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Landau damping is the mechanism of plasma and beam stabilization; it arises through energy transfer
from collective modes to the incoherent motion of resonant particles. Normally this resonance requires the
resonant particle’s frequency to match the collective mode frequency. We have identified an important new
damping mechanism, parametric Landau damping, which is driven by the modulation of the mode-particle
interaction. This reveals new possibilities for stability control through manipulation of both particle and
mode-particle coupling spectra. We demonstrate the existence of parametric Landau damping in a
simulation of transverse coherent modes of bunched accelerator beams with space charge.
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I. INTRODUCTION

Landau damping (LD) [1] gives rise to the stabilization of
collective modes in plasma and accelerator beams. The
damping is caused by the energy transfer from the collective
mode to the particles in resonance with the mode. The
damping rate is, therefore, determined by the number of
the particles capable of resonating with the mode.
Conventionally, Landau damping requires the coherent
resonance frequency to lie within the incoherent spectrum,
i.e., to be located within the continuous frequency spectrum
of the individual particles. Manipulation of the incoherent
spectrum is often proposed as amean to enhance stability; for
example, the increase of the betatron tune spread in accel-
erators by using nonlinear magnets [2]. In this paper we
discuss a newmechanism for Landau damping which occurs
when the mode-particle coupling has an extended frequency
spectrum. This mechanism reveals new possibilities for
stability enhancement involvingboth particles’ and themode-
particle coupling’s spectra.
The novel Landau damping mechanism, which we call

parametric Landau damping, is revealed by the numerical
investigation of the transverse space charge modes in
accelerator bunched beams at the coupling resonance,
i.e., when the horizontal and the vertical tunes are close.
In contrast with the usual Landau damping mechanism, the
frequency of the LD-responsible particles, i.e., the particles
which absorb the mode energy, have a wide spread and do
not match the coherent frequency. This happens due to the

modulation of the mode-particle coupling by particle
dependent oscillations with a wide frequency spread.
The transverse space charge modes in bunched beams,

away from the coupling resonance were found analytically
in Refs. [3–5]. Their intrinsic Landau damping in the strong
space charge regime was suggested in Ref. [4]. Predicted
damping rates were confirmed by numerical simulations
[6–8].
The effect of linear coupling resonance on Landau

damping was addressed by Metral in [9]. He showed that
in the proximity of linear coupling resonance, the incoher-
ent frequency spectrum from both transverse planes con-
tributes to Landau damping. The collective mode transfers
energy to the incoherent motions in both planes. Metral’s
mechanism is a shared damping between the transverse
planes; a damping increase of the modes present in one
plane implies a compensating decrease in the damping of
the modes present in the other plane. In contrast, our
mechanism is due to an oscillating mode-particle coupling
implying additional conditions for the resonant energy
transfer. Since our mechanism does not involve sharing,
it is possible to enhance Landau damping for modes present
in both planes. In our case the coupling between the
transverse planes is produced by the space charge force,
thus no linear terms are present. The main resonance is the
fourth-order Montague resonance [10]. In our simulations
the frequency of many LD-responsible particles does not
match the coherent frequency. The enhancement of the
damping rate cannot be explained by Metral’s coupling
resonance mechanism which requires the presence of
resonant particles around the coherent frequency in the
plane perpendicular to the mode.
A common feature of the particles trapped in the vicinity

of resonance fixed points is the oscillation of their ampli-
tudes. In the coupling resonance case the trapped particles
are characterized by an oscillatory energy exchange
between the transverse planes. Their transverse amplitudes
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are oscillating with typical trapping frequencies. Since the
mode-particle coupling is dependent on the particles’
amplitudes, it is modulated by the trapping frequency.
The resonance condition for Landau damping requires the
particle frequency to equal the mode frequency shifted by
the trapping frequency. Because the trapping frequencies are
particle dependent, the frequencies of the LD-responsible
particles may span a range equal to the one of the mode-
particle coupling frequency spectrum.
We employ the Synergia accelerator modeling package

[11,12] to simulate the propagation of a single Gaussian
beam through a linear lattice. The modes are extracted from
the transverse displacement density using the dynamic
mode decomposition (DMD) technique [13–16]. DMD is
a data driven algorithm used for modal analysis in both
linear and nonlinear systems.
We compare the properties of the first space charge mode

away and in the vicinity of the coupling resonance. We find
that the Landau damping is larger in the latter case, while
the frequency and the mode shape are nearly the same. By
investigating the properties of the particles exchanging
energy with the mode, we conclude that the off-resonance
case well fits the conventional Landau damping scenario
characterized by LD-responsible particles with an incoher-
ent frequency spectrum at the coherent frequency. Around
coupling resonance the damping enhancement is caused by
the parametric Landau damping mechanism, a consequence
of the modulated coupling between the mode and the
trapped particles. The existence of the parametric Landau
damping mechanism for the first space charge mode at
coupling resonance is proven solely by numerical simu-
lations of a bunch propagating through a lattice; no
analytical model is assumed.
The paper is organized as follows. In Sec. II the mecha-

nism of parametric Landau damping is formally introduced.
In Sec. III the Landau damping mechanism of transverse
space charge modes at coupling resonance is discussed. The
details of the simulations are described in Sec. IV. The results
of the simulations are presented in Sec. V, followed by
discussions in Sec. VI. Summary and conclusions are given
in Sec. VII. In Appendix A the calculation of tune shift and
mode-particle coupling is discussed.

II. PARAMETRIC LANDAU DAMPING

The Landau damping mechanism results from the
interaction of the collective mode with the individual
particles. Using the simple harmonic oscillation approxi-
mation [17], the equation of motion for the particle i
interacting with the mode x̄ can be written as

ẍi þ ω2
i xi ¼ −Kix̄ðtÞ; ð1Þ

where xi represents the particle displacement, ωi the
particle frequency, Ki the mode-particle coupling and
x̄ðtÞ the collective mode.

In systems with conventional Landau damping, K is
either time independent or its oscillation frequency is particle
independent. The resonance condition isωi ¼ ωc, whereωc
is the x̄ðtÞ frequency, i.e., x̄ðtÞ ∝ expð−iωctÞ. The damping
rate is proportional to the spectral density at the resonant
frequency,

λ ∝ ρðωcÞ ¼
X
i

δðωi − ωcÞ: ð2Þ

Nevertheless, as in the case addressed in this paper, it
may happen that the mode-particle coupling is character-
ized by a frequency spectrum, i.e., KiðtÞ ∝ expð−iμitÞ and
μi is particle dependent. The resonance condition in this
case is ωi ¼ ωc � μi. The damping rate is proportional
to the number of particles which fulfill the resonance
condition,

λ ∝ hðωcÞ ¼
X
i

δðωc − ωi � μiÞ: ð3Þ

In this case the damping is determined by the interplay of
both particles and mode-particle coupling spectra. We call
this mechanism parametric Landau damping.

III. LANDAU DAMPING OF TRANSVERSE
SPACE CHARGE MODES

For transverse space charge modes the equation of
motion for the particle i can be written as (see
Appendix A, Eq. (A16), [3–5,18])

ẍi þ ω2
0½Q0x − δQxðzi; Jxi; JyiÞ�2xi

¼ −Kðzi; Jxi; JyiÞx̄ðt; ziÞ; ð4Þ

where ω0 is the angular revolution frequency andQ0x is the
bare betatron tune. The tune shift δQxðzi; Jxi; JyiÞ ≪ Q0x

and the mode-particle coupling Kðzi; Jxi; JyiÞ are propor-
tional to the longitudinal density and are dependent on the
particle transverse actions, Jxi and Jyi, defined as

Jxi ¼
x2i þ ðαxxi þ βxx0iÞ2

2βx
;

Jyi ¼
y2i þ ðαyyi þ βyy0iÞ2

2βy
; ð5Þ

where αx, βx, αy and βy are the lattice Twiss parameters.
The coherent driving term x̄ðt; zi) in Eq. (4) is the

average displacement at the location where the particle
is currently located and can be written as x̄ðt; ziÞ ¼
e−iω0νtx̄½ziðtÞ�, where

x̄ðzÞ ¼
R
dxdx0dydy0duxρðx; x0; y; y0; z; uÞ

ρðzÞ ; ð6Þ
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and ν being the mode tune [4]. Here z is the longitudinal
position relative to the reference particle, u ¼ δp

p is the
relative momentum spread, ρðx; x0; y; y0; z; uÞ is the density
in 6D phase space and ρðzÞ ¼ R

dxdx0dydy0duρðx; x0; y; y0;
z; uÞ is the longitudinal density. Unlike the situation
described by Eq. (1), in Eq. (4) the uncoupled particle
motion, the mode particle coupling and x̄ are not charac-
terized by a single frequency.
In order to address the Landau damping mechanism in

the following part of this section we will investigate the
conditions for resonant coupling between the particles and
the collective mode. The explicit dependence of the tune
shift δQx and the mode-particle couplingK on the particle’s
action coordinates is not important for this analysis.
In the off-resonance case, to a good approximation the

particle transverse actions Jxi and Jyi are constants of
motion and the time dependence of the tune shift
δQxðzi; Jxi; JyiÞ is a consequence of the synchrotron
motion given by ziðtÞ ¼ ai cosðω0Qstþ φiÞ. Here ai is
the particle’s longitudinal amplitude, Qs is the synchrotron
tune and φi is the particle’s phase at t ¼ 0. The tune shift
δQxðzi; Jxi; JyiÞ for a Gaussian beam with the longitudinal
density ρðzÞ ¼ expð−z2=2σzÞ can be expanded as

δQx½ziðtÞ; Jxi; Jyi�

¼ δQx½0; Jxi; Jyi� exp
�
−z2i ðtÞ
2σ2z

�

¼ δQx½0; Jxi; Jyi� exp
�
−½ai cosðω0Qstþ φiÞ�2

2σ2z

�

¼ C0i þ
X∞
m¼1

2Cmi cos ½2mðω0Qstþ φiÞ�; ð7Þ

where

Cmi ¼ δQx½0; Jxi; Jyi�ð−1Þm exp

�
−

a2i
4σ2z

�
Im

�
a2i
4σ2z

�
; ð8Þ

and Im are the modified Bessel functions of the first kind.
The tune shift contains a constant term which depends on
the particle’s longitudinal amplitude ai and higher har-
monics of 2Qs terms. Since the mode-particle coupling
Kðzi; Jxi; JyiÞ is also proportional to the charge density
ρðzÞ, an analogous expansion is valid for the mode-particle
coupling term

K½ziðtÞ; Jxi; Jyi� ¼ K0i þ
X∞
m¼1

2Kmi cos ½2mðω0Qstþ φiÞ�:

ð9Þ

The mode x̄ðt; ziÞ frequency as seen by the particle i, is
also influenced by the synchrotron motion. For that reason,
the main tune of the first space charge mode is ν −Qs and

not ν. This can be understood by considering the approxi-
mation x̄½z� ≈ sin½πz=4σz� [3,6] for the first space charge
mode. The particle i sees the mode as

x̄½t; ziðtÞ� ≈ e−iω0νt sin

�
πai cosðω0Qstþ φiÞ

4σz

�

¼ e−iω0νt

�
J1

�
πai
4σz

�
cosðω0Qstþ φiÞ

þ higher harmonics

�
: ð10Þ

Here J1 is the Bessel function of the first kind and higher
harmonics represent ð2nþ 1ÞQs higher harmonic terms
proportional to higher order Bessel functions. They are
smaller in magnitude compared to the J1 term.
From Eqs. (4), (7), (9), and (10) one can conclude that, in

the off-resonance case, the main energy resonant exchange
specific to the Landau damping mechanism between the
first space charge mode and the particles takes place at the
tune ν −Qs. Resonant exchanges at tunes distanced from
ν −Qs by harmonics of 2Qs are also present, but we find
that they play only a minor role in the Landau damping
mechanism, as discussed in Sec. V.
In the off-resonance case the Landau damping is conven-

tional, since the oscillation frequencies of the mode-particle
coupling are particle independent [K contains a constant
term and harmonics of 2Qs, see Eq. (9)]. The situation is
different at the coupling resonance. Unlike the off-
resonance case, in the proximity of the coupling resonance
Jxi and Jyi are not constants of motion. In fact the sum
Jsi ¼ Jxi þ Jyi is a constant of motion, while the difference
Jdi ¼ Jxi − Jyi oscillates around the stable point with the
trapping frequency ωti ¼ ω0Qti [see Eq. (A42)]. The
essential feature for the parametric Landau damping
mechanism is that the particle dependent Qti modulates
the mode-particle coupling. This becomes evident when the
mode-particle coupling is written as [see Eq. (A54)]

Kðzi; Jxi; JyiÞ ¼ Aðzi; JsiÞ þ Bðzi; Jsi; JdiÞJdi: ð11Þ

The terms Aðzi; JsiÞ and Bðzi; Jsi; JdiÞ as well as the tune
shift δQxðzi; Jsi; JdiÞ depend on the beam shape and can be
approximated analytically for certain cases. We discuss the
calculation of the tune shift and the mode-particle coupling
in Appendix A. In the Appendix A 2, to give an example,
we calculate the particles’ dynamics in the proximity of the
coupling resonance stable point for a 2 dimensional (2D)
Hamiltonian with a fourth order, rotationally symmetric
transverse coupling term. Equation (A54) gives the mode-
particle coupling in our example. A more general
Hamiltonian describing the dynamics at coupling reso-
nance, but without the presence of collective modes, was
considered by Montague [10].
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The equation of motion in the proximity of the coupling
resonance is

ẍi þ ω2
0Q

2
xðzi; Jsi; JdiÞxi

¼ −Aðzi; JsiÞx̄ðt; ziÞ − Bðzi; Jsi; JdiÞJdix̄ðt; ziÞ; ð12Þ

whereQxðzi; Jsi; JdiÞ ¼ Q0x − δQxðzi; Jsi; JdiÞ. Since Jsi is
a constant of motion, the coupling term Ax̄ is conventional.
The termBJdx̄ yields parametric Landau damping because it
is modulated by oscillations with ω0Qti frequency. While
in the former case the resonance condition is Q̄xi ¼ ν −Qs,
the BJdx̄ term implies mode-resonant particles when
Q̄xi ¼ ν −Qs −Qti. Here Q̄xi is the particle i main tune
defined as the tune of the largest peak in the Fourier spectrum
of xiðtÞ. In principle the dependence of Bðz; Js; JdÞ on Jd
yields resonant energy exchanges at frequencies spaced by
harmonics of Qt from the main parametric resonant con-
dition, i.e., Q̄xi ¼ ν −Qs −Qti þ nQti, but in our simula-
tions we find these processes not to be significant.
The oscillations of Jd contribute not only to the para-

metric Landau damping but to the conventional one as well.
The dependence of Qxðzi; Jsi; JdiÞ in Eq. (12) on Jdi yields
satellite features spaced by harmonics of Qti in the
incoherent spectrum. These satellites are resonant via Ax̄
coupling when their tune is equal to ν −Qs.

IV. SIMULATIONS

The simulations are done by employing SYNERGIA [11],
a particle tracking code for beam dynamics in accelerators.
The space charge effects are implemented in SYNERGIA
using the second order split-operator method [19]. At every
step, the electric field is calculated by solving the 3D
Poisson equation with open boundary conditions numeri-
cally as described in [20].
The bunch is initially excited in the horizontal plane with

the first space charge harmonic function. Space charge
harmonics are the space charge modes of Gaussian beams
in the strong space charge limit and were calculated
analytically in Refs. [4,5]. The excitation amplitude is
small enough to ensure linear damping regime and not to
affect the particles’ tune spectrum. The transverse displace-
ment density,

Xðz; u; sÞ ¼
R
dxdx0dydy0xρðx; x0; y; y0; z; u; sÞ

ρðz; u; sÞ ; ð13Þ

is calculated at every turn. Here s is the distance along the
reference trajectory, and

ρðz; u; sÞ ¼
Z

dxdx0dydy0ρðx; x0; y; y0; z; u; sÞ ð14Þ

is the density in the longitudinal phase space. The modes’
shape, tune, and damping are extracted from Xðz; u; sÞ

using the DMD technique. DMD [13–16] has been used for
mode analysis in many fields such as fluid mechanics [21],
neuroscience [22], and video streaming and pattern recog-
nition [23]. An important advantage of this method is the
direct calculation of mode dynamics, including shape,
frequency, and growth/damping rates. Application of
SYNERGIA and DMD to beam dynamics is described in
detail in [8].
A lattice with the length 200 m made by 10 identical

OFORODO (drift—focusing quad—drift—rf cavity—
drift—defocusing quad—drift) cells is chosen. The differ-
ence between the actual phase advance and the smooth
approximation phase advance nowhere exceeds 2% of the
phase advance per cell. For the off-resonance case we take
the bare betatron tune difference Q0x −Q0y > δQscmax
while at the coupling resonance Q0x ¼ Q0y:δQscmax is
the space charge tune shift at the center of the bunch.
The tunes in our simulations have values in the range
typical for real circular accelerators, with Qs ≪ Q0x; Q0y.
The majority of the simulations are done with Q0x ¼ 2.322
and Qs ¼ 0.01. We checked the robustness of our results
for other values of the tunes, such as Q0x ¼ 2.443 and
Qs ¼ 0.005. A proton beam with the energy corresponding
to the relativistic factor γ ¼ 1.6 is chosen. The chromaticity
is zero. 108 macroparticles per bunch are used for the
simulations. The beam distribution is longitudinally and
transversely Gaussian with equal vertical and horizontal
emittances, ϵrms

x ¼ ϵrms
y ¼ 1 mm �mrad. The space charge

parameter is defined as q ¼ δQscmax
Qs

.

V. RESULTS

While the formalism described in Secs. II and III and
Appendix A is useful for understanding the damping
mechanism and interpreting the simulations, the results
presented in this section are based only on the tracking
simulations of a Gaussian beam through an OFORODO
lattice, as described in Sec. IV.
The properties of the first space charge mode off-

resonance and at coupling resonance are compared in
Fig. 1. For intermediate and large space charge, q≳ 4,
the damping at coupling resonance is larger, as shown in
Fig. 1(a). In the strong space charge regime, 10≲ q≲ 20,
the damping at coupling resonance is larger by approx-
imately a factor of 2. The relative enhancement increases
slowly with q. However the precision of the simulation at
large q is limited by the small value of the Landau damping,
which becomes of the order of the error bars. The mode
tune measured relative to the bare betatron tune, ν −Q0x, is
nearly the same for both cases, see Fig. 1(b). The difference
between the mode spatial shape in the two cases is also
insignificant, as illustrated in Fig. 1(c) where the spatial
overlap of the mode, X1ðz; uÞ, with the first space charge
harmonic Y1ðzÞ (Y1ðzÞ is calculated in [4]),
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hX1Y1i ¼
Z

X1ðz; uÞY1ðzÞρðz; uÞdzdu; ð15Þ

is plotted.
The off-resonance Landau damping mechanism can be

understood within the typical paradigm. In Fig. 2(a) we plot
the beam 2D tune footprint ρðQx;QyÞ defined as

ρðQx;QyÞ ¼
X
i

j~xiðQxÞj2j~yiðQyÞj2; ð16Þ

where

~xiðQxÞ ¼
1

Cxi

Z
xiðsÞeiω0Qxsds ð17Þ

is the Fourier transform of the particle i horizontal
displacement xiðsÞ. An analogous definition is used for
~yiðQyÞ. Since the Landau damping is determined by the
tune density and is insensitive to the particles’ amplitude
per se, the constant Cxi in Eq. (17) is used to normalize the
spectral weight of each particle, Eq. (16), to one. As a
consequence, the integrated ρðQx;QyÞ over the horizontal
and the vertical frequencies is equal to the number of
particles in the bunch. The space charge force shifts the
particles’ tunes to lower values. The tune depression is
maximal at the bunch center, while the particles in the
distribution tails have a much smaller tune shift. The
satellite lines separated by 2Qs are a consequence of
the modulation of the tune shift with the particle’s longi-
tudinal position [as Eq. (7) predicts]. The particles directly

responsible for the Landau damping are the ones which
resonantly exchange energy with the mode. To select
the LD-responsible particles we look for those having
the largest change in their energy between the end and the
beginning of the simulation. In Fig. 2(b) we plotX

i∈S
ΔJx ¼

X
i∈S

ðJxi − Jxi initialÞ and

X
i∈S

ΔJy ¼
X
i∈S

ðJyi − Jyi initialÞ ð18Þ

where Jxi initial and Jyi initial represent the particle i actions at
the beginning of the simulation. The notation S represents
the subset of the 0.05% (black) or the 0.2% (red and blue)
largest energy increase particles. A similar plot is shown in
Fig. 2(c), but for the largest energy decrease particles. The
values 0.05% and 0.2% are arbitrary chosen for the purpose
of illustrating the properties of the LD-responsible par-
ticles. In the linear Landau damping theory, the energy of
the LD-responsible particles increases linearly in a time
interval δt ≈ 1=jδωj, where δω is the frequency difference
between the particle and the mode. As seen from Fig. 2(b),
the time where

P
ΔJx is increasing linearly is larger when

the number of the particles in the summation is smaller,
since a larger number in the summation implies particles
with larger jδωj. Note that the chosen particles increase or
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y
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FIG. 2. (a) Bunch tune footprint at off-resonance for q ¼ 7.94.
The white dot corresponds to the bare betatron tunes.
(b)

P
i∈SΔJx ¼

P
i∈SðJxi−Jxi initialÞ and

P
i∈SΔJyi ¼

P
i∈SðJyi−

Jyi initialÞ of the 0.05% and 0.2% largest increasing energy
particles versus turn number, normalized by the product of
emittance and the number of the particles in the sum. (c) The
same as (b) but for the largest decreasing energy particles.
(d) Tune footprint for the 0.5% largest changing energy (increase
and decrease) particles. The tunes are in the proximity of the
coherent tune Qx ¼ ν −Qs. The color dimension scale in (a) and
(d) differs by one order of magnitude.
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FIG. 1. Comparison between the off-resonance and the cou-
pling resonance cases for the first space charge mode: (a) Landau
damping rate λ

ωs
versus space charge parameter q, where ωs ¼

ω0Qs is the synchrotron frequency. For intermediate and strong
space charge the damping is larger at the coupling resonance.
(b) The mode tune ν at off-resonance and at coupling resonance
are nearly the same. (c) The spatial overlap, Eq. (15), of the DMD
extracted mode X1ðz; uÞwith the space charge harmonic function
Y1ðzÞ. The off-resonance and the coupling resonance mode
shapes are nearly the same.
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decrease their action only in the horizontal plane, i.e., the
plane where the mode is present. The 2D tune footprint of
the 0.5% largest-energy changing particles (both increasing
and decreasing) is shown in Fig. 2(d). As expected, since
these particles are mode-resonant, their horizontal tune is in
the vicinity of ν −Qs. Notice that higher ν − ð2nþ 1ÞQs
harmonics spectral features do not appear to be significant
in the tune footprint of the LD-responsible particles.
The spectral properties of the LD-responsible particles at

the coupling resonance do not fit the typical Landau
damping paradigm. The beam 2D tune footprint in
Fig. 3(a) displays enhanced spectral weight along the
coupling resonance line 2Qx − 2Qy ¼ 0, consequence of
resonance trapping [in agreement with Eqs. (A45) and
(A46)]. Satellite lines corresponding to the 2Qs harmonics
can be observed too. We use the same largest energy
change criterion to select the LD-responsible particles.
Unlike the off-resonance case, the horizontal and vertical
actions exhibit nonmonotonic change with turn number,
since in the proximity of coupling resonance their magni-
tude oscillates between the planes. However, the transverse
action sum Js of the LD-responsible particles displays a
monotonic increase (decrease), as shown in Fig. 3(b)
[Fig. 3(c)]. The interesting fact which points to a parametric
damping mechanism is that the tune of most of these large
energy changing particles is not in the vicinity of ν −Qs as

one would expect for LD-responsible particles. As shown
in Fig. 3(d), there is a large spectral weight on the coupling
resonance line which extends well below Qx ¼ ν −Qs.
Most of the large changing energy particles are trapped

in resonance islands, as can be seen in Fig. 4(a) where the
Poincare plots, Jdi versus Φxi −Φyi for i ∈ S, are shown.
The phase coordinates are defined as

Φxi ¼ arctan

�
−
αxxi þ βxx0i

xi

�
;

Φyi ¼ arctan
�
−
αyyi þ βyy0i

yi

�
: ð19Þ

The Landau damping is, therefore, strongly influenced by
the Jd oscillations characterizing the coupling resonance
trapped particles. The trapping frequency, ω0Qti, of the
LD-responsible particles is determined from the Fourier
spectrum of JdiðsÞ.
The Qt satellites in the particles’ tune spectra contribute

to the spectral weight at the mode coherent tune ν −Qs by
≈20%–25%. This contribution favors the conventional
damping mechanism via the Ax̄ coupling [see Eq. (12)].
To estimate the Qt satellites’ spectral weight we compare
the horizontal tune density

ρxðQÞ ¼
X
i∈S

ρxiðQÞ ¼
X
i∈S

j~xiðQÞj2 ð20Þ

and the one-tune-per-particle density

ρ1xðQÞ ¼
X
i∈S

ρ1xiðQÞ ¼
X
i∈S

δðQ − Q̄xiÞ: ð21Þ
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FIG. 3. (a) Bunch tune footprint at coupling resonance for
q ¼ 7.94. The white dot corresponds to the bare betatron tunes.
(b)

P
i∈SΔJsi ¼

P
i∈SðJsi − Jsi initialÞ of the 0.05% and 0.2%

largest increasing energy particles versus turn number, normal-
ized by the product of emittance and the number of the particles
in the sum. (c) The same as (b) but for the largest decreasing
energy particles. (d) Tune footprint for the 0.5% largest changing
energy (increase and decrease) particles. Large part of the spectral
weight is along the resonance line 2Qx − 2Qy ¼ 0, with the
horizontal tune well below ν −Qs. The color dimension scale in
(a) and (d) differs by one order of magnitude.
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FIG. 4. Coupling resonance, q ¼ 7.94. (a) Poincare plots, Jd
versus Φx −Φy, for randomly selected particles belonging to the
0.5% largest changing energy particles. Most of these particles
are trapped in the resonance islands. (b) The horizontal tune
density ρðQxÞ (black), the Qt shifted tune density hðQxÞ (blue)
and the one-tune-per-particle tune density ρ1ðQxÞ (green) with
the corresponding Qt shifted tune density h1ðQxÞ for the 0.5%
largest changing energy particles. hðQxÞ and h1ðQxÞ are strongly
peaked at the resonant mode tune Qx ¼ ν −Qs, showing mode-
particle resonance via the BJdx̄ term [see Eq. (12)].
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The sums in Eqs. (20) and (21) are restricted only to the
number of the selected particles with the largest energy
change. Q̄xi is the tune of the largest spectral peak in the
Fourier spectrum j~xiðQÞj. Unlike ρx, where all spectral
features are present, ρ1x assumes that every particle is
characterized only by its main tune. The spectral weight
difference between ρx and ρ1x at ν −Qs measures the
satellites contribution to the Ax̄ damping mechanism. In
Fig. 4(b) ρx and ρ1x for the 0.5% largest changing energy
particles are shown. Besides the peak at ν −Qs, a broad
spectral feature at smaller frequency, unfavorable to the Ax̄
damping mechanism, is observed in both ρx and ρ1x.
The other contribution of the Jd oscillations to the

damping is via the BJdx̄ term. The resonance condition
is Qxi þQti ¼ ν −Qs. We define hðQÞ as the tune density
obtained by shifting each particle’s horizontal tune by Qti,
such

hðQÞ ¼
X
i∈S

hiðQÞ ¼
X
i∈S

Z
ρJdiðQ0ÞρxiðQ −Q0ÞdQ0

≈
X
i∈S

ρxiðQ −QtiÞ; ð22Þ

where ρJdiðQÞ ¼ j ~JdiðQÞj2 is the Fourier spectrum of
JdiðsÞ. We define h1ðQÞ by replacing ρxi with ρ1xi in
Eq. (22). As shown in Fig. 4(b), both hðQÞ and h1ðQÞ are
strongly peaked at the coherent frequency ν −Qs and do
not display the broad spectral feature seen in ρxðQÞ and
ρ1xðQÞ below ν −Qs. In fact the particles with the tune
forming the broad spectral feature of ρ1xðQÞ have the main
tune Q̄xi ≈ ν −Qs −Qti, i.e., the tune required for reso-
nance with the BJdx̄ coupling term. The broad feature seen
in hðQÞ [h1ðQÞ] spectrum above ν −Qs corresponds to the
spectral weight at ν −Qs in the tune density ρxðQÞ
[ρ1xðQÞ] when shifted with particle dependent Qti.
Compared to the off-resonance case, at coupling reso-

nance the mode-particle coupling term BJdx̄ allows a larger
number of particles to participate to the damping process.
The conventional coupling does not favor particles with
small longitudinal amplitudes, since they have a large tune
shift which excludes them from the resonant exchange
process with the mode. However, this impediment is not so
restrictive for the resonant exchange via the BJdx̄ term,
since the trapping frequency Qt is proportional to the
charge density, thus also being large for small longitudinal
amplitude particles and partially compensating for the large
tune shift.

VI. DISCUSSIONS

In our simulations we choose the initial amplitude
excitation of the space charge mode to be small, of order
of 10−3σx, where σx is the beam horizontal rms size. As a
consequence, the change in the beam shape and size are of
the same order of magnitude. In a good approximation the

beam size is constant. One may wonder about beam shape
at the coupling resonance case, which, in general, is
associated with the Montague’s emittance exchange
between transverse planes [10]. The Montague’s emittance
exchange occurs when the horizontal and the vertical
emittances differs significantly from each other. In our
case the initial beam distribution is chosen such that
ϵx ¼ ϵy ≡ ϵ0, and the emittance exchange is negligible.
While at the particle level the coupling resonance is
characterized by amplitude exchange between the trans-
verse planes, the overall beam distribution changes very
little. In Fig. 5 we plot the transverse emittances versus the
turn number, both at the coupling resonance and in the off-
resonance case. The relative change of the horizontal and
the vertical emittances are smaller than 5 × 10−4.
While our simulations show enhanced damping at the

coupling resonance it is important to address the damping
behavior when moving away from this point. We inves-
tigate the damping as a function of the bare betatron tunes
difference ΔQ0 ¼ Q0x −Q0y. In Fig. 6 we plot the Landau
damping of the horizontal first space charge mode versus
ΔQ0=Qs for different values of the space charge parameter
and the synchrotron tune. The width of the enhanced
damping region scales linearly with the space charge tune
shift, W ≈ 0.3Qscmax, where W is defined as the width at
half maximum. The enhanced damping region is asym-
metric with respect the to ΔQ0 ¼ 0, extending predomi-
nantly (≈80%) on the negative side of ΔQ0. We notice two
maxima of the damping rate in the enhanced damping
region. One is at coupling resonance ΔQ0 ¼ 0 and the
other at −ΔQ0 ¼ M. The value of M increases slightly
increasing q as shown in the inset of Fig. 6. Our preliminary
results indicate that the −ΔQ0 ¼ M maximum and the
asymmetry of the enhanced damping region are related to a
different modulation of the mode-particle coupling. Those
results will be addressed in detail in a future publication.

200 400 600 800 1000
turn

0.996

0.998

1

1.002

1.004

em
itt

an
ce

/ε
0

ε
x
 off-resonance

ε
y
off-resonance

ε
x
 coupling resonance

ε
y
 coupling resonance

FIG. 5. The horizontal and the vertical emittances versus the
turn number for the off-resonance and the coupling resonance
cases for q ¼ 7.94. The emittances are nearly constant, the
relative change being smaller than 5 × 10−4.
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VII. CONCLUSIONS

A novel Landau damping mechanism, driven by the
modulation of the mode-particle coupling is introduced.
Numerical simulations using SYNERGIA with the DMD
method show the existence of this mechanism in bunched
beams in the proximity of coupling resonance. The proper-
ties of the first space charge mode are calculated for a
Gaussian bunch propagating through an OFORODO lat-
tice. The off-resonance and the coupling resonance cases
are compared. While the space charge mode’s tune and
shape are nearly the same, the Landau damping is approx-
imately a factor of 2 larger at coupling resonance in the
strong space charge regime. In the off-resonance case the
damping mechanism can be understood within the conven-
tional paradigm. The damping is caused by the resonant
energy exchange between the mode and the particles with
an incoherent tune equal to the mode’s tune shifted by Qs.
At coupling resonance a large number of particles are
trapped around the stable points. Their transverse actions
are oscillating with a particle dependent trapping frequency
ω0Qt. The spectral properties of the trapped particles with
large energy exchange reveal that their tune is additionally
shifted from the mode’s coherent tune byQt, supporting the
parametric Landau damping mechanism.
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APPENDIX: TUNE SHIFT AND
MODE-PARTICLE COUPLING

The space charge induced tune shift and the coupling of
the space charge collective modes to the incoherent motion
of the particles are dependent on the particles amplitudes.
The interpretation of our numerical results is based on this
assumption. For realistic beams it is difficult to derive
analytical expressions for the tune shift and the mode-
particle coupling. In this appendix we calculate these
expressions using a simply model. Despite the simplifying
assumptions, the derivations provide insight on the depend-
ence of the tune shift and the mode-particle coupling on the
particles properties.
We consider a 2D model with transverse degrees of

freedom

H ¼ p2
x

2
þ 1

2
ω2
0xx

2 þ p2
y

2
þ 1

2
ω2
0yy

2 þ Vðx; yÞ; ðA1Þ

were Vðx; yÞ is the space charge interaction part of the
Hamiltonian.

1. Off-resonance case

We will introduce two different approaches for particle’s
frequency calculation. In the first approach one writes the
Hamiltonian in the canonical action-angle coordinates

H ¼ ω0xJx þ ω0yJy þ VðJx; Jy;Φx;ΦyÞ; ðA2Þ

where

x ¼
ffiffiffiffiffiffiffi
2Jx
ω0x

s
sinΦx; px ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jxω0x

p
cosΦx: ðA3Þ

Analogous transformations are used for y and py. Since the
space charge potential contains only terms with even
powers of x and y, it can be written as

VðJx; Jy;Φx;ΦyÞ
¼ V0ðJx; JyÞ þ V1ðJx; Jy; cos 2mΦx; cos 2nΦyÞ; m; n > 0:

ðA4Þ
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FIG. 6. Landau damping rate λ
ωs

of the horizontal first space
charge mode versus ΔQ0=Qs ¼ ðQ0x −Q0yÞ=Qs for different
values of the space charge parameter q and the synchrotron tune
Qs where ωs ¼ ω0Qs is the synchrotron frequency. The width of
the enhanced damping region in the proximity of coupling
resonance W, defined at half maximum, scales linearly with
the space charge tune shift,W ≈ 0.3Qscmax, as shown in the inset.
The enhanced damping region is asymmetric with respect the to
ΔQ0 ¼ 0, extending predominantly on the negative side of ΔQ0.
Two maxima of the damping rate can be noticed, one at ΔQ0 ¼ 0
and the other one at ΔQ0 ≈ −M.
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V1 contains only high harmonics terms proportional to
cos 2mΦx and/or cos 2nΦy. Away from resonances (see
Appendix A 2 for a discussion of the coupling resonance),
the contribution of these terms averages to zero in time. V1

can be neglected in the first order of perturbation theory.
The particle’s horizontal frequency is given by

ωx ¼ _Φx ¼
∂ðH0 þ V0Þ

∂Jx ¼ ω0x þ
∂V0

∂Jx : ðA5Þ

The frequency shift is

δωxðJx; JyÞ ¼ ω0x − ωx ¼ −
∂V0

∂Jx ðJx; JyÞ: ðA6Þ

Analogous equations can be written for the vertical
frequency.
The second approach for the particle’s frequency calcu-

lation starts from the equation of motion and is based on the
Lindstedt-Poincare perturbation theory [24] for nonlinear
equations. The horizontal displacement obeys

ẍþ ω2
0xx ¼ Fðx; yÞ; ðA7Þ

where

Fðx; yÞ ¼ −
∂V
∂x ðx; yÞ ðA8Þ

is the space charge force considered to be a perturbation. In
the first order of perturbation theory, only the terms in
Fðx; yÞ which oscillate with a frequency close to ωx are
relevant for the particle dynamics. To isolate these terms we
write x and y in the action-angle coordinates. Fðx; yÞ
contains terms with odd powers of x and even powers of y
and it can be written as

Fðx; yÞ ¼ F0ðJx; JyÞ sinΦx

þ F1ðJx; Jy; sinð2mþ 1ÞΦx; cos 2nΦyÞ
m; n > 0: ðA9Þ

F1 can be neglected since it contains only higher harmonics
of ωx ¼ _Φx. Equation (A7) reduces to

ẍþ
�
ω2
0x − F0ðJx; JyÞ

ffiffiffiffiffiffiffi
ω0x

2Jx

r �
x ¼ 0; ðA10Þ

and the horizontal tune shift is

δωxðJx; JyÞ ¼ F0ðJx; JyÞ
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jxω0x

p : ðA11Þ

Using Eqs. (A3) and (A8) one can check that Eq. (A6) and
Eq. (A11) agree with each other.

To estimate the mode-particle coupling we will use the
equation of motion. We consider a transverse mode which
displaces the beam center infinitesimally by x̄. Assuming
the rigid-slice approximation, the space charge potential in
this case is

Vðx − x̄; yÞ ¼ Vðx; yÞ − ∂Vðx; yÞ
∂x x̄: ðA12Þ

The equation of motion reads

ẍþ ω2
0xx ¼ Fðx; yÞ − ∂F

∂x ðx; yÞx̄: ðA13Þ

The mode-particle coupling is given by the last term in
Eq. (A13). In order to address the Landau damping
mechanism, one has to investigate the parts in the
∂F
∂x ðx; yÞx̄ term which are in resonance with the particle
displacement x. Let us assume in this section that the mode
frequency ωc is close to the particle’s one ωx, as it happens
for the conventional Landau mechanism. Since ∂F

∂x ðx; yÞ
contains only even powers of x and y one can write

∂F
∂x ðx; yÞ ¼ G0ðJx; JyÞ þ G1ðJx; JyÞ cos 2Φx

þ G2ðJx; Jy; cos 2mΦx; cos 2nΦyÞ
m; n > 0: ðA14Þ

Neglecting the high harmonics, the equation of motion can
be written as

ẍþ ½ω0x − δωxðJx; JyÞ�2x

≈ −G0ðJx; JyÞx̄þ
M
2
G1ðJx; JyÞ sinð2Φx − ωctÞ: ðA15Þ

Here M is the mode amplitude, x̄ ¼ M sinωct, and
δωxðJx; JyÞ is given by Eq. (A11). Since sinð2Φx − ωctÞ ≈
sinðωctÞwhen ωc ≈ ωx and the oscillations of x and x̄ are in
phase [25], one can write the equation of motion as

ẍþ ½ω0x − δωxðJx; JyÞ�2x ¼ −KðJx; JyÞx̄; ðA16Þ

with the mode-particle coupling given by

KðJx; JyÞ ¼ G0ðJx; JyÞ −
1

2
G1ðJx; JyÞ: ðA17Þ

Wewill end this section with an example. Let us consider
a space charge potential

VðxÞ ¼ αx4: ðA18Þ

This is not a realistic potential but can be viewed as a term
in the Taylor’s expansion of the real potential. The space
charge force is
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FðxÞ ¼ −4αx3 ¼ −4α
2Jx
ω0x

ffiffiffiffiffiffiffi
2Jx
ω0x

s
sin3Φ

¼ −4α
2Jx
ω0x

ffiffiffiffiffiffiffi
2Jx
ω0x

s �
3

4
sinΦx −

1

4
sin 3Φx

�
: ðA19Þ

Therefore

F0ðJxÞ ¼ −α
6Jx
ω0x

ffiffiffiffiffiffiffi
2Jx
ω0x

s
; ðA20Þ

and according to Eq. (A11) the tune shift is

δωxðJxÞ ¼ −3α
Jx
ω2
0x
: ðA21Þ

For the mode-particle coupling we have

∂F
∂x ðx; yÞ ¼ −12αx2 ¼ −12α

Jx
ω0x

ð1 − cos 2ΦxÞ; ðA22Þ

implying

KðJxÞ ¼ −18α
Jx
ω0x

¼ 3 × 2ω0xδωxðJxÞ: ðA23Þ

The factor of 3 in front of the right-hand side (r.h.s.) of the
Eq. (A23) arises from the derivative of Fðx; yÞ with respect
to x. A space charge force term FðxÞ ∝ x2nþ1, implies
KðJxÞ ¼ ð2nþ 1Þ × 2ω0xδωxðJxÞ. In the linear regime
where FðxÞ ∝ x, valid for small amplitude oscilla-
tions, KðJxÞ ¼ 2ω0xδωxðJxÞ.
Note that Eq. (4) proposed to describe the particles

motion in Sec. III, is a generalization of Eq. (A16) to
include longitudinal degrees of freedom.

2. Transverse coupling resonance for round beams

The resonance effects on beam particles dynamics are
treated extensively in the literature. However the question
of how the resonance effects can influence the mode-
particle coupling and implicitly the Landau damping
mechanism has not been addressed. In this section, using
a simplified space charge potential, we will discuss the
mode-particle coupling in the proximity of transverse
coupling resonance given by 2ωx − 2ωy ¼ 0.
To illustrate the calculation of tune shift and mode-

particle coupling near coupling resonance we consider an
example where the space charge potential is rotationally
symmetric and given by

Vðx; yÞ ¼ αðx2 þ y2Þ2: ðA24Þ

In the proximity of the coupling resonance it is easier to
calculate the particles dynamics with a Hamiltonian for-
malism than by using the equation of motion. For the

calculation of the frequency shift we transform the
Hamiltonian to action-angle coordinates

H ¼ ω0xJx þ ω0yJy þ
3α

2

�
J2x
ω2
0x
þ J2y
ω2
0y

�

þ 2α
JxJy

ω0xω0y

�
1þ 1

2
cosð2Φx − 2ΦyÞ

�
: ðA25Þ

We neglect the high harmonics terms, as discussed in
Sec. A 1. Assuming proximity of the coupling resonance
the term proportional to cosð2Φx − 2ΦyÞ is retained.
We proceed with a canonical transformation using the

generating functional

FðΦx;Φy; Ix; IyÞ ¼ ðΦx − ω̄tÞIx þ ðΦy − ω̄tÞIy; ðA26Þ

with ω̄ ¼ 1
2
ðω0x þ ω0yÞ. It leads to the Hamiltonian

~H ¼ Δωð−Ix þ IyÞ þ
3α

2

�
I2x
ω2
0x
þ I2y
ω2
0y

�

þ 2α
IxIy

ω0xω0y

�
1þ 1

2
cosð2φx − 2φyÞ

�
; ðA27Þ

where

Δω ¼ 1

2
ðω0y − ω0xÞ ðA28Þ

φx ¼ Φx − ω̄t; Jx ¼ Ix ðA29Þ

φy ¼ Φy − ω̄t; Jy ¼ Iy ðA30Þ

~H ¼ H − ω̄ðIx þ IyÞ: ðA31Þ

A subsequent canonical transformation using the gen-
erating functional

Fðφx;φy; Js; JdÞ ¼
1

2
Jsðφx þ φyÞ þ

1

2
Jdðφx − φyÞ;

ðA32Þ

leads to the Hamiltonian

H ¼ −ΔωJd þ α½asJ2s þ adJ2d þ bJsJd

þ kðJ2s − J2dÞ cosð4φdÞ� ðA33Þ

where the canonical variables are

φs ¼
1

2
ðφx þ φyÞ; Js ¼ Ix þ Iy ðA34Þ

φd ¼
1

2
ðφx − φyÞ; Jd ¼ Ix − Iy ðA35Þ
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and

as ¼
3

8

�
1

ω2
0x
þ 1

ω2
0y
þ 4

3ω0xω0y

�
ðA36Þ

ad ¼
3

8

�
1

ω2
0x
þ 1

ω2
0y
−

4

3ω0xω0y

�
ðA37Þ

b ¼ 3

4

�
1

ω2
0x
−

1

ω2
0y

�
ðA38Þ

k ¼ 1

4

1

ω0xω0y
: ðA39Þ

Since the Hamiltonian is independent on φs, it follows
that Js is a constant of motion.
The stable point ðφ�

d; J
�
dÞ is given by the equations

_Jd ¼ 0, _φd ¼ 0 which lead to

cosð4φ�
dÞ ¼ −1; J�d ¼

Δωω̄2

α
; ðA40Þ

up to the first order in Δω. The particle dynamics around
the stable point is described by the effective Hamiltonian

Heff ¼
α

2ω̄2
δJ2d þ 2

α

ω̄2
ðJ2s − J�2dÞδφ2

d ðA41Þ

where δJd ¼ Jd − J�d, δφd ¼ φd − φ�
d. The oscillation fre-

quency of Jd in the proximity of the coupling resonance
stable point is therefore

ωt ¼
2α

ω̄2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ2s − J�2dÞ

q
: ðA42Þ

Considering that

_φs ¼ 2αðas þ k cosð4φdÞÞJs ¼ 2
α

ω̄2
Js ðA43Þ

_φd ¼
α

ω̄2
δJd ðA44Þ

the particle tunes are

ωx ≈ _Φx ¼ _φs þ _φd þ ω̄ ¼ 2
α

ω̄2
Js þ ω̄þ α

ω̄2
ðJd − J�dÞ

ðA45Þ

ωy ≈ _Φy ¼ _φs − _φd þ ω̄ ¼ 2
α

ω̄2
Js þ ω̄ −

α

ω̄2
ðJd − J�dÞ:

ðA46Þ

Note that in the frequency space the main spectral feature
of the trapped particle resides on the line ωx ¼ ωy. The
oscillation of Jd yields satellite features spaced by har-
monics of the trapping frequency ωt.

The frequency shift is given by

δωxðJs; JdÞ ¼ ω0x − ωx ¼ Δωþ 2
α

ω̄2
Js þ

α

ω̄2
ðJd − J�dÞ

ðA47Þ

δωyðJs; JdÞ ¼ ω0y − ωy ¼ −Δωþ 2
α

ω̄2
Js −

α

ω̄2
ðJd − J�dÞ:

ðA48Þ

In the presence of a transverse mode, in the rigid-slice
approximation, the space charge potential is

Vðx; yÞ ¼ αððx − x̄Þ2 þ y2Þ2: ðA49Þ
The calculation of the mode-particle coupling reduces to
analyzing the force acting on the particle. The equation of
motion reads,

ẍþ ω2
0xx ¼ −4αxðx2 þ y2Þ þ 12αx2x̄þ 4αy2x̄: ðA50Þ

The displacement x̄ is small and does not affect the
incoherent particle motions in the first order approximation.
Equation (A50) yields the mode-particle coupling written
in action-angle coordinates as

−Kx̄ ¼ ð12αx2 þ 4αy2Þx̄

¼
�
12α

ðJs þ JdÞ
ω0x

sin2Φx þ 4α
ðJs − JdÞ

ω0y
sin2Φy

�
x̄

¼ 2αJs

�
3

ω0x
ð1 − cos 2ΦxÞ þ

1

ω0y
ð1 − cos 2ΦyÞ

�
x̄

þ 2αJd

�
3

ω0x
ð1 − cos 2ΦxÞ −

1

ω0y
ð1 − cos 2ΦyÞ

�
x̄:

ðA51Þ
Because Js is constant, the first term in the r.h.s. of

Eq. (A51) is resonant with x when ωx ≈ ωy ≈ ωc, as
expected by a conventional Landau damping mechanism.
A similar reasoning with the one discussed in Appendix A 1
can be used to calculate the mode-particle coupling.
However, when analyzing the terms resonant with x one
has to take into account that, according to Eq. (A40), the
trapped particles phases satisfy 2Φx − 2Φy ¼ ð2kþ 1Þπ.
Doing that, one gets for the coupling term proportional
to Js,

K1x̄ ¼ −Js
�
9α

ω0x
þ α

ω0y

�
x̄ ≈ −

10αJs
ω0x

x̄: ðA52Þ

On the other hand, since Jd is oscillating with the
frequency ωt, the term in the r.h.s. of Eq. (A51) propor-
tional to Jd is resonant with x when ωx ≈ ωy ≈ ωc − ωt.
Assuming that Jd ¼ jJdj cosωtt, x̄ ¼ M sinωct and
2Φx − 2Φy ¼ ð2kþ 1Þπ, the mode-particle coupling pro-
portional to Jd can be written as
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K2x̄ ¼ −Jd
�
15α

2ω0x
−

3α

2ω0y

�
x̄ ≈ −

6αJd
ω0x

x̄: ðA53Þ

The equation of motion in the proximity of the coupling
resonance for our simplified Hamiltonian is

ẍþ ðω0x − δωxðJs; JdÞÞ2x ¼ −ðK1 þ K2Þx̄

¼ 10α

ω0x
Jsx̄þ

6α

ω0x
Jdx̄: ðA54Þ

The equation (12) proposed to described the motion of
particles in the proximity of coupling resonance in Sec. III
is a generalization of Eq. (A54) to include higher order
terms in the space charge potential and, as well, longi-
tudinal degrees of freedom.
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