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In 1926, H. Busch formulated a theorem for one single charged particle moving along a region with a
longitudinal magnetic field [H. Busch, Berechnung der Bahn von Kathodenstrahlen in axial symmetrischen
electromagnetischen Felde, Z. Phys. 81, 974 (1926)]. The theorem relates particle angular momentum to
the amount of field lines being enclosed by the particle cyclotron motion. This paper extends the theorem to
many particles forming a beam without cylindrical symmetry. A quantity being preserved is derived, which
represents the sum of difference of eigenemittances, magnetic flux through the beam area, and beam rms-
vorticity multiplied by the magnetic flux. Tracking simulations and analytical calculations using the
generalized Courant–Snyder formalism confirm the validity of the extended theorem. The new theorem has
been applied for fast modeling of experiments with electron and ion beams on transverse emittance
repartitioning conducted at FERMILAB and at GSI. Thus far, developments of beam emittance
manipulations with electron or ion beams have been conducted quite decoupled from each other.
The extended theorem represents a common node providing a short connection between both.
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I. INTRODUCTION

In 1926, H. Busch applied the preservation of angular
momentum for systems with cylindrical symmetry to a
charged particle moving inside a region with magnetic field
B⃗ [1–3]. Using conjugated momenta, the magnetic field
strength is intrinsically included into the equations of
motion. In linear systems, the normalized conjugated
momenta px and py are related to the derivatives of the
particle position coordinates ðx; yÞ with respect to the main
longitudinal direction of motion s⃗ through

px ≔ x0 þ Ax

ðBρÞ ¼ x0 −
yBs

2ðBρÞ ; ð1Þ

py ≔ y0 þ Ay

ðBρÞ ¼ y0 þ xBs

2ðBρÞ ; ð2Þ

where A⃗ is the magnetic vector potential with B⃗ ¼ ∇⃗ × A⃗,
Bs is the longitudinal component of the magnetic field, and
ðBρÞ is the particle rigidity, i.e., its momentum per charge

p=ðqeÞ, with p as total momentum, q as charge number,
and e as elementary charge.
Busch’s theorem [1–3] states that the canonical angular

momentum ~l ¼ xpy − ypx is a constant of motion that is
written in cylindrical coordinates as

mγr2 _θ þ eq
2π

ψ ¼ const; ð3Þ

where γ is the relativistic factor, r is the radius of transverse
cyclotron motion around the beam axis, _θ is the corre-
sponding angular velocity, and ψ is the magnetic flux
enclosed by this motion. Busch’s theorem for axially
symmetric systems determines an invariant of motion of
a single particle.
A general formulation of Eq. (3) has been derived in [4],

which is regarded as the generalized Busch theoremI
C
v⃗ · dC⃗þ eq

mγ
ψ ¼ const; ð4Þ

i.e., the path integral of the stream of possible particle
velocities v⃗ along a closed contour C confining a fixed set
of possible particle trajectories, plus the magnetic flux
through the area enclosed by C is an invariant of the motion.
Figure 1 illustrates the first part of the left-hand side of
Eq. (4). Busch’s theorem of Eq. (3) is the special case of
this generalized form for C being a circle of radius r. It is
emphasized that Eq. (4) is only valid for laminar motion.
The subsequent section derives an invariant of motion for

a nonlaminar beam comprising many particles with an
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intrinsic transverse velocity spread, in which there is no
cylindrical symmetry. The motion can pass linear coupling
optical elements. An invariant is expressed through a sum
of three beam properties by reformulating the invariance of
the two eigenemittances introduced in 1992 by Dragt [5].
The latter holds strictly for the paraxial approximation and
for mono-energetic beams as pointed out in [6], and the
according assumptions are made in the following. The third
section introduces the beam vorticity as one of the
summands forming the invariant. In the following sections
beam tracking simulations are presented as well as the
application of the generalized Courant-Snyder formalism to
illustrate the invariance and its constituents using a probe
beam line. The paper closes in applying the extended Busch
theorem for quick and precise modeling of experiments
with electrons and ions on repartitioning of emittance
between the two transverse degrees of freedom (planes).
Throughout the paper quantities written as ~Q are calculated
from conjugated coordinates ðx; px; y; pyÞ and those writ-
ten as Q are calculated from laboratory coordinates
ðx; x0; y; y0Þ; hence, Q is obtained from ~Q by substituting
ðpx; pyÞ → ðx0; y0Þ in the expression defining ~Q.

II. PRESERVATION OF EIGENEMITTANCES

The two eigenemittances ~ε1=2 are equal to the two
projected transverse beam rms-emittances ~εx=y, if and only
if there are no correlations between the two transverse
planes. Eigenemittances can be obtained by solving the
complex equation

detðJ ~C − i~ε1=2IÞ ¼ 0; ð5Þ

where I is the identity matrix and

~C ¼

2
666664

hx2i hxpxi hxyi hxpyi
hxpxi hp2

xi hypxi hpxpyi
hxyi hypxi hy2i hypyi
hxpyi hpxpyi hypyi hp2

yi

3
777775
; ð6Þ

J ¼

2
6664

0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

3
7775: ð7Þ

Second moments huvi are defined through a normalized
distribution function fb as

huvi ¼
Z Z Z Z

fbðx; px; y; pyÞ · uv · dxdpxdydpy

ð8Þ

and projected rms-emittances by [7]

~ε2u ≔ hu2ihp2
ui − hupui2: ð9Þ

For two degrees of freedom, the two eigenemittances can
be calculated from [8]

~ε1=2 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−tr½ð ~CJÞ2� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr2½ð ~CJÞ2� − 16 detð ~CÞ

qr
: ð10Þ

As the two eigenemittances are preserved for the symplec-
tic transformation [5], the sum of their squares is preserved
as well, i.e.,

~ε21 þ ~ε22 ¼ −
1

2
tr½ð ~CJÞ2�

¼ ~ε2x þ ~ε2y þ 2ðhxyihpxpyi − hypxihxpyiÞ
¼ const: ð11Þ

The definitions of px and py are plugged into Eq. (6) and
Eq. (10) is used afterwards. Expanding Eq. (11) and using

ε21 þ ε22 ¼ ðε1 − ε2Þ2 þ 2 · ε4d; ð12Þ

together with the invariance of the four-dimensional
rms-emittance ε24d ¼ detðCÞ ¼ ðε1ε2Þ2, finally leads to

ðε1 − ε2Þ2 þ
�
ABs

ðBρÞ
�
2

þ 2
Bs

ðBρÞ ½hy
2ihxy0i − hx2ihyx0i þ hxyiðhxx0i − hyy0iÞ�

¼ const; ð13Þ

where A ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2ihy2i − hxyi2

p
is the rms-area of the beam

divided by π. In the following, only laboratory coordinates
are used, as the extended theorem will be applied to
experiments that used these coordinates.
Equation (13) shows that changing both transverse

eigenemittances can be achieved through longitudinal
magnetic fields as was proposed first in [9], where the

FIG. 1. The contour C encloses possible streams of particle
velocities and encloses the area A⃗.
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beam is created inside a region of longitudinal field being
emerged afterwards into a region without a field. Successful
experimental demonstration of this concept was reported in
[10]. Themethod has been applied to create very flat electron
beams with aspect ratios of up to 100 [11]. Its advanced
analytical description revealed that beams can be modeled in
an analogueway to beams of light in planar or circularmodes
[12] with possible applications in circular colliders [13].
It was also proposed for ions being emerged into the solenoid
field of an electron-cyclotron-resonance source to create
beams of very low horizontal emittances that will allow for
high-resolution spectrometers [14]. By placing a charge state
stripper, i.e., changing ðBρÞ inside a solenoid, transverse
emittance was adjustably transferred from one plane into the
other one [8,15–17].
The first term of the left-hand side of Eq. (13) is the

squared difference of the beam eigenemittances in the
laboratory coordinates. The second term is basically
the square of the magnetic flux through the beam rms-
area A⃗ as illustrated in Fig. 2. In the following, it is shown
that the essential part of the third term

WA ≔ hy2ihxy0i − hx2ihyx0i þ hxyiðhxx0i − hyy0iÞ ð14Þ
is the rms-averaged beam vorticity multiplied by the
twofold beam rms-area.

III. BEAM VORTICITY

We choose the ansatz assigningWA to the rotation ð∇⃗×Þ
of the mean, i.e., averaged over ðx0; y0Þ space, beam angle
⃗̄r0ðx; y; sÞ being integrated over the beam rms-area, and
finally multiplied by the twofold beam rms-area:

WA ¼ 2A
Z
A

h
∇⃗ × ⃗̄r0ðx; y; sÞ

i
· dA⃗ ð15Þ

being equivalent to

WA ¼ 2A
I
C

⃗̄r0ðx; y; sÞ · dC⃗; ð16Þ

where ⃗̄r0ðx; y; sÞ ≔ ½x̄0ðx; y; sÞ; ȳ0ðx; y; sÞ; 1�. This ansatz is
supported by the similarity of WA to the first term of
Eq. (4). In continuum mechanics, the rotation of a media’s

velocity (∇⃗ × v⃗) is called the vorticity.
AsWA by construction is invariant under rotation by any

angle in the ðx; yÞ plane, Eq. (16) may be worked out for a
beam with hxyi ¼ 0 without loss of generality (imagine
that prior to the calculation of WA the beam is rotated
around the beam axis by an angle that puts hxyi to zero).
For the following procedure, the resulting beam rms-area
(divided by π) A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2ihy2i

p
is treated as being infini-

tesimally small in the paraxial approximation. Accordingly,

the transverse components of ⃗̄r0 are expressed through the
first terms of the Taylor series

x̄0ðx; yÞ ≔ x̄0ð0; 0Þ þ ∂x̄0
∂x · xþ ∂x̄0

∂y · y; ð17Þ

ȳ0ðx; yÞ ≔ ȳ0ð0; 0Þ þ ∂ȳ0
∂x · xþ ∂ȳ0

∂y · y; ð18Þ

which turns into

x̄0ðx; yÞ ≔ hx0xi
hx2i xþ

hx0yi
hy2i y; ð19Þ

ȳ0ðx; yÞ ≔ hy0xi
hx2i xþ

hy0yi
hy2i y: ð20Þ

Figure 3 illustrates as an example the constant slope
(∂ȳ0=∂x) of ȳ0 in the projection of the four-dimensional

FIG. 2. Magnetic flux through the beam rms-area A⃗. Transverse
field components do not contribute to the flux as they are
perpendicular to the normal of the area.

FIG. 3. Projection of the four-dimensional rms-ellipsoid onto
the ðx; y0Þ plane and the constant slope (∂ȳ0=∂x).
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rms-ellipsoid onto the ðx; y0Þ plane. The path integral
around the rms ellipse x2=hx2i þ y2=hy2i ¼ 1 can be done
by the following changes of variables: x ¼

ffiffiffiffiffiffiffiffi
hx2i

p
cos θ,

y ¼
ffiffiffiffiffiffiffiffi
hy2i

p
sin θ, and

dC⃗ ¼
�
dx
dθ

;
dy
dθ

�
dθ ¼

�
−

ffiffiffiffiffiffiffiffi
hx2i

q
sin θ;

ffiffiffiffiffiffiffiffi
hy2i

q
cos θ

�
dθ;

ð21Þ
as illustrated in Fig. 4. Therefore,

2A
I
C

⃗̄r0ðx; y; sÞ · dC⃗

¼ 2A
Z

2π

0

�hx0xi
hx2i xþ

hx0yi
hy2i y

��
−

ffiffiffiffiffiffiffiffi
hx2i

q
sin θ

�
dθ

þ 2A
Z

2π

0

�hy0xi
hx2i xþ

hy0yi
hy2i y

�� ffiffiffiffiffiffiffiffi
hy2i

q
cos θ

�
dθ

¼ hy0xihy2i − hx0yihx2i ¼ WA; ð22Þ
which proves that the ansatz is correct.
For the time being, acceleration has not been included

into the treatment. This can be done simply by multiplying
Eqs. (1) and (2) initially by p ¼ mγβc, where β is the
longitudinal particle velocity normalized to the velocity
of light c. The extension of Busch’s theorem to beams
including acceleration is

ðεn1 − εn2Þ2 þ
�
eqψ
mcπ

�
2

þ 4eqψβγ
mcπ

I
C

⃗̄r0 · dC⃗ ¼ const;

ð23Þ
where ψ is the magnetic flux through the beam rms-area A.
Analogue to the normalized emittance εn ≔ βγε, the
normalized beam rms-vorticity is introduced as

WAn ≔ βγWA: ð24Þ

One may interpret the squared difference of eigenemit-
tances as intrinsic anisotropy of the beam. Once correla-
tions were removed, intrinsic anisotropy manifests through
different beam temperatures (emittances) along two
perpendicular degrees of freedom. Using this interpretation
Busch’s theorem extended to accelerated beams without
cylindrical symmetry essentially states

intrinsic anisotropyþ ðmagnetic fluxÞ2
þ vorticity around magnetic field

¼ constant:

IV. TRACKING AND COURANT-SNYDER
FORMALISM

Tracking simulations applying magnetic field maps with
finite fringe fields using the BEAMPATH code [18] have been
performed in order to verify Eq. (23). The probe beam line
(Fig. 5) comprises a solenoid with an extended fringe field,
a skewed quadrupole magnet quartet, and another extended
solenoid. Figure 5 plots the beam widths, rms-area, the

FIG. 4. Visualization of the rms-vorticity WA for a beam with
hxyi ¼ 0. The integration path encloses the elliptical beam
rms-area.

FIG. 5. (a) Horizontal/vertical beam size (red/blue) and beam
rms-area (green) along the beam line. (b) Summands of Eq. (23)
and their sum along the beam line. Results from tracking
(application of the generalized Courant-Snyder formalism) are
plotted in solid (dashed).
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three summands of Eq. (23), and their sum along the beam
line. Additionally, the results from the application of the
generalized Courant–Snyder (C–S) formalism for coupled
lattices [19,20] are plotted. In the latter, hard edge fields
with infinite short fringe field lengths have been assumed.
Slight differences between the envelopes are due to the fact
that the C–S formalism used hard edge magnetic fields,
while tracking was done through magnetic field maps with
extended fringe fields. In both cases the three summands
change exclusively along regions with a longitudinal
magnetic field. Behind these regions, each of them gets
back to the value it had prior to entering this region,
respectively. The sum of the three beam properties remains
constant in accordance to Eq. (23) for the analytical
calculations as well as for the tracking simulations. In
particular, it is emphasized that the extended theorem holds
along the skewed quadrupole magnet region as well, where
cylindrical symmetry is absent.

V. MODELING OF EXPERIMENTS ON
EMITTANCE REPARTITIONING

The extended theorem includes acceleration but it does
not require laminar flow. Accordingly, it is applicable to a
manifold of scenarios that do advanced beam emittance
manipulations such as relativistic electron cooling for
instance [21]. In this section the extended theorem is used
to model recent experiments of emittance repartitioning
through changing the set of eigenemittances in laboratory
coordinates. The first one was performed with electrons to
form flat beams that may be used in linear colliders to
enhance the collision luminosity. The second experiment
produced flat ion beams that are injected into subsequent
ring accelerators with significantly enlarged efficiency
compared to round beams [16,17].

A. Flat electron beam creation

At FERMILAB’s NICADD photoinjector, flat electron
beams were formed by first producing the beams at the
surface of a photo cathode placed inside an rf-gun to which
longitudinal magnetic field Bs ¼ B0 was imposed [11].
The schematic beam line is sketched in Fig. 6.

Along the subsequent region with Bs ¼ 0, the beam was
accelerated to 16 MeV. Finally, correlations initially
imposed by the magnetic exit fringe field of the rf-gun
were removed by three skew quadrupole magnets.
Equation (23) equalizes the situation at the cathode surface
at the left-hand side to the situation of the finally flat beam
on the right-hand side (q ¼ 1)

0þ
�
eB0A0

mc

�
2

þ 0 ¼ ðεnf1 − εnf2Þ2 þ 0þ 0; ð25Þ

where A0 is the beam rms-area at the cathode surface.
The authors of [11] used the definitions [22]

ðεunÞ2 ≔ εnf1 · εnf2 ð26Þ

L ≔ ðeB0A0Þ=ð2mγβcÞ ð27Þ

resulting in

εnf1 ¼ Lβγ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLβγÞ2 þ ðεunÞ2

q
; ð28Þ

of which only the upper sign gives a meaningful positive
result. Replugging this expression for εnf1 into Eq. (25)
leads to

εnf1=2 ¼ �Lβγ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLβγÞ2 þ ðεunÞ2

q
; ð29Þ

being identical to their original expression (Eq. (1)
of [11]).

B. Emittance transfer experiment EMTEX

At GSI, the EMittance Transfer EXperiment (EMTEX)
transferred emittance from one transverse plane into the
other one by passing the beam through a short solenoid
[8,15–17]. The schematic EMTEX beam line is depicted in
Fig. 7. In the solenoid center, the ions charge state, i.e., their
rigidity was changed by placing a thin carbon foil therein

FIG. 6. Schematic sketch of the beam line of the experiment
performed at NICCAD at FERMILAB [11].

FIG. 7. Schematic beam line of EMTEX at GSI for transverse
emittance transfer [16].
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from 14N3þ to 14N7þ. Charge state stripping is a standard
procedure used at several laboratories that deliver heavy
or intermediate mass ions [23,24]. In front of the solenoid,
the beam had no interplane correlations, and thus, the
difference of rms-emittances was equal to the difference of
eigenemittances (mod. sign). Since the solenoid was short,
the beam area at the foil A ≔ Af can be approximated as
constant during the beam transit through the solenoid.
Table I lists the relevant parameters of the experiment.
Equation (13) relates the beam parameters in front of the
solenoid (Bs ¼ 0, no correlations → WA ¼ 0, ε10 ¼ εx;3þ,
ε20 ¼ εy;3þ) to those in front of the foil in the center of the
short solenoid:

ðεx;3þ − εy;3þÞ2 þ 0þ 0

¼ ðε1f − ε2fÞ2 þ
�
AfB0

ðBρÞ3þ

�
2

þ 2B0

ðBρÞ3þ
WAf; ð30Þ

where the index f refers to the location of the foil. The
entrance fringe field of the solenoid causes the rms-
vorticity

WAf
¼ ΔWA ¼ −2κ3þ · A2

f ¼ −2
B0

2ðBρÞ3þ
A2
f ð31Þ

leading to

ðεx;3þ − εy;3þÞ2 þ 0þ 0 ¼ ðε1f − ε2fÞ2 −
�
AfB0

ðBρÞ3þ

�
2

:

ð32Þ

Using the initial beam parameters of the experiment from
Table I, Af ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εxβxεyβy

p ¼ 4.166 mm2, and the identity
1 mmmrad ¼ 1 μm gives

ðε1f − ε2fÞ2 ¼ ðεx;3þ − εy;3þÞ2 þ 2.709 μm2

¼ 2.755 μm2: ð33Þ

Equation (13) is re-used to relate the beam parameters just
behind the foil but still at the center of the solenoid to those

at the exit of the beam line, where Bs ¼ 0 and the beam
correlations have been removed again. Angular scattering
in the foil is neglected. As the beam changed rigidity in
the foil, ðBρÞ3þ must be properly replaced by ðBρÞ7þ.
However, second beam moments are not changed by the
foil, i.e., WA ¼ WAf

, right in front and right behind the
foil. Accordingly,

ðε1f − ε2fÞ2 þ
�
AfB0

ðBρÞ7þ

�
2

þ 2B0

ðBρÞ7þ
WAf

¼ ðεx;7þ − εy;7þÞ2 þ 0þ 0; ð34Þ

which by using Eq. (31) and plugging in the values delivers

jεx;7þ − εy;7þj ¼ 2.2 mmmrad ð35Þ

fitting well the measured value of 2.0 mm mrad (see Fig. 2
of [16]).

VI. SUMMARY

The many particle pendant to Busch’s theorem on a
single particle has been derived without requiring cylin-
drical symmetry but with including acceleration of the
beam. It introduces the property of beam rms-vorticity and
relates the beam’s difference of eigenemittances (i.e.,
intrinsic anisotropy), the magnetic flux through its area,
and its rms-vorticity multiplied by the magnetic flux. Under
the transport through coupled linear elements, the sum of
these properties is preserved. The extended theorem was
verified through tracking simulations with field maps and
through application of the generalized C–S formalism for
coupled dynamics. It was successfully used for quick and
precise modeling of emittance re-partitioning experiments
conducted at FERMILAB and at GSI, hence it is a powerful
tool easily applicable to both electron and ion beam lines or
accelerators. Prior to its formulation scenarios for advanced
beam manipulations based on interplane coupling were
developed quite separately for ion or electron applications.
Busch’s original theorem for instance was hardly applied to
ion beams. The extended theorem instead forms a common
ground for both applications providing a strong connection
between them. It significantly facilitates modeling and
designing of devices for emittance manipulations.
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