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The threshold of the transverse mode coupling instability is calculated in framework of the square well
model at arbitrary value of space charge tune shift. A new method of calculation is developed beyond
the traditional expansion technique. The square, resistive, and exponential wakes are investigated. It is
shown that the instability threshold goes up indefinitely when the tune shift increases. A comparison with
conventional case of the parabolic potential well is performed.
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I. INTRODUCTION

The transverse mode coupling instability (TMCI) of a
bunch with space charge (SC) was considered in papers
[1–6]. The authors have represented similar results con-
cerning the SC impact on the TMCI at a moderate ratio of
the SC tune shift to the synchrotron tune ðΔQ=QsÞ. It
follows from these papers that the threshold of the
instability caused by a negative wake increases when the
ratio goes up from zero to several tens, at least.
However, more confusing pictures appear at larger (but

realistic) values of this ratio like a hundred or over it. It has
been suggested in Ref. [2] that the threshold growth ceases
above this border becoming to 0 at ΔQ=Qs → ∞. By
contrast, it was asserted in Ref. [3] that negative wake
cannot excite the TMCI in this limiting case.
It should be noted in this regard that approximate

methods of solution were applied in all quoted articles.
Typically, expansion of the coherent bunch displacement
in terms of some set of basic vectors, with subsequent
truncation of the series, has been used at the modest tune
shift. However, as it has been shown later in Ref. [6], the
number of the equations should be approximately propor-
tional to ΔQ=Qs to provide appropriate convergence of
results with negative wake. Therefore, a smooth asymptotic
transition is really impossible in the framework of this
method. In contrast, the convergence is very well with
positive wake allowing to reach the result by using the
three-mode approximation [5,6].
The method which is developed in the present article

does not use the expansion at all, and allows us to get the
TMCI thresholds as a smooth function of arbitrary SC tune

shift. In the beginning of the paper, it is applied to the
square potential well model. Such a model has been used
earlier together with the expansion technique to investigate
the TMCI at modest space charge [1,2]. More wide results
are represented in this article. In particular, it is shown that
the TMCI threshold with negative wake is about propor-
tional to ΔQ=Qs. It is shown as well that the conclusion
still stands with resistive and exponential wakes.

II. PHYSICAL MODEL

A. General relations

The chromaticity will not be considered in this paper
because it is a factor of small importance for the TMCI
[5]. Then the transverse coherent displacement of a bunch
in the rest frame can be represented as the real part of the
function

Xðθ; u; tÞ ¼ Yðθ; uÞ exp½−iQβðθ þ Ω0tÞ − iΩ0νt� ð1Þ

where θ and u are the coordinate and the momentum
of a particle in the longitudinal phase space, t is time, Qβ

and Ω0 are the central betatron tune and the revolution
frequency, respectively, ν is an additional tune shift due to
the wake field. The wake function will be characterized
in the paper by the function qðθÞ. Then the function Y
satisfies the equation

νY þ iQs
∂Y
∂ϕþ ΔQðY − ȲÞ

¼ 2

Z
∞

θ
qðθ0 − θÞȲðθ0Þρðθ0Þdθ0 ð2Þ

where ϕ and Qs are the phase and the tune of the
synchrotron oscillations, and ΔQ is the space charge
produced betatron tune shift [3]. The variable Ȳ is defined
by the relations
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ρðθÞȲðθÞ ¼
Z

∞

−∞
Φðθ; uÞYðθ; uÞdu; ð3aÞ

ρðθÞ ¼
Z

∞

−∞
Φðθ; uÞdu ð3bÞ

with Φ as the normalized distribution function of the
bunch.
The function qðθÞ is proportional to the transverse wake

potentialW1ðzÞ where z ¼ Rθ and R is the machine radius:

qðθÞ ¼ r0NbRW1ð−RθÞ
8πβγQβ

ð4Þ

with r0 ¼ e2=mc2 as the particle electromagnetic radius, β
and γ as its normalized velocity and energy, and Nb as the
bunch population [5]. It is convenient to split the function
into 2 multipliers characterizing the wake normalized
amplitude and its shape: qðθÞ ¼ q0wðθÞ where

q0 ¼ 2

Z
∞

−∞
ρðθÞdθ

Z
∞

θ
qðθ0 − θÞρðθ0Þdθ0; ð5aÞ

1 ¼ 2

Z
∞

−∞
ρðθÞdθ

Z
∞

θ
wðθ0 − θÞρðθ0Þdθ0: ð5bÞ

With this definition, the tune of the lowest (rigid) bunch
mode is

νrigid ¼ q0 at Y ¼ Ȳ ¼ 1: ð6Þ

Of course, this expression can be valid at full only at
q0 ≪ Qs when coupling of the modes is negligible.
However, it does not matter in this consideration because
the value is used merely for the normalization.
Separating the even and the odd parts of the function

Y ¼ YþðϕÞ þ Y−ðϕÞ, one can get the equation

ν̂Yþ þQ2
s
∂
∂ϕ

�∂Yþ

ν̂∂ϕ
�

¼ ΔQȲ þ 2

Z
∞

θ
qðθ0 − θÞȲðθ0Þρðθ0Þdθ0; ð7Þ

where ν̂ðθÞ ¼ νþ ΔQðθÞ.

B. Square potential well

In practice, it is more convenient to use a variable ϑ ∝ θ
as the longitudinal coordinate adjusted to the bunch length.
For the square well model used in the paper, the best choice
is the well and the bunch location in the interval 0 < ϑ < π.
Then

ϑ¼jϕj; ϕ¼ϑ
u
juj ; ρðϑÞ¼ 1

π
at 0<ϑ<π: ð8Þ

Note that Eq. (7) remains in force with the new variable if
the normalization conditions Eq. (5) are adjusted as well to
save the validity of Eq. (6).
Any monotonous function of juj can be used as the

synchrotron amplitude in the case. The synchrotron tuneQs
is the most natural and convenient choice. Therefore, taking
into account that only Yþ makes the contribution into
Eq. (3a), and that it is an even function of u; one can rewrite
this expression in the form

ȲðϑÞ ¼
Z

∞

0

FðQsÞYþðϑ; QsÞdQs ð9Þ

with the normalization condition

Z
∞

0

FðQsÞdQs ¼ 1: ð10Þ

Because Yþðϕ; QsÞ is an even and periodic function of ϕ,
it is sufficient to consider the interval 0 < ϕ < π where
ϕ ¼ ϑ. Taking into account as well that ΔQ ¼ const in the
square potential well, one can represent Eq. (7) in the form

Q2
s
∂2Yþ

∂ϑ2 þ ν̂2Yþ ¼ ν̂ΔQȲ þ 2ν̂

π

Z
π

ϑ
qðϑ0 − ϑÞȲðϑ0Þdϑ0:

ð11Þ

The boundary conditions of the equation are

∂Yþ

∂θ ð0; QsÞ ¼
∂Yþ

∂θ ðπ; QsÞ ¼ 0 ð12Þ

whose relation also follows from the periodicity and the
parity of the function Yþ.

III. HOLLOW BUNCH WITH A SQUARE WAKE

A hollow bunch will be considered below. Its distribution
function is

FðQsÞ ¼ δðQs −Qs0Þ ð13Þ

According to Eq. (9), ȲðϑÞ ¼ Yþðϑ; Qs0Þ in this case, so
that Eq. (11) and its boundary conditions Eq. (12) leads to
the expression

Q2
s0Ȳ

00ðϑÞ þ ν̂ðν̂ − ΔQÞȲðϑÞ ¼ 2ν̂

π

Z
π

ϑ
qðϑ0 − ϑÞȲðϑ0Þdϑ0;

ð14aÞ

Ȳ 0ð0Þ ¼ Ȳ 0ðπÞ ¼ 0: ð14bÞ

As the first step, we consider the simplest case of constant
wake: q ¼ q0, w ¼ 1 inside the bunch. It results in the
equation
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Ȳ 00ðϑÞ þ ν̂ðν̂ − ΔQÞ
Q2

s0
ȲðϑÞ ¼ 2ν̂q0

πQ2
s0

Z
π

ϑ
Ȳðϑ0Þdϑ0; ð15Þ

Only the case q0 ≤ 0 will be investigated below because
the positive wake is an occasional and not questionable
occurrence [5,6].

A. Solution by an expansion

This subsection pursues two goals. The first of
them is a clarification of some properties of the solution
for a further usage, and second one is a comparison
with the more conventional case of a parabolic potential
well where the expansion technique is the prevailing
method.
A general solution of Eq. (15) with boundary conditions

given by Eq. (14b) can be represented as the series

ȲðϑÞ ¼
X∞
n¼0

Yn cos nϑ ð16Þ

with unknown coefficients Yn. Then the equation rear-
ranges to the form

X∞
n¼0

½ν̂ðν̂ − ΔQÞ − n2Q2
s0�Yn cosðnϑÞ

¼ 2q0ν̂
π

X∞
n¼0

Yn

Z
π

θ
cosðnϑ0Þdϑ0: ð17Þ

Multiplying this expression by cosðNϑÞ and integrating
over θ, one can obtain the series of equations for the
coefficients Yn:

½ν̂ðν̂−ΔQÞ−N2Q2
s0�YN ¼q0ν̂ð2−δN;0Þ

X∞
n¼0

RN;nYn ð18Þ

where Rn;n ¼ δn;0, and other elements of the R-matrix are

RN;n ¼
2

π2

Z
π

0

cosðNϑÞdϑ
Z

π

θ
cosðnϑ0Þdϑ0

¼ 2½1 − ð−1ÞN−n�
π2ðN2 − n2Þ : ð19Þ

The lower order terms of R-matrix are shown in Table I.
The infinite series given by Eq. (18) can be truncated by

using of the assumption Yn ¼ 0 at n > Nmax. It results in
the finite set of the equations

XNmax

n¼0

TN;nȲn ¼ 0; ð20aÞ

TN;n ¼ q0ν̂ðδN;0 − 2ÞRN;n þ ½ν̂ðν̂ − ΔQÞ − N2Q2
s0�δN;n:

ð20bÞ

A minimal set comes with Nmax ¼ 0 and includes only
the lowest (rigid) head-tail mode Y0 ¼ 1. Equation (20)
gives in this case T0;0 ¼ 0 that is ν̂ − ΔQ ¼ ν ¼ q0 as it is
required by Eq. (6).
The general resolvability condition of the series is

detT ¼ 0 which is referred in the case to the algebraic
equation of power P ¼ 2ðNmax þ 1Þ. It has P roots which
are the real numbers at q0 ¼ 0 [1,2]:

ν̂n;� ¼ ΔQ
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔQ2

4
þ n2Q2

s0

r
; ð21Þ

where n ¼ 0; 1;…; Nmax. Therefore, the following steps
can be used to resolve the problem and to find the
TMCI threshold at arbitrary ΔQ and q0: 1. To select some
values Nmax and ΔQ=Qs0. 2. To choose some trial value
of q0=Qs0. 3. To find the matrix Tðν̂=Qs0Þ and to calculate
its determinant with given parameters and variable
ν̂=Qs0. 4. To find number of real roots of the equation
by counting how many times the determinant changes sign
at increasing ν̂. 5. To repeat the procedure with higher value
of jq0=Qs0j until the number of the real roots decreases. It
will mean that a pair of complex roots appears in this point,
and the reached value of q0 is just the TMCI threshold with
given SC tune shift at given approximation. 6. To check the
convergence of the results by comparison of the thresholds
obtained with different Nmax.
Some results of the calculation are presented in Fig. 1

where the TMCI threshold of a negative wake is plotted
against the tune shift at different Nmax. The black drop-
down curve belongs to all the approximations. It is seen that
any higher approximation follows the course which the
lower ones have charted, and provides its continuation to
higher ΔQ. In contrast with it, the coming back lines of
different color do not repeat each other so they cannot be
treated as the credible results. It allows to conclude that,
with negative wake, threshold value of jq0j is an increasing
function of the SC tune shift in the considered range of
ΔQ=Q0, and that rather large number of Nmax is needed
to reach the correct result with higher shift. Note that a
coalescence of a pair of real roots in the ðq0–ν̂Þ plane
prefaces appearance of the complex roots The function
ν̂ðq0Þ satisfies the condition

TABLE I. The lower-order tems of the matrix RN;nðA ¼ 4=π2).

- N → 0 1 2 3 4 5

n ¼ 0 1 A 0 A=9 0 A=25
n ¼ 1 −A 0 A=3 0 A=15 0
n ¼ 2 0 −A=3 0 A=5 0 A=21
n ¼ 3 −A=9 0 −A=5 0 A=7 0
n ¼ 4 0 −A=15 0 −A=7 0 A=9
n ¼ 5 −A=25 0 −A=21 0 −A=9 0
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dν̂
dq0

→ ∞ ð22Þ

in the coalescence point. The condition is valid independ-
ently on Nmax so it can be used to identify the instability
threshold with any truncation of the expansion, or without
the expansion at all.
Additional information is provided by Fig. 2 where

complete observed bunch spectrum is plotted against
ΔQ=Qs0 at Nmax ¼ 8. The corresponding threshold value
of q0=Qs0 is plotted in the figure as well by the bold black
line. As it should be in the threshold, there is a pair of
coalesced spectral lines in any part of the plot. At
ΔQ=Qs0 < 6, they are presented as green lines which
are identified as the multipoles m ¼ 0 and m ¼ −1. The
green lines diverge after ΔQ=Qs0 > 6, and the instability
transforms to a coalescence of the modes m ¼ −2 and
m ¼ −3 (the blue lines). Finally, coalescence of the modes
m ¼ 1 and m ¼ 2 appears at ΔQ=Qq > 9.5 which case is
presented by red lines. However, in contrast with previous
pairs, this coalescence is not confirmed by calculations with
higher Nmax. It allows to conclude that this coalescence is a
nonphysical effect appearing out the region of applicability
of the used approximation. The statement is confirmed by
Fig. 3 where the tunes of the essential modes are plotted
against SC tune shift at different Nmax. It is seen that the
“responsibility” of the modes m ¼ −2 and m ¼ −3 for the
instability extends to higher values of the tune shift (blue
symbols).
It is important to emphasize a similarity of these results

to those obtained with the model of parabolic potential

well [6]. Besides the general resemblance, there is a
proximity of the numerical results. For example, appli-
cability region of the approximation Nmax ¼ 12 is
ΔQ=Qs0 < 12 in both cases, and the calculated TMCI
threshold is q0=Qs0 ¼ −16.7 according to Fig. 1 and −18
according to [6]. It occurs in spite of the fact that the
parabolic bunch has much richer spectrum than the square
one, due to the higher radial modes which are absent in the
later case. However, it has been shown in Ref. [6] that only
lowest radial modes are capable to coalesce producing the
TMCI. The square well model represents this part of the
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FIG. 1. The TMCI threshold of the hollow bunch in the square
potential well against the SC tune shift. Different curves are
obtained with different Nmax ¼ 1;…19. Each of them has a
restricted region of applicability which expands with Nmax
growing. The drop-down parts of the curves merge forming
the sole black line. The rising lines do not confirm each other
marking ends of the applicability regions.
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FIG. 2. Threshold bunch spectrum atNmax ¼ 8. The solid black
line is the TMCI threshold in this approximation. Other lines
present the bunch eigentunes just before the instability appears.
Coalescence of different multipoles is responsible for the insta-
bility at different ΔQ=Qs0. The essential lines are emphasized by
colors.
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FIG. 3. The threshold bunch spectrum obtained with different
Nmax. Only essential (capable to coalesce) spectral lines are
shown.
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spectrum rather correctly to calculate the valid TMCI
threshold.

B. Solution without expansion

Another method of solution of Eq. (15) which is
considered in this subsection is free from additional
assumptions and therefore is usable with any value of
ΔQ=Qs0. We will use the notation

P ¼ ν̂ðν̂ − ΔQÞ
Q2

s0
; Q ¼ q0ν̂

Q2
s0

ð23Þ

to rewrite Eq. (15) in the form

Ȳ 00ðϑÞ þ PȲðϑÞ ¼ 2Q
π

Z
π

θ
Ȳðϑ0Þdϑ0 ð24Þ

which can be reduced to the proper differential equation

Ȳ 000 þ PȲ 0 þ 2Q
π

Ȳ ¼ 0: ð25Þ

A similar equation has been investigated in Ref. [5]. It
follows from the paper that, at any realQ, there is an infinite
discrete set of the eigenfunctions ȲðkÞ with real eigennum-
bersPðkÞ which satisfy the equation. Actually the equation is
being solved in this paper step by step with arbitrary value of
Q and some trial value of P, using the initial conditions

ȲðπÞ ¼ 1; Ȳ 0ðπÞ ¼ 0; Ȳ 00ðπÞ ¼ −P ð26Þ

and coming back to the point ϑ ¼ 0. The values of P
assuring the condition Ȳ 0ð0Þ ¼ 0 have to be separated as the
valid eigenvalues. Some of them are plotted in Fig. 4.
The obtained function PðQÞ has to be imaged into the

plane ðν̂; q0Þ applying the transformations

ν̂ ¼ ΔQ
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔQ2

4
þ PQ2

0

r
; q0 ¼

Q2
0Q
ν̂

ð27Þ

which follow from Eq. (23). Any point of the family
represents a real eigentune of the bunch at given SC tune
shift. They form several lines representing tunes of different
head-tail modes some of which are being shown in Fig. 5.
These modes are stable at rather small value of q0 because
the chromaticity is not included in the consideration. The
instability can arise due to coalescence of some neighbor-
ing lines at rather large wake field. According to Eq. (22),
the condition dq0 ¼ 0 marks the border point where the
TMCI threshold appears.
All the tune lines have a well-known form at ΔQ ¼ 0

(see, e.g., [7]). Without wake, the eigentunes form set of
the multipoles νm ¼ mQs0. Some of them can coalesce at
higher q0 marking a beginning of the instability region.

Corresponding threshold values of several low TMCI
modes are at ΔQ ¼ 0

ðq0=Ω0Þthresh ¼ �0.567; �3.46; �7.37

which agree with Ref. [5]. Other graphs of Fig. 5 illustrate
deformation of the tune lines, and movement of the
threshold points because of the space charge impact.
The picture is very simple with positive wake when the
thresholds of all unstable modes monotonously decrease
tending to 0 at ΔQ → ∞ [5]. Therefore only the cases
q0 < 0 are plotted in Fig. 5 at ΔQ=Qs0 ≥ 6 and are
commented below.
It is seen that the threshold of any unstable mode

increases in modulus at increasing ΔQ. However, different
modes have different velocity of the movement. The mode
caused by coalescence of the multipoles m ¼ 0 and
m ¼ −1 is the most unstable at ΔQ=Q0 < 6. However,
threshold of this mode (further marked as M0;−1) rather
rapidly raises with ΔQ moving to the left and yielding the
role of the most unstable mode to M−2;−3 at ΔQ=Q0 ¼ 6.
Next mode M−4;−5 is more stable at any space charge.
Obtained thresholds of these coupled modes are plotted

against the SC tune shift in Fig. 6. Results of the expansion
technique with Nmax ¼ 19 are added to the plot being
shown by the short black line. There is a perfect coinci-
dence of the results at ΔQ=Q0 ≤ 15 that is in the appli-
cability region of the expansion technique, as it has been
specified above.
It follows from Fig. 5 that the tunes of the potentially

unstable modes satisfy the condition jν̂j ≪ ΔQ at
ΔQ=Qs0 ≫ 1. One can see that similar result occur only
under the condition jPj ≪ ΔQ=Qs0 when Eq. (27) leads to
the expressions

ν̂≃ −
PQ2

s0

ΔQ
; q0 ≃ −

Q
P
ΔQ ð28Þ

–100 –80 –60 –40 –20 0 20 40
Q

–30

–20

–10

0

10

20

30

P

FIG. 4. Lowest real eigennumbers of Eq. (24) and (25). Thin
straight lines are tangent to the curves of corresponding color.
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According to these equations, the value of q0 varies when
the point ðQ; PÞ moves along one of the curves in Fig. 4.
The TMCI threshold obtained by Eq. (22) appears in the
point where the condition dq0 ¼ 0 is fulfilled, that is
dP=P ¼ dQ=Q. It is the point of tangency of the curve
with the straight line P ¼ kQ where k is a constant. These
tangents are shown in Fig. 4 by green and blue straight lines
providing kg ¼ 0.75 and kb ¼ 0.61. Therefore the asymp-
totic TMCI thresholds of corresponding modes are

ðq0Þg ¼ −1.33ΔQ; ðq0Þb ¼ −1.63ΔQ; ð29Þ

in agreement with Fig. 6. Note that the procedure is unfit
for the red line resulting in kr ¼ 0=0, because ν̂ ↛ 0 in
the case.

IV. RESISTIVE WALL WAKE

The resistive wall is the most common and important
source of transverse instability in circular accelerators. Its
wake function reaches a maximum at the distance z ¼ b=γ
from the source with b as the beam pipe radius. If the bunch
length satisfies the condition zb ≫ b=γ, and the wall is
thick, the simplest relation for the transverse wake function
is applicable:

W1ðzÞ ¼ −
4R
b3

ffiffiffiffiffiffiffiffi
c

σjzj
r

ð30Þ

where σ is the pipe wall conductivity (see, e.g., [7]).
According to Eqs. (4) and (5), the corresponding basic
tune shift is:

νrigid ¼ q0 ¼ −
4r0R2Nb

3πβγb3Qc

ffiffiffiffiffiffiffi
c
σzb

r
: ð31Þ
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1st threshold
2nd threshold
3rd threshold
Expan. Nmax=19

FIG. 6. Instability threshold of the lowest TMCI modes. The
short black line is copied from Fig. 1 representing result of the
expansion technique at Nmax ¼ 19. Its deviation from the current
lowest mode does not exceed 1% at ΔQ=Qs0 < 15.
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FIG. 5. The bunch head-tail modes against the wake strength at
different SC tune shifts. The extremal points where dq0 ¼ 0mark
the beginning of the instability region. Only negative wakes are
displayed at ΔQ=Qs0 ≥ 6.
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Therefore, in agreement with the accepted conditions, the
normalized wake function in Eq. (11) is

qðϑ0 − ϑÞ ¼ q0κffiffiffiffiffiffiffiffiffiffiffiffi
ϑ0 − ϑ

p ; κ ¼ 3
ffiffiffi
π

p
8

ð32Þ

Instability of similar bunch was considered in Ref. [6]
using the expansion technique at ΔQ=Qs0 ≤ 9. Now we
will investigate the problem without this restriction using
equation like Eq. (24) which provides in the case

Ȳ 00ðϑÞ þ PȲðϑÞ ¼ 2Qκ

π

Z
π

ϑ

Ȳðϑ0Þdϑ0ffiffiffiffiffiffiffiffiffiffiffiffi
ϑ0 − ϑ

p ; ð33aÞ

Ȳ 0ð0Þ ¼ Ȳ 0ðπÞ ¼ 0: ð33bÞ

In contrast with Eq. (24), this equation is not reducible to
the pure differential form like Eq. (25). Nevertheless, the
step-by-step method of the solution is applicable as above
being enhanced by calculation of the integral. The result is
represented in Fig. 7 where six lower eigennumbers of the
equation are shown.
These curves are so similar to those in Fig. 4 that there is

no need to plot the tune lines like Fig. 5. The statement
pertains equally to the possibility to determine the asymp-
totic behavior of the threshold by the build-up of a tangent
to the green line. Therefore we represent in Fig. 8 only the
net result, namely the TMCI threshold with the resistive
wall wake against the SC tune shift. At ΔQ ¼ 0, the
threshold is a little larger in comparison with the square
wake: ðq0Þthresh=Qs0 ≃ −0.90 instead of −0.57. However,
henceforth it grows slower having asymptotically
ðq0Þthresh ≃ −1.1ΔQ instead of −1.33ΔQ.
It is necessary to take into account that the resistive wake

falls rather slowly so it can reach the neighboring bunch
or turn and provoke a multibunch/multiturn instability.
The problem was considered in Ref. [5] leading to the
conclusion that the TMCI effect prevails at the condition

2

�
h −

0.35ffiffiffi
h

p
� ffiffiffiffiffiffiffiffiffi

σz
2πR

r
< 1

where h is number of bunches, and σz is their rms length.

V. EXPONENTIAL WAKE

The exponential wake of the form

qðϑÞ ¼ κq0 expð−αϑÞ; ð34aÞ

κ ¼ πα

2

�
1 −

1 − expð−παÞ
πα

�
−1

ð34bÞ

is considered in this section. Coefficient κ is added to meet
the requirement νrigid ¼ q0 with any α. It is assumed as well
that the wake decays rather fast after the bunch end, so that
it cannot reach the following bunch or turn.
Substitution of this expression into Eq. (11) results in the

equation

Ȳ 00ðθÞ þ PȲðθÞ ¼ 2κQ
π

expðαθÞ
Z

π

θ
Ȳðθ0Þ expð−αθ0Þdθ0

ð35Þ

where the notations embedded by Eq. (23) are used. It can
be reduced to the proper differential form like Eq. (25) with
the boundary conditions like Eq. (26)

Ȳ 000 − αȲ 00 þ PȲ 0 þ
�
2κQ
π

− αP
�
Ȳ ¼ 0; ð36aÞ

ȲðπÞ¼1; Ȳ 0ðπÞ¼0; Ȳ 00ðπÞ¼−P; Ȳ 0ð0Þ¼0: ð36bÞ

Several solutions of this equation are shown in Fig. 9 and
Fig. 10 at πα ¼ 0, 5, 10, 15, 20. The lowest eigennumbers
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FIG. 8. TMCI threshold of the resistive wall wake. Its asymp-
totic value is: q0 ¼ −1.1ΔQ.
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FIG. 7. Lowest real eigennumbers of the resistive wall wake,
Eq. (33).
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which are represented in Fig. 9 are the analogues of the
red lines in Fig. 4. The higher eigennumbers are plotted in
Fig. 10 in the restricted regionQ > 0, where the instability
of higher modes can have a start, as it has been shown in
Sec. III B.
The bunch eigentunes can be obtained at any SC tune

shift with help of Eq. (27) applied to corresponding curve
of Fig. 9 or Fig. 10. The lowest eigentunes are represented
in Figs. 11 and 12. The first of them demonstrates strong
increase of the threshold when the damping coefficient
increases at ΔQ ¼ 0. However, the dependence becomes
weaker at higher SC tune shift as illustrated by Fig. 12 at
ΔQ=Qs0 ¼ 4. There are additional data in Table II where
the threshold of this mode is represented in the interval
ΔQ=Qs0 ≤ 6. It is seen that, at ΔQ=Qs0 > ∼5, the thresh-
old goes down at higher α.
The behavior of the higher modes does not greatly

depend on α, and is rather well illustrated by green and blue
lines in Fig. 5. The mode produced by the coalescence of
the multipoles m ¼ −1 and −2 becomes the most unstable
at ΔQ=Qs0 > 5 − 10, depending on α. The general picture
is shown in Fig. 13, and it demonstrates that the

dependence of the threshold on the wake strength is almost
linear at ΔQ=Qs0 > 10.
The asymptotic behavior of the threshold can be

obtained by plotting of the tangent to the curves in
Fig. 10, as it has been explained at the end of Sec. III.
The asymptotic formula is

ðq0Þtresh ¼ kðαÞΔQ ð37Þ
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FIG. 11. Lowest eigentunes of the bunch against the exponen-
tial wake strength at ΔQ ¼ 0.
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FIG. 12. Lowest eigentunes of the bunch against the exponen-
tial wake strength at ΔQ ¼ 4.
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FIG. 9. The lowest real eigennumbers of Eq. (30) at different α.
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FIG. 10. Higher real eigennumbers of Eq. (34) at different α.

TABLE II. The TMCI threshold of the exponential wake due to
a coalescence of the lowest multipoles m ¼ 0 and m ¼ −1 at
modest space charge tine shift.

ΔQ=Qs0 → 0 1 2 3 4 5 6

πα ¼ 0 −0.57 −1.10 −2.00 −3.30 −4.95 −6.95 −9.29
πα ¼ 5 −1.03 −1.47 −2.23 −3.04 −4.00 −5.08 −6.20
πα ¼ 10 −1.71 −2.19 −2.80 −3.55 −4.34 −5.18 −6.07
πα ¼ 15 −2.42 −2.91 −3.52 −4.18 −4.82 −5.40 −6.03
πα ¼ 20 −3.20 −3.69 −4.28 −4.90 −5.45 −6.00 −6.60
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with coefficients kðαÞ given by Fig 14. According to this
plot, dependence of the TMCI threshold on the damping
factor is not very strong and is almost constant at πα ≥ 12.
It happens due to normalization which has been used in
Eq. (34) to reach νrigid ¼ q0. The much stronger depend-
ence has been obtained in Ref. [1] because the relation
κ ¼ 2 has been actually used there. With this correction, the
results are rather close at ΔQ=Qs0 < 20.

VI. CONCLUSIONS

The transverse mode coupling instability is considered in
the paper in framework of the hollow bunch model in a
square potential well with space charge tune shift taken into
account. Two methods are used to calculate the instability
threshold.
The first of them is built upon the expansion technique

using an infinite set of basis functions with subsequent
truncations of the series. The similar approximation method

was used by different authors before to analyze the bunch
instability in a parabolic potential well, whose circum-
stance allows to compare the results. The obtained quali-
tative and quantitative coincidence allows to conclude that
region of applicability of the square well model for the
TMCI description is wider than it is originally assumed,
because it correctly describes the lowest radial modes
which coalescence is just responsible for the instability.
However, the expansion method is actually applicable

at a moderate value of the space charge tune shift. Therefore,
another method is also proposed and applied in the paper
consisting in a direct step-by-step solution of integral-
differential equation for the bunch offset with space charge.
It confirms correct results of the expansion method in the
area of its applicability, and it allows them to arbitrary large
space charge. The method is applied with the square, resis-
tive, and various exponential wake forms. In all the cases, the
rather similar results are obtained for the normalized wake
amplitudes q0 if the tune shift of the lowest (rigid) head-tail
mode is used each time as the scaling factor. In particular,
it is shown that the instability threshold is asymptotically
proportional to the tune shift: ðq0Þthresh ¼ kΔQ with the
coefficient k ¼ 0.8–1.3, dependent on the wake form.
The results allow us to conclude that properly normalized

square wake can be a quite appropriate model for monoto-
nous wake functions. As the SC tune shift increases, the
TMCI threshold of the negative wake tends to ∞ but
the threshold of the positive wake tends to 0. However,
the problem remains open in the case of oscillating wake
including its asymptotic behavior.
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FIG. 13. Instability threshold of exponential wake with differ-
ent α against the SC tune shift.
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