÞ ¼ ðt− 2τÞω0ε0; Q ¼ qτω0ε0;

ð2:21Þ

a1 ¼ 1 − iξ; a2 ¼ 1 − iω0tε0: ð2:22Þ

It follows that the terms Ti, obtained by integrating over J
in Eq. (2.15), are

T1 ¼ βKθIm

�
exp

�
i

�
Φ −

1

2
q

��
H1;1ða1; QÞ

�
; ð2:23Þ

T2¼−βKθIm
�
exp

�
i

�
ωβtþ

1

2
q

��
H1;0ða2;QÞ

�
; ð2:24Þ

T3 ¼ −
1

4
βKθqRe

�
exp

�
−i
�
Φ −

1

2
q

��
H1;0ða�1; QÞ

− exp

�
i

�
Φ −

1

2
q

��
H1;2ða1; QÞ

�
; ð2:25Þ

T4 ¼
1

4
βKθε

2
0qRe

�
exp

�
−i
�
ωβtþ

1

2
q

��
H1;1ða�2; QÞ

þ exp

�
i

�
ωβtþ

1

2
q

��
H1;1ða2; QÞ

�
; ð2:26Þ

where a�1 is the complex conjugate of a1 and the functions
Hm;nða;QÞ are defined as

Hm;nða;QÞ ¼
Z

∞

0

dzzm exp½−az�JnðQzÞ: ð2:27Þ

Consider only the terms with phases that depend on Φ
rather than on ωβt. These phase terms will vanish around
the time of the echo at t ¼ 2τ and the terms T1, T3 will be
the dominant terms to determine the echo amplitude,

T1 ¼ βKθIm

�
exp

�
i

�
Φ −

1

2
q

��
Q

ða21 þQ2Þ3/2
�
; ð2:28Þ

T3 ¼−
1

4
βKθqRe

�
exp

�
−i
�
Φ−

1

2
q

��
a�1

ðða�1Þ2þQ2Þ3/2

− exp

�
i

�
Φ−

1

2
q

��
2ða21þQ2Þ3/2−a1ð2a21þ3Q2Þ

Q2ða21þQ2Þ3/2
�
:

ð2:29Þ

In order to simplify the evaluation of these terms, we
introduce the amplitude functions A0ðt; τ; qÞ, A1ðt; τ; qÞ,
the phase functions Θðt; τ; qÞ, Θ1ðt; τ; qÞ, and two other
terms a3C, a3S as follows:

ða21 þQ2Þ3/2 ≡ A0ðt; τ; qÞ exp½−i3Θ�;
a1 ≡ A1ðt; τ; qÞ exp½iΘ1�; ð2:30Þ

A0ðt; τ; qÞ ¼ ½ð1 − ξ2 þQ2Þ2 þ 4ξ2�3/4;

Θ ¼ Arctan
�

ξ

1 − ξ2 þQ2

�
; ð2:31Þ

A1 ¼ ½1þ ξ2�1/2; Θ1 ¼ Arctan½ξ�; ð2:32Þ

a3C¼−
1

2
q

�
A1cosð3ΘþΘ1Þ−

A0

Q2
þA2/3

0 A1

Q2
cosðΘþΘ1Þ

�
;

ð2:33Þ

a3S ¼ −
1

2
q

�
A1 sinð3Θþ Θ1Þ þ

A2/3
0 A1

Q2
sinðΘþ Θ1Þ

�
:

ð2:34Þ

In terms of these amplitudes and phases, the functions T1,
T3 simplify to

T1 ¼
βKθQ
A0

sin

�
Φ −

1

2
qþ 3Θ

�
;

T3 ¼ −
βKθ

A0

�
a3C cos

�
Φ −

1

2
q

�
− a3S sin

�
Φ −

1

2
q

��
:

ð2:35Þ
Keeping these two dominant terms at large times, we can
write the time dependent echo in terms of an amplitude and
phase as

hxðtÞi ¼ T1 þ T3 ¼ βKθA1;3 sin

�
ΦðtÞ þ Θ1;3ðtÞ −

1

2
q

�
;

ð2:36Þ

A1;3 ¼
1

A0

½ðQ cos 3Θþ a3SÞ2 þ ðQ sin 3Θ − a3CÞ2�1/2;

ð2:37Þ
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Θ1;3 ≡ Arctan

�
Q sin 3Θ − a3C
Q cos 3Θþ a3S

�
: ð2:38Þ

We consider various limiting forms of this general form of
the echo (in the linearized dipole kick approximation of this
section) below.
Of the two terms, T1 has the dominant contribution to the

echo amplitude. Keeping only this term, the time dependent
amplitude is

hxðtÞi ≈ βKθ
Q

f½1 − ξ2ðtÞ þQ2�2 þ 4ξ2ðtÞg3/4

× sin

�
ΦðtÞ þ 3ΘðtÞ − 1

2
q

�
: ð2:39Þ

The echo amplitude at t ¼ 2τ is approximated by

hxðt ¼ 2τÞiamp ≈ βkθ
Q

ð1þQ2Þ3/2 : ð2:40Þ

This expression has the same form as Eq. (4.10) in [10]
evaluated at the time of the first echo. We expect however
that the general form in Eq. (2.36) will be more accurate
for larger values of q. Finally we recover the completely
linear theory by dropping the Q2 term. In this case
ΘðtÞ ≈ Arctan½ξðtÞ� and we have

hxðtÞilinear ¼ βKθ
Q

½ð1þ ξ2ðtÞ�3/2

× sin
�
ΦðtÞ þ 3Arctan½ξðtÞ� − 1

2
q
�
: ð2:41Þ

Equation (2.41) is the same as that obtained in [17], with
the addition of the small correction to the phase. The range
of values in the quadrupole strength q over which the linear
theory is valid decreases as either the emittance or the
dipole kick increases.
In order to obtain the optimum quadrupole strength that

maximizes the echo amplitude, we define a dimensionless
parameter η ¼ ω0ε0τ ¼ τ/τD in terms of whichQ ¼ qη. Let
σ0 ¼

ffiffiffiffiffiffiffi
βε0

p
denote the rms beam size at a location with beta

function β. Then η is the additional change in phase due to
the nonlinearity of particles at the rms beam size accumu-
lated in the time between the two kicks. The optimum
quadrupole kick qopt at which the echo amplitude reaches a
maximum when η ≫ 1 is given by

lim
η≫1

qopt ¼
1ffiffiffi
2

p
η
¼ 1ffiffiffi

2
p 1

ω0ε0τ
: ð2:42Þ

Proceeding with the above form for qopt, and substituting
back into the simpler Eq. (2.40), the echo amplitude relative
to the dipole kick at the optimum quadrupole strength

lim
η≫1

Amax ≡ lim
η≫1

hxð2τÞimax;amp

βKθ
¼ 2

3
ffiffiffi
3

p ¼ 0.38: ð2:43Þ

The results for qopt and Amax in this approximation of
keeping only T1 were first obtained in [10]. In this form,
the maximum relative amplitude Amax is a constant,
independent of the initial emittance and dipole kick. We
expect this to be true when the initial emittance is
sufficiently large. We note that the value of Amax observed
with gold ions with their nominal emittances during the
RHIC experiments [14] was 0.35, close to this predicted
value. Numerical evaluation of the complete amplitude
function A1;3 defined in Eq. (2.37) leads to a correction of
about 10% from that in Eq. (2.43). The simulations to be
discussed in Sec. IV will show that Amax exceeds the above
prediction for small emittances.
The above discussion has assumed that the rms angular

betatron frequency spread is given by σω ¼ ω0ε0. However,
the beam decoheres following the dipole kick and the
emittance grows from ε0 to εf ¼ ε0½1þ 1

2
ðβKθ/σ0Þ2� at

times t ≫ τD [15,19]. At these times, we assume that the
increased rms frequency spread can be approximated by
σω ≈ ω0εf. In the next section, we will calculate this rms
frequency spread exactly and show that this approximation
is valid in the limit of small amplitude dipole kicks
βKθ ≪ σ0. Incorporating this increased emittance and
frequency spread had turned out to be essential in compar-
ing theory with the experimental measurements at RHIC
[15]. We can include these effects into the above equations
by the approximate modifications

ξðtÞ ≈ ðt − 2τÞω0ε0

�
1þ 1

2

�
βKθ

σ0

�
2
�
; ð2:44Þ

Q ≈ qτω0ε0

�
1þ 1

2

�
βKθ

σ0

�
2
�
: ð2:45Þ

These changes lead to a theory which is nonlinear in the
dipole kick but this is an incomplete dependence. A more
complete nonlinear theory will be discussed in the next
section.
The plots in Fig. 1 show the echo amplitude dependence

on the quadrupole kick, as predicted by Eq. (2.36) with and
without the modifications introduced in Eqs. (2.44) and
(2.45). For a very small initial emittance (left plot), the
black curve shows that the relative echo amplitude without
emittance growth is independent of the dipole kick and
increases monotonically with the quadrupole kick; the
relative amplitude reaches nearly 0.5 at q ¼ 1. The blue
and red curves for dipole kicks of 1 mm and 3 mm,
respectively, include the increased frequency spread
which changes the profiles significantly. In both cases,
Amax is close to 0.38, while qopt shifts to lower values. The
right plot in Fig. 1 shows results with a larger initial
emittance chosen close to measured values in the RHIC

NONLINEAR THEORY OF TRANSVERSE BEAM ECHOES PHYS. REV. ACCEL. BEAMS 21, 021002 (2018)

021002-5



experiments [14]. In this case, even without including the
increased emittance from the dipole kick, Amax does not
exceed 0.38. Including the increased frequency spread
shifts qopt to lower values, as expected since qopt ∝ 1/σω.
The two plots combined also show that qopt decreases with
increasing emittance.

III. NONLINEAR THEORY OF DIPOLE
AND QUADRUPOLE KICKS

There are a few drawbacks to the theory developed in
the previous section. The first is that it has an incomplete
dependence on the dipole kick strength; the emittance
growth had to be introduced as a correction. The value of
Amax is limited to 0.38, in disagreement with simulation
results. It also does not predict the existence of multiple
echoes at times beyond the first one at 2τ. However the
experiments at RHIC (cf. Fig. 5 in [14]) showed echoes
at 4τ and 6τ. These multiple echoes are also seen in
simulations; see. Fig. 9 in Sec. IV. Our aim is to develop a
theory, labeled DQT, that is nonlinear in both dipole and
quadrupole strengths which will remove these drawbacks.
In this section, we will make an approximation for the

change in the distribution function that includes the large
time dependent change in the angle ϕ but neglects the
smaller impulsive changes to the action and angle. This
results in expressions which are approximate but contain
the essential physics. The more complete theory which
results in more complicated expressions is developed in
Appendix A.
Using the notation of Sec. II, the complete distribution

function without the first-order Taylor expansion at time t
after the dipole kick is

ψ2ðJ;ϕ; tÞ ¼ ψ0ðJ þ βKθ
ffiffiffiffiffiffiffiffiffi
2J/β

p
sinϕ−t þ ð1/2ÞβKθ2Þ;

ϕ−t ≡ ϕ − ωðJÞt: ð3:1Þ

This DF can be used to calculate the increased emittance
and the tune spread after the dipole kick. The time

dependent rms emittance was calculated in [15]. The action
dependent frequency spread is Δω ¼ ω0J from which the
rms frequency spread σω can be found from

σω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðΔωÞ2i − ðhΔωiÞ2

q
;

hΔωi ¼ ω0
Z

dJJ
Z

dϕψ2ðJ;ϕ; tÞ: ð3:2Þ

Using the form of ψ2 in Eq. (3.1), we find that the exact rms
frequency spread after the dipole kick is

σω ¼ ω0ε0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ βKθ

2

ε0

s
: ð3:3Þ

In the limit of small amplitude dipole kicks, this reduces to
the approximate form assumed in Eqs. (2.44) and (2.45).
The increase in the frequency spread leads to a smaller
decoherence time after the dipole kick, as will also be seen
in the simulations.
We follow the same transformations as in Sec, II to

calculate the centroid motion following the quadrupole kick
at time t ¼ τ. The dominant contribution to the change in
the DF after the quadrupole kick at time t > τ is the
transformation due to the angle evolution ϕ−τ → ϕ−Δϕ −
τωþQðJ/ε0Þ sin 2ϕ−Δϕ because these grow with time as
(t − τ) and the delay τ (Q depends on τ). The theory in
Appendix A includes the smaller transformations due to the
impulsive kicks. Here, in the approximation of keeping
only this dominant term, the DF as a function of the scaled
action variable z ¼ J/ε0 at a time after the quadrupole kick
t > τ is

ψ5ðz;ϕ; tÞ ¼ ψ0

�
zε0 þ βKθ

ffiffiffiffiffiffiffiffiffi
2ε0z
β

s
sinðϕ−Δϕ − τω

− qcos2ϕ−Δϕ þQz sin 2ϕ−ΔϕÞ þ
1

2
βKθ

2

�
:

ð3:4Þ

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  0.1  0.2  0.3  0.4  0.5

R
el

at
iv

e 
E

ch
o 

am
pl

itu
de

Quadrupole kick q

σ0 = 0.3 mm

No emitt. growth
Dipole kick= 1mm
 Dipole kick= 3mm

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  0.1  0.2  0.3  0.4  0.5

R
el

at
iv

e 
E

ch
o 

am
pl

itu
de

Quadrupole kick q

σ0 = 1.3 mm

No emitt. growth
Dipole kick= 1mm
Dipole kick= 3mm

FIG. 1. Echo amplitude relative to the dipole kick as a function of quadrupole kick predicted by Eq. (2.36). The two plots are for
different initial emittances. In each plot, the black curve shows the prediction without including the emittance growth from a dipole kick,
the blue and red curves include emittance growth from dipole kicks of 1 mm and 3 mm, respectively.
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We have for the dipole moment

hxðtÞi ¼
ffiffiffiffiffiffiffiffiffi
2βε0

p
2π

exp

�
−
βKθ

2

2ε0

� Z
dz

ffiffiffi
z

p
exp½−z�TϕðzÞ;

ð3:5Þ

TϕðzÞ ≃ Re

�Z
dϕeiϕ exp

�
−aθ

ffiffiffiffiffi
2z

p
sin

�
ϕ−Δϕ − τω −

1

2
q

þQz sin 2ϕ−Δϕ

���
ð3:6Þ

where we introduced the dimensionless dipole kick param-
eter in units of the rms beam size

aθ ¼
βKθffiffiffiffiffiffiffi
βε0

p : ð3:7Þ

One way of calculating the ϕ integration is to use the
generating functions for the modified Bessel function InðzÞ
and for the Bessel function JnðzÞ [20], i.e.

e−z sin θ ¼
X∞
n¼−∞

inInðzÞeinθ; eiz sin θ ¼
X∞
l¼−∞

JlðzÞeilθ:

Then the term TϕðzÞ transforms to

TϕðzÞ ¼ Re

� X∞
k¼−∞

X∞
l¼−∞

ikIkðaθ
ffiffiffiffiffi
2z

p ÞJlðkQzÞ exp
�
i

�
−k

�
Δϕþ τωþ 1

2
q

�
− 2lΔϕ

��Z
dϕ exp ½ið½1þ kþ 2l�ϕÞ�

�

¼ 2πRe

�X
l

i−ð2lþ1ÞI−ð2lþ1Þðaθ
ffiffiffiffiffi
2z

p ÞJlð−ð2lþ 1ÞQzÞ exp
�
i

�
ωðtþ 2lτÞ þ 1

2
ð2lþ 1Þq

���
: ð3:8Þ

Since the sum extends over positive and negative values of l, we can replace l ¼ −n and write

ωðt − 2nτÞ≡Φn þ ξnz; Φn ¼ ωβðt − 2nτÞ; ξn ¼ ω0ε0ðt − 2nτÞ: ð3:9Þ

We have therefore for the time dependent echo pulse

hxðtÞi ¼
ffiffiffiffiffiffiffiffiffi
2βε0

p
e−ðβ/2βKÞa

2
θ Im

� X∞
n¼−∞

exp
�
i
�
Φn −

1

2
ð2n − 1Þq

��

×
Z

dz
ffiffiffi
z

p
exp½−zð1 − iξnÞ�I2n−1ðaθ

ffiffiffiffiffi
2z

p ÞJnð½2n − 1�QzÞ
�

ð3:10Þ

where we used Re½−ifðzÞ� ¼ Im½fðzÞ� for a complex
function fðzÞ. This echo pulse will be large when the
dominant phase factors Φn ¼ 0 ¼ ξn, i.e at times t ¼ 2nτ.
This form therefore predicts echoes at times close to
multiples of 2τ. The presence of the small q dependent
phase factor i.e. ð2n − 1Þq/2 will shift the maximum of the
echo away from 2nτ, the shift increasing with q and the
order n of the echo. The dipole moment of the first echo
(n ¼ 1), under the approximations made in this section, is

hxðt ¼ 2τÞi

¼
ffiffiffiffiffiffiffiffiffi
2βε0

p
e−ðβ/2βKÞa

2
θ Im

�
eiðΦ1−q/2Þ

×
Z

dz
ffiffiffi
z

p
exp½−zf1 − iξ1g�I1ðaθ

ffiffiffiffiffi
2z

p ÞJ1ðQzÞ
�
:

ð3:11Þ
This form can be compared with the term T1 in Sec. II in the
linear dipole approximation, which was (before the inte-
gration over z)

hxðt ¼ 2τÞiQT

¼ βKθIm

�
ei½Φ1−q/2�

Z
dz z exp½−zf1 − iξ1g�J1ðQzÞ

�
:

ð3:12Þ
If in Eq. (3.11) we replace I1ðaθ

ffiffiffiffiffi
2z

p Þ by its first order

approximation 1
2
aθ

ffiffiffiffiffi
2z

p
and e−ðβ/2βKÞa

2
f by 1, then it

reduces to Eq. (3.12). In Sec. II, we included the emittance
growth due to the dipole kick in a post hoc fashion by
changing ε0 to εf in parameters such as ξ, Q etc. In this
section, the use of the complete distribution function to
all orders in the dipole kick, e.g. ψ2 in Eq. (3.1), naturally
accounts for the emittance growth as is seen by calculating
the second moments [15]. Hence we use the original
definitions of the parameters ξ, Q in evaluating
Eq. (3.11). This equation shows that the maximum relative
echo amplitude depends on the relative dipole kick aθ
through expf−½β/ð2βKÞ�a2θgI1ð

ffiffiffi
2

p
aθ

ffiffiffi
z

p Þ and on the quad-
rupole strength q, the emittance ε0, the lattice nonlinearity
ω0, and the delay τ through J1ðqω0τε0zÞ.
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The amplitude of the echo at 4τ corresponds to the term
with n ¼ 2 in Eq. (3.10). Hence

hxðt ¼ 4τÞi ¼
ffiffiffiffiffiffiffiffiffi
2βε0

p
e−ðβ/2βKÞa

2
θ

× Im

�
eiðΦ2−3q/2Þ

Z
dz

ffiffiffi
z

p
exp½−zf1 − iξ2g�

× I3ðaθ
ffiffiffiffiffi
2z

p ÞJ2ðQzÞ
�
: ð3:13Þ

Note that since the lowest order term in I3ðaθ
ffiffiffiffiffi
2z

p Þ is
ðaθ

ffiffiffi
z

p Þ3, there is no echo at 4τ in the linearized dipole kick
approximation.
The integrals in Eqs. (3.11) and (3.13) do not appear to

be analytically tractable nor do they appear to be listed in
the extensive tables of integrals in [21]. However, they can
be evaluated numerically. As a consequence, however, the
optimum quadrupole strengths to maximize the echo
amplitudes must be found numerically, unlike the case
with the theory developed in Sec. II. Detailed comparisons
of the predictions from QT and DQT theories are discussed
in the next section on simulations.
Webriefly illustrate how the nonlinear nature of the dipole

kicks changes the echo response. Figure 2 shows the impact
of increasing dipole kicks on the amplitudes of the first and
second echoes, based on the above theory. In general for the
first echo we find that increasing the dipole kick lowers the
optimum quadrupole kick qopt and increases the relative
amplitude slightly, as also seen in Sec. II. On the other hand
for the second echo, larger dipole kicks also decrease the
corresponding qopt but significantly increase its amplitude.
The left plot in this figure shows the first echo’s amplitude
Að1Þ as a function of the quadrupole kick q for two dipole
kicks at a constant beam size of 1 mm. As the dipole kick
increases from 1 to 3 mm, qopt decreases while the echo
amplitude at qopt increases slightly. The right plot shows the
response of the second echo as a function of q. At a 1 mm
dipole kick, the second echo’s amplitudeAð2Þ has a relatively
flat response to the quadrupole kick after an initial linear

increase. At a 1 mm kick, Að2Þ
max ∼ 0.1Að1Þ

max while at a 3 mm

dipole kick Að2Þ
max ∼ 0.5Að1Þ

max. Increasing the dipole kick

shows that Að1Þ
maxðβKθ ¼ 3 mmÞ ∼ 1.15Að1Þ

maxðβKθ ¼ 1 mmÞ
while Að2Þ

maxðβKθ ¼ 3 mmÞ ∼ 5Að2Þ
maxðβKθ ¼ 1 mmÞ, show-

ing that the second echo is much more sensitive to the
dipole kick. Summarizing, we have shown that the nonlinear
dipole and quadrupole theory (DQT) removes the draw-
backs of the nonlinear quadrupole theory (QT) mentioned
earlier.

IV. SIMULATIONS OF ECHO AMPLITUDES

In this section, we discuss the results of 1D echo
simulations using a simple particle tracking code. The
code models linear motion in an accelerator ring and
nonlinear motion due to octupoles placed around the ring.
A single turn dipole kick acts on the particle distribution at
a chosen moment and is followed by a single turn quadru-
pole kick at a later time after the distribution has decohered.
The beam distribution is then followed at a separate
observation point for a virtual beam position monitor
(BPM) and the first moment is recorded until the first
few echoes have developed and then disappeared. The main
beam parameters in the simulations are shown in Table I.
We do not specify the beam energy here, but note that the

TABLE I. Table of parameters.

Parameter Symbol Value

Number of particles Npart 20000
Total simulation turns - 4000–10,000
Tune νβ 0.245
Beta function at BPM, dipole,
quadrupole [m]

β; βK; βQ 10, 10, 10

Dipole kick range [mrad] θ 0.1–1.0
Quadrupole kick range q 0.01–0.5
Delay time [turns] Nτ 1400
Tune slope [1/m] ν0 −3009
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FIG. 2. Left: relative amplitude of the first echo vs quadrupole strength for two dipole kicks. Right: relative amplitude of the second
echo for the same two dipole kicks. The initial emittance is the same in both plots.
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emittances chosen are in a range around the nominal
unnormalized emittance observed during 100 GeV oper-
ation with proton beams at RHIC [14]. The octupole
strengths were chosen to ensure a large enough nonlinear
tune spread that results in decoherence times of the order of
a few hundred turns but small enough that no particles were
lost at the largest dipole kick used. Typically, the dipole
kick was applied after 200 turns and the quadrupole kick at
turn 1600. This delay time of 1400 turns is large enough so
that the beam distribution had decohered completely (in
most cases, but see the discussion below) at the time of the
quadrupole kick. A Gaussian beam distribution in trans-
verse ðx; pÞ space with three seeds for each echo simulation
was used and averaged to obtain the echo amplitude. The
simulations were done for different initial emittances,
dipole kicks, and quadrupole kicks while keeping the
detuning and delay parameters constant.
First, we make some general observations. The emittance

growth following the dipole kick was compared with the
prediction εf ¼ ε0½1þ 1

2
ðβKθσ0

Þ2� and found to be within 5%
of this value. Also as expected, there was no further
emittance growth following the quadrupole kick. The
decoherence time, calculated as the e-folding time for
the centroid decay following the dipole kick, depends both
on the initial emittance and on the dipole kick. We also
observe that for small emittances and small dipole kicks
where the decoherence time is longer than 1400 turns,
the quadrupole kick was applied before the beam had
completely decohered. Echoes are still observed, albeit
of relatively small amplitude. These echoes have long

durations that are proportional to the decoherence time, as
predicted by the linear theory [17].
Figure 3 shows an example of the change in the echo

pulse shape with increasing values of q, at constant
emittance and constant dipole kick. We observe that as
low values of q, the echo pulse is symmetric and increases
in amplitude with q, but with further increase becomes
asymmetric, widens, starts earlier than 2τ, then splits into
two pulses of smaller amplitudes before vanishing alto-
gether. The plots in Fig. 4 show the echo pulse with
increasing dipole kicks, at constant initial emittance and
constant quadrupole kick. The plots in Fig. 4 also illustrate
that the decoherence time decreases as the dipole kick
increases. The first plot in this figure shows that an echo
pulse is still formed, even though the centroid has not
completely decohered at the time of the quadrupole kick.
Our goal is to maximize the echo signal by proper

choices of parameters. Figure 5 shows theory and simu-
lations of the echo amplitude as a function of the quadru-
pole strength for different values of the beam emittance and
the initial dipole kick. Here we will consider the simpler
version of the nonlinear dipole quadrupole theory (DQT)
developed in Sec. III. The error bars represent the rms
variation over the seeds for the initial beam distribution
and are quite small in every case. First we make general
comparisons between the two theories with the simulation
results. The nonlinear dipole and quadrupole theory (DQT)
predicts larger amplitudes than the nonlinear quadrupole
theory (QT) and is usually in better agreement with the
simulations. The QT predicts Amax ≤ 0.4, but the DQT and
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FIG. 3. Time evolution of the centroid after the dipole kick at turn 200, with different strength quadrupole kicks applied at turn 1600.
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the simulations show larger values of Amax, especially at
smaller emittances. The QT predicts that the optimum qopt
is determined by η, the ratio of the delay to the decoherence
time [see Eq. (2.42)]. However the DQT predicts slightly
larger values of qopt than the QT, and that the echo
amplitude decreases more slowly for q > qopt. All of these
predictions from DQT are in better agreement with the
simulations. The differences between the theories diminish
with increasing emittance. At the larger emittances studied,
Amax in the simulations does not exceed 0.38, in agreement
with the prediction of QT.
Now we turn to specific comparisons of the results

shown in Fig. 5 where the initial emittance increases from

top to bottom and the dipole kick increases from left to
right. The top left plot in Fig. 5 shows that the simulation
points are at larger amplitude than the theories. In this case
the decoherence time is very long, so there is a contribution
from the initial dipole kick to the centroid amplitude at
the time of the echo. Consequently, the simulated echo
amplitude appears to be nonzero at zero quadrupole kick.
The top right plot for the larger dipole kick (3 mm) shows
that the peak echo amplitude from simulation lies in
between the peak amplitudes from the QT and the DQT.
Theoretical values of the optimum qopt are close to the
simulation value. However, the DQT shows a spurious
oscillation for q > 0.25 at this low emittance. This occurs
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FIG. 5. The relative amplitude of the first echo as a function of the quadrupole strength parameter q. Simulations (red dots) are
compared with QT, the nonlinear quadrupole theory (green curve) and DQT, the nonlinear dipole-quadrupole theory (black curve). The
initial emittances increase from top to bottom, at each emittance the left plot corresponds to a dipole kick ¼ 1 mm, the right plot to a
dipole kick ¼ 3 mm.
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because of the oscillatory integrand and the simple numeri-
cal integration algorithm used which does not converge
rapidly enough in this parameter range where both aθ is
large and q ≫ qopt. There are straightforward algorithms to
improve the convergence with Bessel function integrands;
see for example [22]. Such an algorithm can be imple-
mented if required. The plots in the second and third row
show that for larger emittances, both theories (especially
the DQT) agree reasonably well with simulations for
q < qopt but fall off faster with increasing q for q > qopt
compared to the simulations. These differences may not be
practically relevant, since we will use quadrupole kicks
as close as possible to the optimum in experiments. In
addition, the discrepancies for aθ ≥ 6 may practically not
matter, since it is unlikely that the beam will be kicked to
amplitudes larger than 6σ, especially in hadron super-
conducting machines or in machines with collimator jaws
placed close to this amplitude.
The plots in Fig. 6 show simulation results for the echo

amplitude variation with q over a large range of dipole
kicks. The left plot at the smaller initial emittance shows
that at the smallest kick of 1 mm, the echo amplitude
increases nearly linearly with q and Amax reaches a

maximum value of about 0.55. As the dipole kick increases,
the optimum quadrupole strength decreases, but there is
little change in Amax. The right plot in Fig. 6 shows results
at a larger initial emittance. The plots show similar behavior
except that the linear response is valid over a smaller range
in q. These simulation results confirm the results from
theory that larger dipole kicks do not significantly impact
the amplitude of the first echo.
Figure 7 shows simulation results for the variation of qopt

with the emittance for dipole kicks of 1 and 3 mm.
Comparing the two cases, we find that at the larger dipole
kick, qopt values are about an order of magnitude smaller
over most of this range of emittances, except at the largest
emittances. The plots in Fig. 7 also show a fit to a function

qoptðε0Þ ¼
aq

ε0 þ bq
ð4:1Þ

where ðaq; bqÞ are fit parameters. This fit function models
the variation of qopt quite well in all the cases studied.
The DQT theory in Sec. III had shown that Amax is

determined by the emittance and the relative dipole kick aθ,
when the delay τ and detuning are kept constant. The left
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plot in Fig. 8 shows simulation results for Amax as a
function of the initial beam size σ0, while the right plot
shows Amax as a function of aθ. We find that Amax as a
function of σ0 is best fit by a functional form

Amaxðσ0Þ ¼
a

σ0 þ b
ð4:2Þ

where ða; bÞ are fit parameters. It follows that the maxi-
mum possible relative echo amplitude at vanishingly small
emittance is Aasymp;σ ≡ Amaxðσ → 0Þ ¼ a/b. On the other
hand, Amax as a function of aθ is well fit by a rational
function of the form

AmaxðaθÞ ¼
paθ þ q
aθ þ s

ð4:3Þ

where ðp; q; sÞ are fit parameters. This function predicts
that at very large aθ, the asymptotic value is given by
Aasymp;aθ ≡ Amaxðaθ → ∞Þ ¼ p. The plots in Fig. 8 show
the best fits to these functional forms. While there are the
same number of simulation points in both plots, the scatter
of points around the best fit is much smaller in the left
plot. The asymptotic values predicted by the two fits are
Aasymp;σ ¼ 0.57 and Aasymp;aθ ¼ 0.68. The value of Aasymp;σ

is much closer to the largest value seen in the simulations
while reaching the value of Aasymp;aθ may require unreal-
istically large values of the dipole kick. These results again
confirm that the maximum echo is largely determined by
the initial beam emittance; the variation with dipole kick
at a given emittance is within 15% over the dipole kicks
shown. A test beam with the smallest feasible emittance
and modest dipole kick aθ ∼ 1may suffice to maximize the
relative echo amplitude. While the absolute echo ampli-
tudes increase with the dipole kick, amplitudes ≥ 0.1 mm
can be measured accurately when BPM resolutions are of
the order of tens of microns. However, the advantage of a
larger dipole kick, as seen in Fig. 7, is that the optimum
quadrupole strength is smaller, by up to an order of
magnitude depending on the emittance. In general, smaller
dipole kicks are to be preferred since they are less likely to

lead to beam loss. In practice, generating the largest
amplitude echo may require a compromise between the
largest dipole kick tolerable and quadrupole kick strengths
achievable. Studies of stimulated echoes (not discussed
here) show that a single large quadrupole kick can be
replaced by a few lower strength quadrupole kicks, spaced
apart in time depending on the tune.

A. Multiple echoes

Multiple echoes could be useful to observe for the
information they may provide about the machine and
beam, such as diffusion and nonlinearities. It is also
possible to enhance the multiple echoes with different
sequences of quadrupole pulses (stimulated echoes), so it is
of interest to quantify their amplitudes with just the single
quadrupole kick studied in this paper. They were also
observed during the echo experiments at the RHIC [14].
Simulations with 10,000 turns are sufficient to observe

up to the third echo (if it exists) when the delay τ between
the dipole and quadrupole kicks is 1400 turns. We find that
increasing the quadrupole strength influences only the first
echo but has no influence on the later echoes which do not
exist at small dipole kicks. The plots in Fig. 9 show the
evolution of the centroid at constant emittance and constant
quadrupole kick but increasing dipole kick. In this case,
only the first echo is seen at a 1 mm kick, the second echo is
visible at a 3 mm kick, while at a 6 mm kick, both the
second and third echoes are observed, with comparable
amplitudes.
Table II compares the maximum relative amplitudes of

the first and second echoes from theory and simulations at a
constant emittance. The quadrupole strength was chosen
such that it led to the largest amplitude of the first echo.
In most cases, theory and simulation results for the
maximum amplitude are within 10%. The only exception
is the case with the second echo at the smallest dipole kick
of 1 mm; these amplitudes are very small in both theory
and simulations. We also observe in the simulations that at
q ¼ qopt for the first echo, the second echo has started to
bifurcate into two pulses, so values of q < qopt would be
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more suitable for the optimal second echo. Simulations also
validate the theoretical result from DQT that the amplitudes
of the second and later echoes increase significantly with
the dipole kick.

V. SPECTRAL ANALYSIS OF THE ECHO PULSE

The time dependent echo pulse shows that the amplitude
is modulated at a frequency shifted from the betatron
frequency. In the completely linear theory [17] and
Eq. (2.41) in Sec. II, the time dependent pulse is hxðtÞi ¼
βKθQAFðtÞ where

AFðtÞ ¼
1

½1þ ξðtÞ2�3/2 sin½Φþ 3ΘðtÞ�;

Φ ¼ ωβðt − 2τÞ;Θ ¼ Arctan½ξðtÞ�: ð5:1Þ

Since ξðtÞ ¼ ω0ε0ðt − 2τÞ, the lattice nonlinearity param-
eter ω0 can be retrieved from the frequency spectrum.
Taking the Fourier transform,

ÃFðωÞ ¼
Z

∞

−∞
dteiωtAFðtÞ

¼ 1

2i

Z
∞

−∞
dteiωt

1

ð1þ ξ2Þ3/2 ½e
iðΦþ3ΘÞ − e−iðΦþ3ΘÞ�

The first term contributes to the negative frequency
spectrum while the second contributes to the positive
frequency part. Considering the second term

ÃFðω > 0Þ ¼ −
1

2i
e2iωβτ

Z
∞

−∞
dt eiðω−ωβÞt 1

ð1þ ξ2Þ3/2 e
−3iΘ:

This can be evaluated by a contour integration method; see
Appendix B. The result for the echo spectrum as a function
of frequency is

ÃFðω> 0Þ¼
�
− π

6μωrev
e−iðω−2ωβÞ2τδ3e−δ; δ≥ 0

0; δ< 0
. ð5:2Þ

δ≡ ω − ωβ

μωrev
¼ ν − νβ

μ
ð5:3Þ

where μ ¼ ω0ε/ωrev is the tune shift at the rms beam size.
This result shows first that the spectrum is nonzero only on
one side of the nominal tune νβ: above νβ if μ > 0 or below
νβ if μ < 0. It also follows that the nonzero part of the
spectrum has a peak at δ ¼ 3 or at a tune given by

νpeak ¼ νβ þ 3μ: ð5:4Þ

One measure of the width of the spectrum is the full
width at half maximum (FWHM), which we find numeri-
cally to be δFWHM ¼ 4.13. Hence in tune space, the
FWHM is

ΔνFWHM ¼ 4.13μ: ð5:5Þ

Thus both the tune of the echo pulse as well as the width of
the echo spectrum are related to the detuning. From the
uncertainty relation for Fourier transformsΔtΔω ≥ 1/2 and
using the FWHM for the echo pulse in time [15,17],
ΔtFWHM ¼ 1.53/ðωrevμÞ, we expect that Δν ≥ μ/3.06. If we
interpret the FWHM as a measure of the uncertainty
(although the rms spread is the usual measure), then
Eq. (5.5) satisfies the uncertainty relation.
The tune shift itself can be calculated simply from the

time derivative of the phase Φþ 3Θ and assuming that

TABLE II. Maximum relative amplitudes of the first and
second echoes from theory and simulations. The emittance is
constant at ε0 ¼ 9.7 × 10−8 m or rms size σ0 ¼ 1 mm. For each
dipole kick, the quadrupole strength is chosen from simulations
that maximizes the first echo amplitude.

First echo
amplitude

Second echo
amplitude

Dipole
kick [mm]

Quad.
strength q Theory Simulation Theory Simulation

1.0 0.24 0.39 0.42 0.04 0.024
3.0 0.08 0.45 0.42 0.15 0.13
4.0 0.052 0.48 0.45 0.17 0.16
6.0 0.026 0.49 0.47 0.17 0.18

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0  2000  4000  6000  8000  10000

M
ax

. r
el

at
iv

e 
ec

ho
 a

m
pl

itu
de

Turns

σ
q=0.01

-3

-2

-1

 0

 1

 2

 3

 4

 0  2000  4000  6000  8000  10000

M
ax

. r
el

at
iv

e 
ec

ho
 a

m
pl

itu
de

Turns

σ
q=0.01

-6

-4

-2

 0

 2

 4

 6

 8

 0  2000  4000  6000  8000  10000

M
ax

. r
el

at
iv

e 
ec

ho
 a

m
pl

itu
de

Turns

σ
q=0.01
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Arctan½ξ� ≈ ξ ¼ ω0ε0ðt − 2τÞ which is valid near the center
of the echo at t ¼ 2τ. This yields ω ≈ ωβ þ 3ω0ε0, the same
as the exact result. The additional advantage of the Fourier
transform is that we also obtain the echo spectrum shape
and width.
The echo spectrum can also be calculated in the linear

dipole kick and nonlinear quadrupole kick regime, when
the time dependent echo pulse is given by Eq. (2.39). It has
the same form as that in the completely linear regime, the
time dependent phase shift from the betatron phase Φβ is
again 3ΘðtÞ where now Θ is given by Eq. (2.31). Using the
same approximation of a small argument of the Arctan
function, we have for the angular betatron frequency shift

Δω ¼ 3
d
dt

Θ ≈ 3
d
dt

�
ξ

1 − ξ2 þQ2

�
≈ 3

ω0ε
1þQ2

ð5:6Þ

where we assumed ξ ≪ 1 in the denominator and included
the contribution of the dipole kick to the emittance. Thus
the nonlinearity of the quadrupole kick will reduce the
tune shift by a small amount from the linear regime,
assuming Q2 < 1.

A. FFT of the echo pulse

Here we use the simulation code to calculate the
spectrum of the echo pulse and compare the results with
the theory developed above. One way of measuring the
detuning parameter is to kick the beam to a range of
amplitudes with varying dipole strengths. Each dipole kick
excites the beam to a different emittance allowing the
betatron tune to be measured as a function of emittance.
The left plot in Fig. 10 shows an example in our case. Here
the quadrupole kick was set to zero so that no echoes are
excited and the initial emittance (σ0 ¼ 1 mm) was kept
constant. Dipole kicks over a range of 0.5–10 mm were
used to vary the final emittance. Using the centroid data
around the time of the echo formation for the FFT analysis

ensures that the beam has decohered to its asymptotic
emittance. As expected the tune shifts in this plot lie on a
straight line and yield the tune slope as ν0 ¼ dν/dε ¼
−3009 m−1. The right plot shows spectra with and without
echoes from an analysis of the centroid data using
1024 turns centered at the first echo. The spectra with
echoes are shown for two initial emittances and the same
dipole kick of 1 mm. The beam is kicked to the same
amplitude, but as the theory predicts, the negative detuning
parameter causes the echo spectrum to shift to the left and
the spectrum widens with increasing initial emittance.
Table III shows a comparison of the simulated tune shifts
and the theoretical value expected from the analysis above.
The prerequisites for using the echo spectrum to measure
the detuning are that the initial beam decoherence must
have a negligibly small contribution to the echo and the
echo pulse should be without distortions and obtained with
small dipole and quadrupole kicks so that the linear
analysis is valid. Simulations of the echo spectrum at
larger quadrupole strengths show that the echo tunes are not

TABLE III. Example of using the echo spectrum to measure the
detuning, using a small amplitude dipole kick. All the echoes
were generated with the same dipole kick of 1 mm and the same
quadrupole kick q ¼ 0.01. The final unnormalized emittance is
shown in the first column. In all cases, the emittance increased
by Δε ¼ 0.05 μm. The second and third columns show the
theoretical and simulated tune shifts respectively. The value of
ν0 ¼ −3009/m was found using the simulation shown in the left
plot of Fig. 10.

Final emittance
ε [μm]

Theoretical Δν
Δν ¼ 3ν0ε Simulated Δν

0.27 −0.0024 −0.0023
0.35 −0.0031 −0.0028
0.44 −0.0039 −0.0038
0.54 −0.0049 −0.0043
0.65 −0.0059 −0.0057
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FIG. 10. Left: tune shifts (without echoes) vs the emittance. The emittance was changed by varying dipole kicks. Also shown is the
straight line fit which yields the tune slope parameter ν0. Right: spectra without echo and with echoes. The spectrum without an echo was
obtained with q ¼ 0 while the echo spectra were obtained with the same dipole kick (1 mm), the same value of q ¼ 0.01, and two initial
emittances corresponding to σ0 ¼ 1.5 mm and σ0 ¼ 2 mm. The vertical dashed line shows the bare lattice tune.
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significantly affected, as expected from the analysis above.
These results show that with some care, the echo spectrum
can be used to measure the nonlinear detuning parameter
without large amplitude dipole kicks.

VI. CONCLUSIONS

In this paper we developed theories of one dimensional
transverse beam echoes that are nonlinear in the dipole
and quadrupole kick strength parameters with the goal of
maximizing the echo amplitudes. Other relevant parameters
are the initial beam emittance ε0, the freqency slope with
emittance ω0, and the delay τ between the dipole and
quadrupole kicks. The simpler theory (QT), is linear in the
dipole strength but nonlinear in the quadrupole strength q.
This theory yields simple expressions for the optimum
quadrupole strength qopt and the time dependent echo
response. The optimum quadrupole strength is shown to
decrease as the initial emittance and dipole kick strength
increase. This theory predicts that for emittances large
enough that the decoherence time τD ≪ τ, the maximum
echo amplitude relative to the dipole kick amplitude
Amax ≈ 0.4. Among the drawbacks of QT are that it does
not include ab initio the emittance growth due to the dipole
kick, but has to be included as a correction. Nor does it
predict the occurrence of echoes at multiples of 2τ beyond
the first echo at 2τ. The second theory (DQT), which is
nonlinear in both kicks, removes these drawbacks. The
disadvantage is that it results in more complicated expres-
sions for the echo amplitude that require numerical inte-
gration. This theory predicts larger amplitude echoes than
those with QT. It also shows that increasing the dipole kick
strength can reduce qopt by an order of magnitude but has
a minor influence on the relative amplitude of the first
echo. However the amplitudes of later echoes at 4τ; 6τ;…
increase significantly with the dipole kick.
One of the first observations from accompanying sim-

ulations was that τD decreases with increasing either the
initial emittance or dipole kick. We found that at fixed
detuning and delay, Amax of the first echo increases with
smaller emittances but has a weak dependence on the
dipole kick, in agreement with theory. In the limit of
vanishing emittance limε0→0Amax ¼ 0.57 (see Fig. 8). Both
the QT and DQT are in good agreement with the simu-
lations for dipole kicks ∼σ0, the initial rms beam size. As a
function of q, the echo amplitude from DQT was in
reasonable agreement with simulations for dipole kicks
≤ 5σ0. For even larger dipole kicks, DQT yields acceptable
results when q ≤ qopt but diverges from simulations for
q ≫ qopt. We attribute this to artifacts in the numerical
integration which can be corrected. Machine protection
issues will forbid large dipole kicks, so in practice DQT
should be useful for estimating the echo amplitude. The
simulations showed that the optimum quadrupole strength
for higher order echoes changes with the echo order.

Amplitudes of the later echoes increased with the dipole
kick, again in accordance with the theory. The maximum
amplitudes of the first and second echoes from theory and
simulations agreed well, up to the largest dipole kick (6σ)
tested. These results suggest that a strategy for enhancing
the echo signal would be to use a pencil beam with reduced
emittance, by scraping with collimators for example (but
with sufficient intensity to trigger the BPMs) and dipole
kicks ∼σ0. The quadrupole strength should be scanned
in a range around qopt for the first echo to maximize its
amplitude. If multiple echoes are not observed initially,
increasing the dipole kick strength in incremental steps and
rescanning around the appropriate qopt should reveal their
presence.
Spectral analysis of the echo pulse showed that the tune

of the pulse is shifted from the bare betatron tune by 3μ
where μ is the tune shift at the rms size. This was confirmed
with simulations using small amplitude dipole and quadru-
pole kicks. This suggests that the echo pulses generated
with small dipole kicks could be used to measure the
detuning without the necessity of kicking the beam over a
large range of amplitudes.
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APPENDIX A: COMPLETE THEORY
OF NONLINEAR DIPOLE AND

QUADRUPOLE KICKS

Here we consider the complete distribution function
following the dipole kick without the simplifying approx-
imations made in Sec. III. Using the notation from this
section and keeping terms to OðqÞ, the DF at time τ after
the dipole kick,

ψ5ðz;ϕ; tÞ

¼ 1

2πε0
exp

�
−
βKθ

2

2ε0

�
exp

�
−

1

ε0
fzε0ð1 − q sin 2ϕ−ΔϕÞ

þ βKθ

ffiffiffiffiffiffiffiffiffi
2ε0z
β

s �
1 −

1

2
q sin 2ϕ−Δϕ

�

× sin½ϕ−Δϕ − τωðzÞ − qcos2ϕ−Δϕ þQz sin 2ϕ−Δϕ�g
�
:

ðA1Þ

We define dimensionless parameters as
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aθ¼
βKθ

σ0
; b1¼q; b2¼

ffiffiffi
2

p
aθ; b3¼

ffiffiffi
2

p

4
qaθ; bi≥0:

ðA2Þ

We have the following ordering hierarchy assuming
q ≪ 1; aθ ∼Oð1Þ:

b2 > ðb1; b3Þ; b3 > b1 if aθ > 2
ffiffiffi
2

p
:

In the theory developed in Sec. III, we had kept only b2 and
dropped b1, b3.
We have for the dipole moment

hxðtÞi ¼
ffiffiffiffiffiffiffiffiffi
2βε0

p
2π

exp
�
−
βKθ

2

2ε0

� Z
dz

ffiffiffi
z

p
exp½−z�TϕðzÞ;

ðA3Þ

TϕðzÞ ≃ Re

�Z
dϕeiϕ exp ½b1z sinð2ϕ−ΔϕÞ − b2

ffiffiffi
z

p
sin

�
ϕ−Δϕ −

1

2
q − τωþQz sin 2ϕ−Δϕ

�

þ b3
ffiffiffi
z

p
cos

�
ϕ−Δϕ þ

1

2
qþ τω −Qz sin 2ϕ−Δϕ

�
−b3

ffiffiffi
z

p
cos

�
3ϕ−Δϕ −

1

2
q − τωþQz sin 2ϕ−Δϕ

���
ðA4Þ

where we used the approximation in Eq. (2.14). Using the generating function expansions for the modified Bessel functions,
we have

TϕðzÞ ¼ Re

�X
k1

X
k2

X
k3

X
k4

ik1þk2ð−1Þk4Ik1ðb1zÞIk2ðb2
ffiffiffi
z

p ÞIk3ðb3
ffiffiffi
z

p ÞIk4ðb3
ffiffiffi
z

p Þ

× exp½iðk12Δϕ − k2ðΔϕþ τωþ q/2Þ − k3ðΔϕ − τω − q/2Þ − k4ð3Δϕþ τωþ q/2ÞÞ�

×
Z

dϕ exp ½ið½1 − 2k1 þ k2 þ k3 þ 3k4�ϕþ ðk2 þ k4 − k3ÞQz sin 2ϕ−ΔϕÞ�
�
:

We expand into a Bessel function, integrate over ϕ, replace k2 by 2k1 − k3 − 3k4 − 2l − 1, and drop the sum over k2. After
simplifying the phase factor, the integrated term is

TϕðzÞ ¼ 2πRe

�X
k1

X
k3

X
k4

X
l

ik1−k3þk4−1ð−1Þk1þk4þl exp

�
−
i
2
qf2ðk1 − k3 − k4 − lÞ − 1g

�

× Ik1ðb1zÞI2k1−k3−3k4−2l−1ðb2
ffiffiffi
z

p ÞIk3ðb3
ffiffiffi
z

p ÞIk4ðb3
ffiffiffi
z

p ÞJlð½2ðk1 − k3 − k4 − lÞ − 1�QzÞ

× exp ði½ωðt − 2τðk1 − k3 − k4 − lÞÞ�Þ
�
:

Since the amplitude is locally maximum when the phase factor vanishes, the form above shows that echoes occur at close to
the times t when t − 2τðk1 − k3 − k4 − lÞ ¼ 0. As expected, this predicts echoes only at times close to multiples of 2τ. We
replace k1 − k3 − k4 − l ¼ n, which leads to

TϕðzÞ ¼ 2πIm

�X
k1

X
k3

X
k4

X
n

ik1−k3þk4ð−1Þk1þk4þn exp

�
−i

1

2
qð2n − 1Þ

�

× Ik1ðb1zÞIk3−k4þ2n−1ðb2
ffiffiffi
z

p ÞIk3ðb3
ffiffiffi
z

p ÞIk4ðb3
ffiffiffi
z

p ÞJk1−k3−k4−nð½2n − 1�QzÞ exp ði½ωðt − 2nτ�Þ
�
:

Using the phase variables Φn, ξn defined earlier in Sec. III, we can write the complete expression for the dipole moment as
(after replacing k3 → k2; k4 → k3)

hxðtÞi ¼
ffiffiffiffiffiffiffiffiffi
2βε0

p
exp

�
−
βKθ

2

2ε0

�
Im

�Z
dz

ffiffiffi
z

p
exp½−f1 − iξngz�

X
n

X
k1

X
k2

X
k3

ik1−k2þk3ð−1Þk1þk3þnei½Φn−1
2
qð2n−1Þ�

× Ik1ðb1zÞIk2−k3þ2n−1ðb2
ffiffiffi
z

p ÞIk2ðb3
ffiffiffi
z

p ÞIk3ðb3
ffiffiffi
z

p ÞJk1−k2−k3−nð½2n − 1�QzÞ
�
: ðA5Þ
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This is the most general form of the time
dependent echo. To recover the approximate theory
of Sec. III, we put b1 ¼ 0 ¼ b3. Since I0ð0Þ ¼ 1,
Im≠0ð0Þ ¼ 0, this requires k1 ¼ 0 ¼ k2 ¼ k3. Using
J−nðzÞ ¼ ð−1ÞnJnðzÞ, we recover the same expression
as in Eq. (3.10). In the limiting case of no dipole kick,

then b2 ¼ 0 ¼ b3 and using the same Bessel function
properties, we find that the dipole moment vanishes,
as it should. In the other limiting cases of no quadru-
pole kick, we have b1 ¼ b3 ¼ Q ¼ 0 and we have a
nonzero contribution only with k1 ¼ k2 ¼ k3 ¼ n ¼ 0
and we have

hxðtÞiq¼0 ¼
ffiffiffiffiffiffiffiffiffi
2βε0

p
exp

�
−
βKθ

2

2ε0

�
Im

�
eiωβt

Z
dz

ffiffiffi
z

p
exp½−f1 − iω0ε0tgz�I1ðb2

ffiffiffi
z

p Þ
�

¼ βKθIm

�
eiωβt

ð1 − iω0ε0tÞ2
exp

�
βKθ

2

2ε0

iω0ε0t
ð1 − iω0ε0tÞ

��
: ðA6Þ

The last expression is the same as that derived by earlier authors [17,18].
Returning to the general case with nonzero dipole and quadrupole kicks, we extract the dominant terms contributing to

the first and second echoes at 2τ and 4τ, by setting n ¼ 1 and n ¼ 2 respectively in Eq. (A5),

hxð2τÞi ≃
ffiffiffiffiffiffiffiffiffi
2βε0

p
exp

�
−
βKθ

2

2ε0

�
Im

�Z
dz

ffiffiffi
z

p
exp½−f1 − iξ1gz�

XN1

k1¼−N1

XN2

k2¼−N2

XN3

k3¼−N3

ik1−k2þk3ð−1Þk1þk3þ1ei½Φ1−1
2
q�

× Ik1ðb1zÞIk2−k3þ1ðb2
ffiffiffi
z

p ÞIk2ðb3
ffiffiffi
z

p ÞIk3ðb3
ffiffiffi
z

p ÞJk1−k2−k3−1ðQzÞ
�

ðA7Þ

hxð4τÞi ≃
ffiffiffiffiffiffiffiffiffi
2βε0

p
exp

�
−
βKθ

2

2ε0

�
Im

�Z
dz

ffiffiffi
z

p
exp½−f1 − iξ2gz�

XN1

k1¼−N1

XN2

k2¼−N2

XN3

k3¼−N3

ik1−k2þk3ð−1Þk1þk3ei½Φ2−3
2
q�

× Ik1ðb1zÞIk2−k3þ3ðb2
ffiffiffi
z

p ÞIk2ðb3
ffiffiffi
z

p ÞIk3ðb3
ffiffiffi
z

p ÞJk1−k2−k3−2ð3QzÞ
�
: ðA8Þ

Here the summations are written to indicate that a finite
number of terms are calculated. From Eq. (A8), it is
easily checked that there is no contribution to the echo at
4τ from terms linear in the dipole kick. This confirms the
result in Sec. II where the analysis to first order in the
dipole kick did not reveal the presence of multiple
echoes.
The convergence of the above expansions is rapid

when the dipole kick parameter aθ is sufficiently small.
For large aθ ≫ 1, which can happen with either a large
dipole kick or small emittance or both, the above
expansions do not converge rapidly enough to be usable
in some instances. A different approach would be to use
the smallness of the parameter b1 ≪ 1 to expand
expfb1z sin½2ðϕ − ΔϕÞ − q/2�g in Eq. (A4) into a power
series in b1 instead. A similar approach had been used in
[23] in calculating beam-beam tune shifts due to long-
range interactions and was found to converge rapidly.
We will not investigate this method further here. For the
comparisons with simulations, we use the equations
Eq. (A7) and (A8) above when they do converge rapidly
and in other cases, use the more approximate version
developed in Sec. III.

APPENDIX B: ECHO SPECTRUM BY
FOURIER TRANSFORM

Consider the Fourier amplitude from Sec. V,

ÃFðω > 0Þ ¼ −
1

2i
e2iωβτ

Z
dte−iðω−ωβÞt 1

ð1þ ξ2Þ3/2 e
−3iΘ

≡ e2iωβτIðωÞ: ðB1Þ

Using

Arctan½x� ¼ i
2
ln

�
1 − ix
1þ ix

�

and the definition of Θ ¼ Arctan½ξðtÞ�, we have

exp½−i3ΘðtÞ� ¼ i
ðξþ iÞ3

ð1þ ξ2Þ3/2 :

Hence the integral reduces to
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IðωÞ ¼ i
Z

∞

−∞
dt e−iðω−ωβÞt 1

ðξ − iÞ3

¼ i
μωrev

e−i½ðω−ωβÞ2τ�
Z

∞

−∞
dξ

eiδξ

ðξ − iÞ3 ðB2Þ

where we defined δ ¼ ðω − ωβÞ/ðμωrevÞ and μωrev ¼ ω0ε.
Complexifying ξ → z we consider the contour integralH
dz eiδz/ðz − iÞ3 over a semicircular contour with the

radius at infinity. If δ > 0, then we consider the positive
half-plane and the integral vanishes over the arc leaving
only the contribution over the real axis. The integrand has
third-order poles at z ¼ i, hence

Z
∞

−∞
dz

eiδz

ðz − iÞ3 ¼
I
C
dz

eiδz

ðz − iÞ3

¼ 2πi × Residue

�
eiδz

ðz − iÞ3
�
z¼i

¼ π

3
δ3e−δ; δ > 0: ðB3Þ

On the other hand if δ < 0, we consider the lower half-
plane where again the contribution from the arc vanishes.
However the integrand is analytic over the lower half-plane,
hence the contour integral vanishes. Thus we have

Z
∞

−∞
dz

eiδz

ðz − iÞ3 ¼ 0; δ < 0: ðB4Þ

Hence the Fourier integral for positive frequencies,
after combining Eqs. (B1), (B2) and the above contour
integrations, is

ÃFðω > 0Þ ¼
�
− π

6μωrev
e−iðω−2ωβÞ2τδ3e−δ; δ ≥ 0

0; δ < 0
. ðB5Þ

The echo spectrum is determined by the Fourier amplitude
jÃFðωÞj ¼ ½π/ð6μωrevÞ�δ3e−δ for ω ≥ ωβ and vanishes for
ω < ωβ, assuming μ > 0 while the converse is true
if μ < 0.
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