
Efficiency versus instability in plasma accelerators

Valeri Lebedev,1,* Alexey Burov,1 and Sergei Nagaitsev1,2
1Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, Illinois 60510, USA

2Department of Physics, The University of Chicago, Chicago, Ilinois 60637, USA
(Received 4 January 2017; published 20 December 2017)

Plasma wakefield acceleration is one of the main technologies being developed for future high-energy
colliders. Potentially, it can create a cost-effective path to the highest possible energies for eþe− or γ − γ
colliders and produce a profound effect on the developments for high-energy physics. Acceleration in a
blowout regime, where all plasma electrons are swept away from the axis, is presently considered to be the
primary choice for beam acceleration. In this paper, we derive a universal efficiency-instability relation,
between the power efficiency and the key instability parameter of the trailing bunch for beam acceleration
in the blowout regime. We also show that the suppression of instability in the trailing bunch can be achieved
through Balakin-Novokhatsky-Smirnov damping by the introduction of a beam energy variation along the
bunch. Unfortunately, in the high-efficiency regime, the required energy variation is quite high and is not
presently compatible with collider-quality beams. We would like to stress that the development of the
instability imposes a fundamental limitation on the acceleration efficiency, and it is unclear how it could be
overcome for high-luminosity linear colliders. With minor modifications, the considered limitation on the
power efficiency is applicable to other types of acceleration.
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I. INTRODUCTION

In recent years, the subject of plasma acceleration has
been of great impact and interest for the science commu-
nity, as demonstrated by many publications in leading
science journals [1–10]. Two basic concepts for a linear
collider based on plasma wakefield acceleration (PWFA)
were proposed and studied [11,12]. In this paper, we focus
on several fundamental limitations on the collider beam
properties and will be mainly referring to the case when
plasma is excited by a short electron bunch, known as a
drive bunch. However, most considerations are also appli-
cable to the plasma excitation with a short laser pulse.
Presently, the acceleration of a collider-quality electron

or positron bunch in a quasilinear plasma regime does not
look feasible due to the trailing bunch interaction with
plasma electrons and ions [13]. For electrons, the accel-
eration in a blowout (bubble) regime looks like the only
alternative. For positrons, the acceleration of a collider-
quality bunch does not look feasible even in a bubble
regime, where (i) an absence of plasma electrons on the
beam axis results in strong defocusing, (ii) their presence
results in a strong and detrimental interaction with plasma
electrons, or (iii) a complete absence of plasma (i.e., a
hollow channel) near the axis results in a beam breakup

(BBU) instability, because any external focusing is too
weak to prevent it. Therefore, in this paper, we focus on the
limitations of the electron bunch acceleration for the
“strong” bubble regime, which, we believe, is the only
viable option for PWFA collider schemes. Contrary to
conventional rf cavities which have very large quality
factors, plasma oscillations in a bubble regime have a
quality factor of about 1. In this case, only one bunch can be
accelerated, and the efficiency of the acceleration is
determined by a fraction of the energy transferred from
the bubble to this bunch. Therefore, in all concepts, the
trailing bunch is placed behind the drive bunch, in the same
plasma bubble, and is designed to absorb the maximum
possible fraction of the bubble energy. In this paper, we
present the efficiency-instability relation, which sets a limit
on such an energy transfer. This limit is determined by the
BBU instability. We would like to stress that, until ways to
overcome this limit are found, plasma-based collider
schemes remain impractical from the perspective of accel-
eration efficiency. The BBU (also known as the hose)
instability in PWFA concepts has been considered pre-
viously only for drive bunches [14,15]. Although these
considerations are important, the quality of the drive bunch
(i.e., its emittance and energy spread) affects the collider
luminosity only in an indirect way. In contrast, our paper is
focused only on the quality of the trailing bunch. In our
considerations, we assume that a bunch with an optimal
longitudinal density distribution can be created. This is not
necessarily true in a real accelerator. Therefore, our
criterion, presented below, should be considered as the
best possible outcome, not necessarily achievable in
practice.
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II. DRIVING A PLASMA WAVE

The strong bubble regime is such that the plasma bubble
size Rb is much larger than the plasma shielding radius
Rb ≫ k−1p , where kp ¼ ωp=c ¼ ð4πn0reÞ1=2, ωp is the
plasma frequency, n0 is the plasma density, c is the speed
of light, and re is the classical electron radius. In this case,
the dependence of a radial bubble size rb on the longi-
tudinal coordinate related to the bunch ξ ¼ ct − z is well
approximated by the Lu equation [2]:

rb
d2rb
dξ2

þ 2

�
drb
dξ

�
2

þ 1 ¼ 2

πn0r2b

dNd

dξ
; ð1Þ

where dNd=dξ is the linear particle density of a bunch. The
longitudinal electric field on the bubble’s axis is [2]

E∥ ¼ −2πn0erb drbdξ
: ð2Þ

The Lu equation was analytically solved in Ref. [5] for a
constant deceleration force along the drive bunch; some of
those formulas are reproduced here for the reader’s
convenience.
In the case when bunch particles are absent inside the

bubble, dNd=dξ ¼ 0, an integration of Eq. (1) yields the
bubble shape and the electric field inside the bubble:

drb
dξ

¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

�
Rb

4

rb4
− 1

�s
; Ejj ¼ �πen0rb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
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4

rb4
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�s
;

ð3Þ

where Rb is the maximum bubble radius. Consequently, the
half-bubble length is equal to

ξb ¼
ffiffiffi
2

p ZRb

0

�
Rb

4

r4
− 1

�−1=2
dr ≈ 0.847Rb: ð4Þ

The shape of the bubble can be approximated by

rb ≈ Rb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
ξ

ξb

�
2

3

s
: ð5Þ

As pointed out in Ref. [5], the solution with a constant
decelerating field along the drive bunch is especially
interesting, since the energy spread of the bunch would
be minimized. Assuming that all particles in the bunch are
decelerated with the same rate Ed, the integration of Eq. (2)
relates the bubble radius at the location ξ and the electric
field:

Edξ ¼ πn0erb2; ð6Þ

where ξ is measured from the head of the bunch and we
accounted for rb ¼ 0 at the driving bunch head.
Substituting rb into Eq. (1), one obtains the corresponding
longitudinal distribution:

dNd

dξ
¼ Ed

8πn0e
ðEd=eþ 4πn0ξÞ; ð7Þ

leading to the total number of particles in the bunch

Nd ¼
EdLd

8πn0e
ðEd=eþ 2πn0LdÞ; ð8Þ

where Ld is the full drive bunch length. According to
Eq. (6), EdLd ¼ πen0r2d, where rd is the bubble radius at
the drive bunch end. Because of continuity of the decel-
eration field at the end of the bunch,

Ed ¼ πen0rd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
Rb

4

rd4
− 1

�s
: ð9Þ

Using these equations, the bunch power losses are easily
obtained:

P ¼ eNdEdc ¼ π2

4
e2n20cR

4
b: ð10Þ

Thus, the maximum bubble radius uniquely determines the
power transferred by the drive bunch to plasma.
The constancy of the decelerating force along the bunch

contradicts the general requirement for the decelerating
force to be zero for the very head of the relativistic drive
bunch. This contradiction originates from the poor descrip-
tion of the plasma reaction for small rb by the Lu equation;
the equation works well only for Ld ≥ k−1p . When the bunch
is sufficiently long, the inaccuracy of the Lu equation at the
very head of the bunch is insignificant for the bubble
formation.
For a given number of particles, the decelerating electric

field can be obtained from Eq. (8). It is also straightforward
to obtain the maximum bubble radius:

Rb ¼
Ldffiffiffi
24

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8Nd

πn0Ld
3

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8Nd

πn0Ld
3
þ 1

s
− 1

!
4

vuut ð11Þ

from the above equations. Equation (11) can be approxi-
mated by the following:

Rb ≈
�

27N3
d

π3Ldn30

�
1=8

;
Nd

n0L3
d

≫ 1. ð12Þ

One can notice that the bubble radius diverges at small
bunch lengths. Although the divergence is quite slow, it still
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shows that for a delta-function drive bunch the Lu equation
is mathematically incorrect.

III. ACCELERATION

Now let us consider the acceleration of a trailing bunch.
Similarly to the drive bunch, the particle density of the
trailing bunch can be chosen such that all particles are
accelerated at the same rate. If so, the trailing linear density
is trapezoidal, like the one described by Eq. (7), linearly
decreasing toward the bunch tail [5]. Expressing coordi-
nates of the bunch head and tail through the bubble radii at
their locations, the total number of particles in the trailing
bunch is

Nt ¼
Et

8e

�
rt22 − rt12 þ 2

�
πn0e
Et

�
2

ðrt24 − rt14Þ
�
: ð13Þ

Here Et is the accelerating field; rt1 and rt2 are the bubble
radii in the locations of bunch tail and head, respectively;
also, we took into account that the trailing bunch length
Lt ¼ πen0ðr2t2 − r2t1Þ=Et. Then, the power transferred to the
trailing bunch is

Pt ¼ ecNtEt ¼
π2e2n02c

4
ðrt22 − rt12Þ

�
Rb

4

rt22
þ rt12

�
: ð14Þ

Consequently, the efficiency of power transfer from a drive
to a trailing bunch is

ηP ¼ Pt

P
¼ rt22 − rt12

Rb
2

�
Rb

2

rt22
þ rt12

Rb
2

�
: ð15Þ

Figure 1 shows an example, illustrating the bubble shape
and the particle distributions of the drive and trailing bunches

for the power transfer efficiency of 50% and the transformer
ratio Et=Ed of 2. For n0 ¼ 1017 cm−3, the drive bunch
parameters are chosen to be Rbkp ¼ 5 and Ldkp ¼ 2.5,
yielding the decelerating field of Ed ¼ 50 GV=m
and Nd ¼ 3.55 × 1010. The trailing bunch parameters
are rt2 ¼ 0.518Rb, rt1 ¼ 0.373Rb, Et ¼ 100 GV=m, and
Nt ¼ 8.86 × 109.

IV. INSTABILITY

The BBU instability is characterized by the ratio of the
wake deflection force to the focusing force. The latter is
given by

Fr ¼ −2πn0e2r; ð16Þ
where r is the particle offset from the bubble axis.
In the strong bubble regime, all plasma currents are

localized in a thin layer near the bubble boundary. In this
case, the transverse and longitudinal wakes are related to
each other by a universal expression [16,17], which in
further considerations we will call the short-range wake
theorem (see also Ref. [17] and multiple references
therein):

W⊥ð~ξÞ ≈
2

~rb2

Zξ
0

WLðsÞds; ð17Þ

where

~rb ¼ rb þ kp−1 ð18Þ

is the effective bubble radius at the driving particle location,
~ξ ¼ ξ − ξ2 is the distance between leading and trailing
particles, and ξ2 and ξ are the positions of the leading and
the trailing particles, respectively, in the trailing bunch. The
k−1p correction term in Eq. (18) accounts for a finite
penetration depth of the beam-induced currents into a
plasma. In the case of a hollow plasma channel [18],
which is solved analytically, such a correction makes
Eq. (17) to be a good approximation to an exact solution
for rbkp ≥ 3. Note that plasma ions inside the bubble do not
make a considerable contribution to the wakes, because of
their low mobility, compared to the mobility of electrons.
The short-range wake theorem is usually applied to

structures with a solid aperture, where its application has
been well justified by many authors. It was shown to be
correct for the resistive wall [19] with thin skin depths, for
dielectric-covered pipes, and for pipes with small corru-
gations [17]. If the wall conductivity is sufficiently high, the
result does not depend on the conductivity. This indicates
that the use of the short-range wake theorem is justified for
a plasma bubble (or a plasma channel), if all plasma
currents are concentrated in a layer with the thickness

FIG. 1. The bubble shape and particle distributions (black lines)
for drive and trailing bunches, with n0 ¼ 1017 cm−3. The red and
blue lines mark the parts of the bubble occupied by the drive and
trailing bunches, respectively. The dashed brown line shows the
analytical continuation of the bubble shape in the absence of bunch
particles inside the bubble. The accelerating and decelerating fields
are constant: Ed ¼ 50 GV=m and Et ¼ 100 GV=m.
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much smaller than the channel radius. This condition is
identical to the condition of the strong bubble regime,
Rb ≫ 1=kp, considered here.
It is straightforward to obtain the longitudinal wake

immediately behind a test particle. Placing a pointlike
charge qδðξ − ξ2Þ on the axis, integrating Eq. (1) in the
close vicinity of ξ2, and, then, substituting the result into
Eq. (2), one obtains

WL ¼ 4

rb2
; ð19Þ

where rb is the bubble radius at the particle location. As one
can see, unlike Eq. (18), the bubble radius in Eq. (19) does
not have an addition of k−1p . This is determined by the
applicability condition of the Lu equation: Rbkp ≫ 1. The
numerical integration of Eqs. (1) and (2) yields an approxi-
mation for the wake function, which describes the wake
sufficiently accurately almost to the end of the bubble:

WLðξ; ξ2Þ ≈
4

rbðξÞ2
θðξ − ξ2Þ; ð20Þ

where θðxÞ is the Heaviside step function. Figure 2 presents
a comparison of the wake functions of Eq. (20) and
obtained by numerical integration. As one can see, each
wake function starts from the value prescribed by Eq. (20)
and slowly diverges from it near the bubble end. Note that
this dependence is quite different from the case of soft
plasma excitation, where the wake oscillates at a frequency
close to the plasma frequency.
All applications of the short-range wake theorem men-

tioned above are related to channels of constant radius. It is

not entirely obvious how this theorem has to be applied to a
plasma bubble, which radius is changing with coordinate ξ.
For this paper, we assume that the wake is equal to

W⊥ðξ; ξ2Þ ≈
8~ξ

rbðξÞrb3ðξ2Þ
θð~ξÞ; ~ξ ¼ ξ − ξ2: ð21Þ

This result follows from Eqs. (17) and (20) in the leading
order of expansion over the bunch length. The actual value
of the transverse wake is expected to be somewhat larger,
because, like the longitudinal wake, the transverse wake
should be mostly dependent on the bubble radius at the
trailing particle position. Thus, our choice of the transverse
wake potential yields an optimistic value for the instability
threshold. The exact value of the transverse wake should be
a subject of another study.
Assuming that initially all particles of the trailing bunch

are off axis at the same radius r, one obtains the wake force
acting on particles at the bunch tail:

Ft ≡ Fðξ1Þ ¼ e2r
Zξ1

ξ1−Lt

dNt

dξ
W⊥ðξ1; ξÞdξ; ð22Þ

where Lt is the length of the trailing bunch and ξ1 is the
longitudinal coordinate of the bunch tail. The ratio of the
wake-deflecting force to the focusing force of Eq. (16), or
the normalized wake defocusing, is

ηt ¼ − Ft

Fr
¼ rt2

rt1

ZLt

0

dξ
Lt − ξ

rb3ðξÞ

×

(
rt2

�
Rb

4

rt24
− 1

�
− 2

"
ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
Rb

4

rt24
− 1

�s
− rt2

#)
:

ð23Þ

Here we changed the origin of the longitudinal coordinate
so that ξ ¼ 0 at the bunch head and it grows to the bunch
tail:

rbðξÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rt22 − rt2ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
Rb

4

tt24
− 1

�svuut ;

Lt ¼
rt22 − rt12

rt2

�
2

�
Rb

4

tt24
− 1

��−1
; ð24Þ

and we accounted that the longitudinal density in the
accelerated bunch is

dN
dξ

¼ Et

8πen0

�
Et

e
− 4πn0

�
ξ − πen0rt22

Et

��
: ð25Þ

FIG. 2. Dependence of the longitudinal wake on the longi-
tudinal coordinate ξ for different locations of the leading particle
ξ2 ¼ −4, −2, 0, 2, 4; Rbkp ¼ 5.25, ξbkp ¼ 4.448. The dashed
line shows the function 4=½rbðξÞkp�2, which is directly related to
the wake function of Eq. (20).
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Equations (24) follow from Eqs. (1)–(3), and Eq. (25) is
obtained similarly to Eq. (7).
Plotting ηt as a function of ηP for various values of rt1

and rt2, one obtains that in the area of interest,
rt2=Rb ≤ 0.7, where the acceleration is reasonably fast,
the normalized wake defocusing ηt can be related to the
power transfer efficiency:

ηt ≈
ηP

2

4ð1 − ηPÞ
;

rt2
Rb

≤ 0.7. ð26Þ

Note that this formula does not include any details of beams
and plasma, being amazingly universal. Because of its
importance, simplicity, and universality, we propose to
name it the efficiency-instability relation. The term in the
denominator is determined by the specific dependence of
the transverse wake on ξ, while η2P=4 is universal and is
applicable to any structure. In Ref. [13], we considered the
opposite limiting case of the transverse wake behavior
when the wake is determined by the bubble radius at
the location of the trailing particle only: W⊥ðξ; ξ2Þ≈
8~ξ θð~ξÞ=rb4ðξÞ. In this case, the instability-efficiency
relation of Eq. (26) has the following form: ηt ≈ ηP

2=
½4ð1 − ηPÞ2�.
In the following analysis, we will neglect the line density

variation along the trailing bunch, assuming this density is
not trapezoidal but rectangular. This approximation is
reasonable when the trailing bunch is not too close to
the end of the bubble. In that case, the line density variation
is small enough, like in Fig. 1. It also implies that in
Eq. (21) rbðξÞ ≈ rbðξ2Þ, and the power efficiency is
sufficiently small so that Eq. (26) is transformed into
ηt ≈ ηP

2=4.
Strong focusing in the bubble results in a large number of

betatron oscillations during the beam acceleration. The
total betatron phase advance can be estimated as

μ ¼
ffiffiffi
2

p
ð ffiffiffiffiffi

γf
p − ffiffiffiffi

γi
p ÞE0=Et; E0 ¼ 4πn0e=kp; ð27Þ

where γf and γi are the final and initial values, respectively,
of the Lorentz factor. In this case, the oscillations of the
bunch head resonantly drive particles in the tail, resulting in
an increase of the effective transverse emittance.
To describe this head-tail motion, we will use the

normalized variables:

X ¼ xffiffiffi
β

p
ffiffiffiffiffi
p
p0

r
; β ¼ k−1p

ffiffiffiffiffi
2γ

p
: ð28Þ

With dμ ¼ dz=β, an equation for the transverse oscillations
is

d2X
dμ2

þ X
1þ Δp=p

¼ 2ηt
ð1þ Δp=pÞLt

2

Zξ
0

Xðξ0Þðξ − ξ0Þdξ0:

ð29Þ

Here p and p0 are the momentum and its initial value,
respectively; Δp=p is a possible momentum deviation as a
function of the intrabunch coordinate ξ, and we assume that
radii of the driving and leading particles in the expression
for the transverse wake of Eq. (21) are equal.
Let all trailing particles have the same initial normalized

amplitude X ¼ A0, resulting from an offset between the
axes of the drive and trailing bunches. For ηt ≪ 1 and
Δp=p ¼ 0, Ref. [18] presents an asymptotic solution of
Eq. (29) for μηt ≫ 1. To obtain a solution for practical
phase advances, we solved the equation numerically. The
obtained results suggest an approximate parameterization
for the ratios of the tail particle amplitude

A
A0

¼ exp

� ðμηtÞ2
10þ1.4ðμηtÞ1.57

�
; μηt ≤ 100; ηt ≤ 0.1;

ð30Þ

and the rms amplitude averaged over all particles

ffiffiffiffiffi
A2

p
A0

¼ exp

� ðμηtÞ2
60þ2.2ðμηtÞ1.57

�
; μηt ≤ 100; ηt ≤ 0.1.

ð31Þ

to the initial amplitude. These approximations do not
deviate by more than 10% from the numerical solution
in the range of interest. Figure 3 presents the corresponding
plots. The rms amplitude of Eq. (31) is determined as

FIG. 3. The dependencies of ratios for the tail amplitude
particles (top solid line) and the rms amplitude of all particles
(bottom dashed line) to the initial amplitude A0.
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ffiffiffiffiffi
A2

q
≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
n¼1

An
2

vuut ;

where averaging is performed for all particles and An is the
betatron amplitude of the nth particle.
As our first example, we will consider a single-stage

60-cm-long plasma section with n0 ¼ 4 × 1016 cm−3, the
initial momentum pi ¼ 10 GeV=c for both the drive and
the trailing bunches, and the final momentum of trailing
bunch pf ¼ 21GeV=c, Nd¼ 1×1010, and Nt ¼ 4.3 × 109.
These parameters are of specific interest for the future
FACET-II research program [20]. We will consider two
somewhat arbitrary examples. For the power transfer
efficiency of ηP ¼ 50%, we obtain μ ≈ 93 rad from
Eq. (27) and ηt ≈ 0.12 from Eq. (26). The use of
Eqs. (30) and (31) yields the amplitude growth for the tail
particles A=A0 ≈ 5.7 and the relative rms amplitudeffiffiffiffiffiffiffiffiffiffiffiffiffi
A2=A2

0

q
≈ 2.3. A displacement of the trailing bunch closer

to the bubble center reduces the accelerating rate and,
consequently, the power efficiency. If we reduce the power
efficiency by a factor of 2 to ηP ¼ 25%, the energy gain is
also reduced by a factor of 2 (for the same plasma length
and particle number), pf ¼ 15.5 GeV=c, and the amplitude

growths become A=A0 ≈ 1.35 and
ffiffiffiffiffiffiffiffiffiffiffiffiffi
A2=A2

0

q
≈ 1.07.

Note that the corresponding increase of the normalized
emittance is

δεn ¼
δx2

2βi
γi

�
A2

A0
2

�
; βi ¼

ffiffiffiffiffiffi
2γi

p
kp

; ð32Þ

where δx is the transverse offset of the trailing bunch
relative to the driving bunch and βi is the beta function at
the beginning of the accelerating section.
As the second example, let us consider a 1-TeV linac

with μ ≈ 103. In the case of a single kick, tolerance to the
amplitude growth is more forgiving. However, it would be
more realistic to expect many perturbations to the machine
alignment coming from ground motion, jitter in the driving
beam position or positions of laser beams in the case of
laser-plasma acceleration, etc. If so, a single offset should
not increase the trailing particle squared amplitude by, say,
by more than an order of magnitude, yielding μηt < 10 and
thus ηt < 0.01. Using the efficiency-instability relation
Eq. (26), we obtain a limitation on the energy transfer
ηP < 18%.
An effective way to suppress the BBU instability, BNS

damping, was suggested by Balakin, Novokhatsky, and
Smirnov [21]. The idea is to introduce a dependence of
particle momentum on the longitudinal coordinate ξ in the
bunch so that it would compensate frequency detuning
due to the transverse wake. To accomplish that, Eq. (29)
requires

1

1þ Δp
p

− 2ηt
ð1þ Δp

p ÞLt
2

Zξ
0

ðξ − ξ0Þdξ0 ¼ 1: ð33Þ

That results in

ΔpðξÞ
p

¼ −ηt ξ
2

L2
t
: ð34Þ

For colliders, estimates of chromatic aberrations in the
final focus suggest that the total momentum spread can
hardly be allowed to exceed 1% [22] (see also the
discussion in Ref. [13]). If so, it yields the same value
of ηt ≤ 0.01, and, by virtue of the efficiency-instability
relation (26), it sets the same limit on the power efficiency
as without BNS damping. Note also that it is unclear how
the quadratic dependence of the momentum deviation on ξ
required by Eq. (34) can be created for the entire length of
the accelerator.
A remedy for the mitigation of the hose instability for the

drive bunch was suggested in Ref. [15]. It is based on
tapering of the plasma density at the input and the output of
a plasma channel. As will be seen below, this technique also
works for the trailing bunch. A transverse misalignment of
drive and trailing bunches at the plasma entrance results in
an excitation of transverse oscillations of the trailing bunch
with subsequent emittance growth. These oscillations
represent a seed for the hose instability. The plasma density
tapering produces “an adiabatic increase” of transverse
focusing, which results in a reduction of betatron amplitude
excited by the misalignment in the trailing bunch. The net
suppression of the betatron amplitude is determined by the
shape and the length of plasma tapering. For the case when
the density transition length Ltr is much larger than the beta
function of the transverse motion in plasma, β, the value of
suppression is about

ffiffiffiffiffiffiffiffiffiffiffi
Ltr=β

p
. This suppression can be quite

significant at low beam energies, where β is small. With an
energy increase, β also increases [see Eq. (28)]. This results
in the required transition length in the second half of the
1 TeV accelerator being more than or about 10 cm, which
can be difficult to achieve in practice. Finally, we would
like to point out that plasma tapering can be helpful to
reduce requirements on the misalignment of the drive and
trailing bunches but does not change the limitations on the
energy transfer efficiency derived above, since tapering
does not change the development of the instability inside
the plasma itself.

V. OTHER LIMITATIONS

While plasma-based acceleration of an intense high-
quality electron bunch is feasible, albeit challenging, the
same cannot be said about positron bunches. For
the positron acceleration, the plasma electron density on
the bunch axis needs to exceed that of ions for sufficiently
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strong focusing to counteract the transverse BBU insta-
bility. The transverse wakefield is so large that the
instability suppression cannot be obtained by any means
other than plasma focusing. However, an introduction of
plasma electrons on the axis results in a collapse of these
electrons to the positron bunch center, which significantly
distorts the linearity of focusing with radius [23]. Electrons
within the radial size of about rm ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

reNtLt
p

are all pulled
into the positron bunch. Even for a modest number of
positrons in a bunch, rm is larger than the typical transverse
beam size. The resulting high density of plasma electrons at
the positron beam axis both eliminates focusing linearity
and enhances multiple Coulomb scattering of positrons on
plasma electrons, resulting in unacceptably large beam
emittance growth. For a bunch population of 4 × 109 and a
bunch length of 10 μm, one obtains rm ¼ 10.6 μm, while
the typical transverse size is less than a micrometer.
For an electron bunch acceleration in the bubble regime,

plasma ions may also collapse in its field. This effect has
been considered in Ref. [24]. In this case, rm is determined
by the ion mass instead of the electron one. For the above
considered case with the bunch population of 8.86 × 109

and the bunch length of 4.2 μm, one obtains rm ¼ 0.2 μm
for the proton plasma. This size is still larger than the
electron beam radius varying in the range of 0.05–0.15 μm.
This means that the problem of ion collapse in the field of
the electron bunch is also quite severe and will be an
important limitation on the collider parameters. One may
also consider the phase advance of small-amplitude oscil-
lations of plasma ions in the field of an electron bunch:

μion ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rpNtLt=ðMiσ

2⊥Þ
q

, whereMi is the ratio of the ion

mass to the proton mass. For the above parameters of the
accelerated electron bunch and the hydrogen plasma, the
proton oscillation phase advance grows with the beam
energy and achieves ∼360° at 500 GeV. To avoid potential
problems, this value needs to be reduced by at least an order
of magnitude.
Although heavy-ion plasma looks like a possible means

to mitigate the problem of ion collapse [9] and oscillations,
its application seems to be excluded by the impact ioniza-
tion of the ions. For the required bunch parameters, the
electric field at its boundary exceeds ∼103 GV=cm. It is
more than 2 orders of magnitude larger than the electric
field in a hydrogen atom of ∼6 GV=cm. The use of ions
stripped to the level sufficient to avoid impact ionization
looks to be unrealistic. The use of heavy ions also increases
the effects of bremsstrahlung, which are not negligible even
for proton plasma.

VI. DISCUSSION

Many challenges must be overcome before a credible
concept of a plasma-based eþ − e− or γ − γ collider can be
put forward. As far as we can judge, there is still no viable
path to a high-luminosity collider within the present

concepts. As was already stressed, the acceleration of
the required intense low-emittance positron bunch appears
the most challenging.
Achieving a high efficiency even in a more realistic case

of a plasma-based e− − e− or γ − γ accelerator represents a
great challenge. It originates from a low Q value of plasma
oscillations (especially in the bubble regime), resulting in
that only one bunch can be accelerated in a single pulse.
The BBU instability, driven by the transverse impedance of
the plasma bubble, is one of the major limitations. It limits
the number of particles in the trailing bunch and, con-
sequently, limits the efficiency of acceleration. The insta-
bility greatly amplifies the emittance growth due to errors
of the relative alignment between different accelerating
sections. Note that presently the required alignment accu-
racy of submicrometer does not look attainable even in the
absence of the BBU instability. The BNS damping, which
potentially could help, requires a large energy spread,
which is unacceptable from the collider final focus point
of view.
For the present concepts, pinching of plasma ions by a

bright electron beam limits the luminosity of e− − e− or
γ − γ collider to well below 1034 cm−2 s−1 if a light ion
plasma is used. Use of a heavy ion plasma is precluded by
the impact ionization by the electron bunch fields; the ions
cannot be sufficiently well stripped due to the required
energy efficiency. Also, multiple scattering and brems-
strahlung would be greatly amplified in that case.
In conclusion, we emphasize that, although there may be

many applications for plasma-based accelerators, it is
unclear how the limitations, described in our paper, could
be overcome for high-luminosity linear colliders, which
would make them competitive with proposals based on a
conventional rf acceleration technology.
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