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The use of transversely split beams was proposed some years ago as a means to perform extraction
from a circular particle accelerator over multiple turns. In the course of studies carried out to increase
understanding of the beam behavior, space charge effects have been probed. The experimental results
showed a dependence of the beamlets’ positions on the total beam intensity. In this paper detailed numerical
simulations studies are reported, which clearly indicate that the observed behavior is due to indirect space
charge effects. The analysis includes configurations, which have not yet been experimentally probed, in
order to better understand the complex interplay between nonlinear single-particle and intensity-dependent
effects.
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I. INTRODUCTION

Efforts to find a suitable replacement for the continuous
transfer (CT) extraction mode [1,2], which has been the
technique used to transfer the 14 GeV=c proton beams from
the CERN Proton Synchrotron (PS) to the Super Proton
Synchrotron (SPS) for the fixed-target physics programme,
converged on the proposal of a novel method of beam
manipulation named multiturn extraction (MTE) [3]. This
technique is based on transverse beam splitting induced by
crossing a stable resonance in the horizontal phase space
and solves the issue related to the unavoidable beam losses
of the CT extraction [4]. In the case of MTE, the stable
fourth-order resonance is used, which generates four beam-
lets around a central core in phase space. In general, any
resonance (stable or unstable) can be considered to design a
multi-turn extraction scheme [5]. Furthermore, MTE pro-
vides an improved betatron matching of the PS beam at
injection in the SPS with respect to CT [6,7].
In the course of experimental studies aimed at preparing

the operation of MTE at the PS [8,9] (see also [10–12] for
a summary of the MTE performance since it became

operational in the second half of 2015), the impact of
space charge on the beam characteristics was considered
and a measurement campaign was carried out, whose
results are reported in [13]. The observations can be
summarized as follows (see Fig. 1): the final position of
the beamlets is a linear function of the total beam intensity,
while the rms beam size of the four beamlets and of the
beam core do not show any measurable change with total
beam intensity. Therefore, the observations can be
explained in terms of a positive shift of the linear tune
only. The exact origin of the observed displacement of the
beamlets’ positions is the subject of this paper, in which the
contribution from the interaction between the beamlets
themselves and that between the beamlets and the boun-
daries (electric and magnetic) are studied and evaluated by
means of numerical simulations.
The studies presented in this paper are not considering

the full splitting process as the measurement results
indicated that the intensity-dependent effects were affecting
solely the beamlets’ positions. Hence, the magnetic con-
figuration corresponding to the end of the splitting process
is assumed as baseline and the numerical study focuses on
the dependence of the fixed points at the centre of the stable
islands when a nonzero charge distribution is located inside
the islands.
The analysis of intensity-dependent effects for trans-

versely split beams represents an interesting and novel
domain, which, by itself, is already an excellent justifica-
tion for carrying out detailed investigations. Moreover, the
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possibility of producing high-intensity beams for the
proposed future SPS fixed-target facility for the Search
for Hidden Particles (SHiP) [14] provides an additional
motivation for these studies.
Split beams are possible only thanks to intrinsically

nonlinear motion. The generation of stable islands, which
are a necessity for split beams, requires nonlinear detuning
with amplitude and resonance excitation (see, e.g., [15] for
a treatment of nonlinear betatronic motion). The addition of
intensity effects generates a peculiar regime whose proper-
ties are not well known to date.
In recent years, the interplay between nonlinear effects

generated by external fields and those produced by self-
fields and the interaction with the boundaries has been
considered by several authors in studies addressing numeri-
cal [16–18], experimental [19–22], and theoretical [23,24]
aspects. It is worth stressing that the challenge arises
whenever one considers the combined effect of relatively
weak external sources of nonlinearities, leading to a
sizeable impact on the long-term beam dynamics, and
space charge. In fact, this combination requires long-term
numerical simulations to shed light on the features of the
beam dynamics. However, this is a challenge even in the

case of single-particle nonlinear effects, for which a number
of numerical tools have been developed for efficient analysis
of long-term effects over a relatively short number of turns,
with CPU-time at reasonable levels [25,26]. The inclusion of
intensity-dependent effects complicates the task of simulat-
ing the dynamics, both in terms of CPU-time and simulation
accuracy. Indeed, a choice for an appropriate paradigm or
model to describe the space charge effects has to be made.
To describe the evolution of the beam distribution, two
different approaches are in general pursued: (i) a relatively
fast, albeit not accurate, nonself-consistent (or frozen) treat-
ment, or (ii) a much slower self-consistent approach, which
is potentially affected by numerical noise (see, e.g., [27] and
references therein). In this respect, the specific problem dealt
with in this paper, namely the dependence of the beamlets’
positions on beam intensity, considerably simplifies the
computational and modelling tasks, shifting the challenges
from the computational aspects to the analysis of the
interaction of multiple stable beams inside the same
boundaries.
The plan of the paper is the following: the detail of the

magnetic lattice used in the numerical simulations is
discussed in Sec. II. The space charge model used to
evaluate the beamlets’ positions is presented and discussed
in depth in Sec. III and the results of the numerical
simulations are discussed in Sec. IV. Finally, conclusions
are drawn in Sec. V. The detailed computations of the
electric and magnetic fields for specific configurations of
the boundary conditions are reported in the Appendices.

II. MODELING OF PS LATTICE

The PS lattice (see also [28,29] for more detail) consists
of ten superperiods, each made of ten combined function
dipole magnets 4.4 m long, interlaced with eight 1.6 m and
two 3.0 m long straight sections. Every magnet is com-
posed of two half-units with gradients of opposite sign,
separated by a central junction. The latest magnetic
measurements using Hall probes [29] showed that stray
fields at the magnet ends introduce an additional quad-
rupolar component, and in the gap between the two half-
units a non-negligible sextupolar component was observed.
The fine adjustment of tunes and chromaticities is

performed by means of extra coils mounted on the pole
faces of the main dipoles (pole-face-windings—PFWs—
and figure-of-eight loop—F8L). Up to 2007 these devices
were controlled by three independent currents, sufficient to
control the two tunes and the horizontal chromaticity. In
2008 an upgrade was implemented and successfully com-
missioned, allowing independent control of five physical
parameters (such as tunes, chromaticities plus one addi-
tional physical parameter) by means of five new separate
circuits [30]. A sketch of the PS main magnet is shown in
the upper part of Fig. 2, while the schematic view of the five
circuits to control tunes and chromaticities is shown in the
lower part.
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FIG. 1. Summary of the experimental results of intensity-
dependent effects with split beams from [13]. Upper: horizontal
beam profiles measured with a wire scanner at the end of the
splitting process with different total beam intensities. Lower:
position of the peaks of the beamlets after splitting as a function
of the total beam intensity.
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In the PS model used for numerical simulations, the
dipole and quadrupole fields generated by the main
combined function magnets are fixed by the beam momen-
tum. The additional quadrupolar components induced by
stray fields and the PFWs are modeled by thin lenses placed
at the beginning and end of each half-unit. At the same
locations, sextupolar and higher-order fields generated by
the PFWs and by the inter-magnet gap are represented by
nonlinear thin lenses. The thin lenses so introduced are
eventually grouped into two families, for the focusing and
defocusing half-units, respectively.
The effective PS lattice is computed by measuring the

transverse tunes as a function of the momentum offset,
starting from a given set of horizontal and vertical tunes and
chromaticities and beam energy. This beam-based tech-
nique has been implemented in the PS since 2002 [31]. A
polynomial fit of the measured tune functions is used to
extract numerical information on the different magnetic
multipoles. The integrated strengths of the thin-lens ele-
ments,Kn ¼ 1=ðBρÞð∂nBy=∂xnÞ, where Bρ is the magnetic
rigidity, are computed to match the measured curves. This
procedure is applied order by order up to the octupolar
components, i.e., the quadrupolar components are used to
reproduce the constant term in the polynomial, the sextu-
polar components the linear term and so on. The two
families (in the defocusing and focusing half-unit of the PS
main magnet) of thin-lens elements are used to match the
tune curves in the horizontal and vertical planes.
To perform the beam manipulations required for

MTE, several families of magnetic elements are used,
whose locations are shown in Fig. 3 together with the
position of the devices used to measure the transverse beam
distributions.

The control of beam splitting is achieved by means of
sextupole and octupole magnets that vary the detuning
with amplitude, which is described by the coefficients
h2;0; h0;2; h1;1 representing the effect of nonlinear motion
in the horizontal and vertical plane, as well as the
nonlinear coupling between them [15]. Using the following
development:

QxðJx;Jy;δÞ¼Qxþ2h2;0Jxþh1;1JyþQ0
xδþ

1

2
Q00

xδ
2þ���

QyðJx;Jy;δÞ¼Qyþh1;1Jxþ2h0;2JyþQ0
yδþ

1

2
Q00

yδ
2þ…

ð1Þ

where δ and Jx, Jy are the relative momentum offset and the
actions in the horizontal and vertical planes, respectively,

and QðnÞ
x;y are the nth order chromaticities. For sextupoles,

the coefficients appearing in Eqs. (1) are given by

h2;0 ∝
X
w1;w2

K2;w1
K2;w2

λ2;w1;w2

h1;1 ∝
X
w1;w2

K2;w1
K2;w2

λ1;w1;w2

h0;2 ∝
X
w1;w2

K2;w1
K2;w2

λ0;w1;w2
; ð2Þ

where K2 ¼ L=ðBρÞð∂2By=∂x2Þ, L being the length of the
magnet and By the vertical component of the magnetic
field. The functions λi;w1;w2

with i ¼ 0, 1, 2 are complex
functions of the beta-functions at the locations w1, w2 of the

FIG. 2. Sketch of the PS main magnet (upper) and of the
five circuits used to control tunes and chromaticities (lower),
from [30].

FIG. 3. Layout of the PS ring. The main dipoles are shown
(blue and red shapes), including their focusing and defocusing
half-units and the way they are installed, i.e., with the yoke inside
or outside the circumference. The key elements to perform beam
splitting are also shown, the number representing the name of
the straight section in which they are installed, and the letter the
magnetic type. The wire scanners are indicated together with the
plane of measurement.
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sextupoles and of the phase advance between these loca-
tions. In the case of octupoles one finds

h2;0 ∝
X
w

K3;wβ
2
x;w

h1;1 ∝
X
w

K3;wβx;wβy;w

h0;2 ∝
X
w

K3;wβ
2
y;w; ð3Þ

where K3 ¼ L=ðBρÞð∂3By=∂x3Þ.
The configuration used for the numerical simulations

corresponds to the one of [13]. It is worth noting that the
value of the detuning with amplitude in the horizontal
plane, i.e., the term h2;0, is negative, which implies that
stable islands are present whenever the horizontal tune
satisfies Qx > 6.25. An additional configuration has been
probed in numerical simulations, namely with a positive
value of h2;0.

III. MODELING OF INTENSITY-DEPENDENT
EFFECTS

The numerical simulations presented in this paper have
been carried out using the space charge simulation code
SIMPSONS [32] with a number of additions needed for this
study. For instance, the algorithm for finding the closed
orbit after N turns, where N is the order of nonlinear
resonance, has been implemented, in addition to the usual
closed orbit search over a single turn. Summation of space
charge kicks from multiple bunches, which represent the
transversely split beamlets, with the appropriate boundary
conditions is another feature that was not available in the
original version of the code.
The dependence of the positions of the beamlets on the

total beam intensity resembles a single-particle problem,
namely the computation of fixed points for a nonlinear
system. Some models have been proposed [23,24], inspired
by the single-particle approach, describing the dynamics
of a test particle under the influence of external fields
generated by the lattice magnets and internal fields gen-
erated by a beam with a frozen charge distribution located
at the center of phase space (the equilibrium orbit of the
system). The scenario considered in our studies corre-
sponds to the analysis of the incoherent motion of the test
particle.
In our problem, the equilibrium orbit for the system of

multiple beamlets under the influence of the various forces
acting on them has to be determined. To our best knowl-
edge, no analytical model has ever been proposed to
describe this configuration and only numerical computa-
tions can provide the correct answer.
The algorithm relies on an iterative process: δ-like charge

distributions are initially located on the fixed points of the
system governed by the external fields only, i.e., assuming

zero-beam intensity. Then, this configuration is tracked for
a few turns including also the self-fields. As the initial
positions of the charge distributions do not correspond to
the equilibrium configuration of the complete system,
which includes also internal fields, the beamlets oscillate
around the true equilibrium. Therefore, the centers of these
oscillations can provide a better approximation of the
equilibrium positions and this closes the iterative process,
as these centers provide a new initial condition for another
iteration. The process ends when the difference between the
initial condition and the final equilibrium orbit reaches a
threshold value. An example of the iterative procedure is
shown in Fig. 4, where the difference between the initial
guess of the position of one beamlet and its true positions is
reported as a function of the iteration number of the
procedure. Note that the charge distribution located at
the center of phase space, unlike the outer beamlets, never
oscillates during the iterative process.
In the numerical implementation of the algorithm, the

δ-like charge distributions are each replaced by a uniform
distribution over a disk of radius R, always much smaller
than the surface of the stable island for the system with zero
beam intensity. A convergence check has been performed,
which showed that the numerical results are independent of
the value of R, at least when R is in the range 0.2–5 mm. In
the following computations, R ¼ 1 mm is used.
Interactions between the charge distributions and the

boundaries are computed at discrete points around the ring
circumference with a spacing between kicks of Δ cm. The
approach used is that of a frozen model, i.e., the charge
distributions are kept unchanged during the steps around
the ring circumference. Also in this case the stability of
numerical results as a function of Δ has been checked
and, for the numerical simulations shown in the following,
Δ ¼ 33 cm is used.
The effect of the boundaries has been taken into account

by solving the Poisson equation for the potential. In the
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FIG. 4. Iterative process to determine the self consistent
position of the beamlets. The vertical axis describes the distance
of a beamlet’s position from the closed orbit found after particle
tracking including self-fields.

S. MACHIDA et al. PHYS. REV. ACCEL. BEAMS 20, 121001 (2017)

121001-4



case of electric boundary conditions, two shapes have been
considered, namely perfectly conducting horizontal parallel
plates or a perfectly conducting rectangle. Note that the
standard PS vacuum pipe is elliptical in shape, with
dimensions 140 × 70 mm2. The beam is split in the
horizontal phase space, but the vertical beam distribution
is unaffected and remains a standard Gaussian. Therefore,
the presence of vertical boundaries has been considered a
feature to be probed by the numerical simulations, while the
variation of the vertical beam pipe dimension as a function
of the horizontal position has been considered less impor-
tant. Based on these arguments two configurations have
been considered in our studies, namely parallel and
rectangular perfectly conducting electric boundaries.
The expressions for the electric field are derived in

Appendix A and B. The vertical dimension of the standard
vacuum chamber has been assumed for both configura-
tions. Similarly, the horizontal dimension of the standard
vacuum chamber has been assumed for the rectangular
boundary condition. The magnetic boundary conditions,
given by the pole faces of the PS combined function main
magnets, have been approximated by parallel plates with
half gap of 50 mm. Such a value corresponds to distance
between the median plane and the magnet pole face at
the location of the reference equilibrium orbit. In this case,
the closed form of the magnetic potential is given in
Appendix A.

IV. RESULTS OF NUMERICAL SIMULATIONS

The models described in the previous section have
been used to study the behavior of the beamlets’ positions
as a function of several parameters describing the system
under study. In addition, the general phase space topology
has been considered, together with some special
configurations.

A. Phase space topology

The horizontal phase space portraits of the PS lattice are
shown in Fig. 5 for negative (upper left) and positive (lower
left) values of h2;0 and without space charge effects.
This special configuration features opposite-sign octu-

polar components with respect to that used in the experi-
ments. According to Eqs. (3) a change of sign of K3

generates a change of sign of all octupolar contributions
to the quantities hi;j. This is, however, not the case for
the sextupolar contributions of Eqs. (2), which remain
unchanged for a change of sign of K2. The overall result is
that a sign reversal of the octupolar components in the PS
lattice model does not exactly reverse the sign of the hi;j.
Hence, to obtain islands that are located approximately at
the same amplitude in phase space (see Fig. 5) the required
tune value is not exactly symmetrical with respect to 6.25.
This effect is clearly seen in Fig. 6, where the phase space

portraits applying the two different tune values, below and
above the resonance value, are overlaid.
While the stable fixed points are approximately at the

same distance from the origin, the phase differs between the
two configurations. Moreover, the overall shape of closed
curves beyond the chain of stable islands is also not exactly
the same for the two cases.
This can also be seen in Fig. 7 where the position of one

of the fixed points is shown as a function of the linear tune
for the two cases corresponding to opposite sign of the
value of h2;0.

B. Fixed point position

The focus of our study is the behavior of the beamlets’
positions as a function of several parameters describing
the system under study. It is worth mentioning that in the
following the beamlets’ positions are given at the PS
section 64 (see Fig. 3), which corresponds to the location
of one of the wire scanners used in the experimental
campaign [13]. Moreover, among the four possible, only
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FIG. 5. Upper left: Phase space portrait corresponding to the
PS configuration used in the experimental studies without space
charge effects, with h2;0 < 0 and Qx ¼ 6.255. Upper right: Phase
space portrait corresponding to the configuration of upper left
plot including five equally charged beamlets for a total intensity
of 3.28 × 1013 p. Lower left: Phase space portrait corresponding
to a special PS configuration used only for the numerical
simulations without space charge effects, with h2;0 > 0 and
Qx ¼ 6.245. Lower right: Phase space portrait corresponding
to the configuration of the lower left plot including five equally
charged beamlets for a total intensity of 1.31 × 1013 p. Parallel
plates electric boundary conditions are included. The beam
momentum is 14 GeV=c.
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one beamlet has been selected to show the dependence
on the system’s parameters, namely that featuring x > 0
and x0 > 0.
As a global test, the two configurations shown in the left

column of Fig. 5 have been used to compute phase space
portraits in the presence of charges located at the beamlets’
positions. The results of the numerical simulations are
shown in the right column of Fig. 5. Differences induced by
the intensity-dependent effects are clearly visible in terms
of beamlets’ positions, islands’ sizes, and the presence of
chains of small islands beyond those of the fourth-order
resonance.
Figure 8 shows one of the main results of the numerical

simulations, namely the dependence of the beamlet’s
position on the total beam intensity. For the sake of
comparison, the results for the two configurations with
h2;0 > 0 (upper plot) and h2;0 < 0 (lower plot) are shown. Moreover, the impact of the various intensity-dependent

effects, namely direct space charge, electric images, and
magnetic images, is evaluated separately as well as com-
bined to provide the overall effect.
Direct space charge has the weakest effect on the

beamlet’s position and, as expected, the sign is constant,
i.e., independent of the sign of h2;0. For the boundary types
considered in these simulations the electric and magnetic
effects are very similar in magnitude and their sign does
depend on that of h2;0. This is in qualitative agreement with
the experimental observations [13], where the configura-
tion featured h2;0 < 0 and the beamlets’ positions were
increasing with increasing total beam intensity.
It is also worth noting that the variation of the beamlet’s

position with total beam intensity also depends on the value
of Qx. This aspect has been studied in more detail and
the results of numerical simulations are shown in Fig. 9,
where the variation of the beamlet’s position vs total beam
intensity is shown for several values ofQx. The dependence
on Qx is clearly visible.
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ing to a horizontal tune of 6.255 and h2;0 < 0 (red) and a tune of
6.245 and h2;0 > 0 (blue). In both cases no intensity-dependent
effects are taken into account.
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Furthermore, the impact of different types of electric
boundary conditions, namely parallel plates and rectangu-
lar, has been tested with a series of dedicated numerical
simulations and the results are shown in Fig. 10 for both
signs of h2;0.
The differences are small, which can be understood by

the fact that the beamlets are close to the vertical electric
boundary only over a small fraction of the ring circum-
ference. Therefore, the existence of vertical boundaries can
only have a minor impact on the beamlets’ dynamics.
The last parameter that has been considered in these

numerical studies is the beam momentum p, and the
dependence of the beamlet’s position on p is shown in
Fig. 11, where the different contributing effects are reported
separately.
The direct space charge tends to move the beamlet in

a direction opposite to the effect seen in the interaction
with the boundaries. Moreover, while the effect of the
direct space charge levels off around 6 GeV=c, that of the

interaction with the boundaries continues to change even at
higher values of the beam momentum.

C. Special configurations

The total beam intensity is clearly a parameter with
strong impact on the beamlets’ positions. However, it is
also possible to consider special configurations in which
the intensity sharing between the outer beamlets and the
central one is not even. This generates another class of
configurations that can be classified by means of the so-
called MTE efficiency [10–12] defined as

MTE efficiency ¼ ηMTE ¼ hIIslandsi
ITotal

: ð4Þ

For MTE, the nominal value is ηMTE ¼ 0.2, corresponding
to an equal sharing of the total beam intensity between the
five beamlets: this is the value assumed for the numerical
simulations presented so far. Lower values indicate that the
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central beamlet is more populated than the outer ones;
the limiting case ηMTE ¼ 0 represents an unsplit beam. The
opposite occurs for ηMTE > 0.2, where the limiting case
ηMTE ¼ 0.25 represents a beam without the central beamlet.
In Fig. 12 the beamlet’s position is shown as a function
of ηMTE.
A linear behavior is clearly visible. This can be under-

stood considering that each beamlet has an intensity
equal to ITotalηMTE while the core has an intensity
ITotalð1 − 4ηMTEÞ. The effects due to the interactions with
the boundaries are linear in the intensity of each beamlet
and hence linear in ηMTE, while the core does not
contribute. Whenever direct space-charge effects have to
be taken into account, the pairwise interaction between
beamlets and between beamlets and core should also be
included. In this case the beamlets provide a contribution
that scales with I2Totalη

2
MTE, while a beamlet and the core

contribute a term of the form I2TotalηMTEð1 − 4ηMTEÞ. In
summary, if direct space-charge can be neglected, the

beamlets’ positions should scale linearly with ηMTE, else
terms in η2MTE have to be included. It is worth noting that the
dependence on ITotal is linear without direct space charge,
otherwise it is quadratic.
The last study presented here considers a special con-

figuration that can be achieved when a Gaussian beam is
not split, but is simply displaced into a stable island. In
this case, the only intensity-dependent effect is due to
the interaction of the single beamlet with the boundaries
(electric and magnetic). The results of the numerical
simulations are shown in Fig. 13, where the beamlet
position is plotted as a function of the total intensity for
the two types of electric boundary conditions.
In the case of electric boundary conditions given by

parallel plates the beamlet position is nearly independent
of the total beam intensity. On the other hand, whenever
rectangular electric conditions are considered a small
nonzero shift of the beamlet’s position with intensity is
observed.

V. CONCLUSIONS

In this paper the dependence of the positions of the
beamlets obtained after splitting a beam by means of a
stable fourth-order resonance has been analysed as a
function of the total beam intensity. This novel topic is
considered for the first time, and the study is aimed at
clarifying the experimental results obtained at the CERN
PS ring during transverse beam splitting by means of
resonance crossing.
The numerical analysis presented in this paper covers

the detail of the possible sources of beamlets’ positions
displacement with intensity, namely direct space charge
as well as indirect effects (electric and magnetic). The
analysis is based on a frozen space-charge model, which
is perfectly adequate for the phenomenon under consid-
eration. The dependence of the beamlets’ positions under
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the influence of intensity effects has also been examined
for different values of the horizontal tune, of the MTE
efficiency, and of the beam momentum.
The main conclusion is that a clear interplay has been

seen for the first time between nonlinear effects due to
external sources, like magnetic elements distributed
along the ring, and intensity effects (direct and indi-
rect). A crucial point is that, by changing the sign of
the detuning with amplitude generated by nonlinear
magnetic elements, it has been possible to change the
sign of the variation of the fixed points positions vs
intensity. The magnitude of the displacement of the
fixed points is both amplitude- and intensity-dependent,
thus indicating the close connection between nonlinear
and space charge effects. All this indicates that
compensation, at least partial, between the magnetic
nonlinearities and those generated by the intensity-
dependent effects might occur.
A direct and quantitative comparison with the exper-

imental results obtained at CERN is not possible, due
to the difference in the models used to describe the
boundary conditions, namely the vacuum chambers and
the pole shapes of the PS main magnets. However, the
experimental observations are qualitatively fully confirmed
by the analysis presented here. In particular, it is worth
stressing that the increased distance of the fixed points from
the origin when the intensity is increased has been con-
firmed, in agreement with the experimental observations.
Furthermore, the origin of this behavior has been clearly
identified and linked to indirect effects, which represents
a step forward in the understanding of the phenomenon
under consideration.
While the main focus of these studies is the analysis

of the fixed point dependence on intensity whenever
five beamlets are present in a ring, special simulations
have been performed to understand the behavior when a
single beamlet is displaced inside a stable island. The
numerical results indicate that a shift of the fixed point
may also occur in this case, due to indirect space
charge effects. Nevertheless, the effect may be small
and, in any case, dependent on the geometry of the
electric and magnetic boundary conditions.

APPENDIX A: ELECTRIC AND MAGNETIC
FIELDS FOR PARALLEL PLATES

CONFIGURATION OF
BOUNDARY CONDITIONS

The electric field generated by a charge distribution
with linear density λ at a position ðx0; 0Þ between two
perfectly conducting, horizontally oriented, parallel
plates located at a vertical position of �h=2 can be
found, e.g., by using the method of images [33], i.e., by
summing up the contributions to the electric field from
alternating sign, virtual charges according to

Exðx; yÞ ¼
λ

2πε0
ðx − x0Þ

Xþ∞

n¼−∞

ð−1Þn
ðx − x0Þ2 þ ðyþ 2n h

2
Þ2

Eyðx; yÞ ¼
λ

2πε0

Xþ∞

n¼−∞

ð−1Þnðyþ 2n h
2
Þ

ðx − x0Þ2 þ ðyþ 2n h
2
Þ2 ; ðA1Þ

where ε0 is the permittivity of free space. An explicit
expression for the two series can be found and the final
result reads

Exðx; yÞ ¼ −
λ

hε0

cos πh y sinh
π
h ðx − x0Þ

½cos 2πh y − cosh 2π
h ðx − x0Þ�

Eyðx; yÞ ¼ −
λ

hε0

sin π
h y cosh

π
h ðx − x0Þ

½cos 2πh y − cosh 2π
h ðx − x0Þ�

: ðA2Þ

An example of the electric potential ϕ ¼ −gradðEx; EyÞ
is shown in Fig. 14.
Similarly, the magnetic field generated by a current I at a

position ðx0; 0Þ between two ferromagnetic, horizontally
oriented, parallel plates located at a vertical position of
�g=2 can be found by placing virtual currents at appro-
priate positions. The expression for the magnetic field has
the form

Bxðx; yÞ ¼ −
Iμ0
2π

Xþ∞

n¼−∞

yþ 2n g
2

ðx − x0Þ2 þ ðyþ 2n g
2
Þ2

Byðx; yÞ ¼
Iμ0
2π

ðx − x0Þ
Xþ∞

n¼−∞

1

ðx − x0Þ2 þ ðyþ 2n g
2
Þ2 ;

ðA3Þ

where μ0 is the permeability of free space. Also in this case
and explicit expression for the magnetic field can be
derived and it reads

Bxðx; yÞ ¼
Iμ0
2g

sin 2π
g y

½cos 2πg y − cosh 2π
g ðx − x0Þ�

Byðx; yÞ ¼ −
Iμ0
2g

sinh 2π
g ðx − x0Þ

½cos 2πg y − cosh 2π
g ðx − x0Þ�

: ðA4Þ

FIG. 14. Contour plot of the electric potential ϕ for a unit
charge density located in ðx0; 0Þ. The boundary surfaces are
shown in blue.
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APPENDIX B: ELECTRIC FIELDS FOR
RECTANGULAR BOUNDARY CONDITIONS

A more realistic case for accelerators, is the electric field
generated by a charge distribution with linear density λ at a
position ðx0; 0Þ inside a perfectly conducting rectangular
shape. Explicit solutions for this case can be found in the
literature (see, e.g., Refs. [34,35]).
Assuming that the rectangle is described by parameters a

and b representing its half width and height, respectively,
then let KðmÞ denote the complete elliptic integral of first
kind, i.e.,

KðmÞ ¼
Z

π=2

0

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −msin2θ

p ðB1Þ

where the parameter m is defined implicitly by the
following equation

2b
a

¼ Kð1 −m2Þ
Kðm2Þ : ðB2Þ

Additional functions should be defined to express the
solution and they are linked to the elliptic integral of first
kind FðϕjmÞ

FðϕjmÞ ¼
Z

ϕ

0

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −msin2θ

p : ðB3Þ

The inverse of FðϕjmÞ is called amplitudinis function
amðϕjmÞ:

ϕ ¼
Z

amðϕjmÞ

0

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −msin2θ

p : ðB4Þ

It is then possible to define trigonometric functions of
amðtjmÞ, namely

sinðamðtjmÞÞ ¼ snðtjmÞ
cosðamðtjmÞÞ ¼ cnðtjmÞ ðB5Þ

and the Jacobi elliptic function dnðtjmÞ defined as:

dnðtjmÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −msnðtjmÞ2

q
: ðB6Þ

The electric field that satisfies the Poisson equation with
rectangular boundary conditions can be written, using a
complex notation where � denotes complex conjugation, as

Exðxþ iyÞ þ iEyðxþ iyÞ

¼ λ
Kð1 −m2Þ
32πbε0

×

�
Cnðxþ iyÞDnðxþ iyÞ½mSn2ðx0Þ − 1�

½Snðxþ iyÞ − Snðx0Þ�½mSnðxþ iyÞSnðx0Þ − 1�
��

ðB7Þ

where ðx0; 0Þ stand for the position of the charge distri-
bution of line density λ and the following identities have
been used

SnðzÞ ¼ sn

�
Kð1 −m2Þ

2
ðzþ iÞjm2

�

CnðzÞ ¼ cn

�
Kð1 −m2Þ

2
ðzþ iÞjm2

�

DnðzÞ ¼ dn
�
Kð1 −m2Þ

2
ðzþ iÞjm2

�
; ðB8Þ

with z ¼ xþ iy.
An example of the electric potential ϕ ¼ −gradðEx; EyÞ

is shown in Fig. 15. The deformation of the level lines
of the electric potential due to the vertical boundaries is
clearly visible.
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