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A six-dimensional symplectic tracking approach exploiting the periodicity properties of dielectric laser
acceleration (DLA) gratings is presented. The longitudinal kick is obtained from the spatial Fourier
harmonics of the laser field within the structure, and the transverse kicks are obtained using the Panofsky-
Wenzel theorem. Additionally to the usual, strictly longitudinally periodic gratings, our approach is also
applicable to periodicity chirped (subrelativistic) and tilted (deflection) gratings. In the limit of small kicks
and short periods we obtain the 6D Hamiltonian, which allows, for example, to obtain matched beam
distributions in DLAs. The scheme is applied to beam and grating parameters similar to recently performed
experiments. The paper concludes with an outlook to laser based focusing schemes, which are promising to
overcome fundamental interaction length limitations, in order to build an entire microchip-sized laser
driven accelerator.
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I. INTRODUCTION

Dielectric laser acceleration (DLA) provides highest
gradients among nonplasma accelerators. In 2013, the
acceleration of relativistic electrons was demonstrated at
SLAC with a gradient of more than 250 MeV=m [1], which
was recently increased to 690 MeV=m [2]. Low energy
electrons (27.7 keV) were accelerated by the group in
Erlangen [3] with a gradient of 25 MeV=m using a single
grating structure. The group at Stanford University used a
dual pillar structure to accelerate 96 keV electrons with a
gradient of more than 200 MeV=m [4]. In principle, the
gradient of a DLA is only limited by the structure damage
threshold fluence, which is roughly two orders ofmagnitude
higher for dielectrics than for metals. The reason for the
rediscovery of this rather old concept of inverse Smith-
Purcell or inverse Cherenkov effects for particle acceleration
(see, e.g., [5]) is that nowadays both the ultrashort laser pulse
control techniques as well as the nano-fabrication have
significantly improved. Summaries of the recent develop-
ments can be found in [6,7].
Although the experimentally demonstrated gradients in

DLA structures are very promising, there are still crucial
challenges to create a miniaturized DLA-based particle
accelerator. So far the experimentally achieved gradients

could only be used to increase the beam’s energy spread
and not for coherent acceleration. Moreover, the interaction
length with present DLA structures is limited to the
Rayleigh range (see Appendix) of the incident electron
beam. For low energy electrons, due to the high gradient,
the acceleration defocusing even leads to interaction dis-
tances significantly shorter than the Rayleigh range.
Thus, in order to use DLA for a real accelerator, focusing

schemes have to be developed. One option would be
alternating phase focusing (APF) as outlined in Fig. 1.
Here, drift sections between grating cells lead to jumps in
the synchronous phase, which can be designed to provide
net focusing. Such schemes can be a way to increase the
interaction length in DLAs and make an accelerator on a
microchip feasible.
A challenge in the creation of a DLA based optical

accelerator is related to the complex 3D beam dynamics in
DLA structures, which has not been treated systematically

FIG. 1. Example Bragg cavity grating with a Bragg mirror on
one side.

*niedermayer@temf.tu-darmstadt.de
†Also at GSI Helmholtzzentrum für Schwerionenforschung,

Planckstr. 1, D-64291 Darmstadt, Germany.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW ACCELERATORS AND BEAMS 20, 111302 (2017)

2469-9888=17=20(11)=111302(15) 111302-1 Published by the American Physical Society

https://doi.org/10.1103/PhysRevAccelBeams.20.111302
https://doi.org/10.1103/PhysRevAccelBeams.20.111302
https://doi.org/10.1103/PhysRevAccelBeams.20.111302
https://doi.org/10.1103/PhysRevAccelBeams.20.111302
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


in the existing literature yet. In order to facilitate front to
end simulations and identify optimized DLA structures, we
employ a simple and efficient numerical tracking scheme,
which does not require a large amount of computing power,
it runs in MATLAB [8] on an ordinary PC.
Due to the periodicity of a DLA grating, only one spatial

Fourier harmonic contributes to the kick of the beam. In a
simplified approach, where fringe fields are neglected, the
entire laser field can be represented by a set of such Fourier
coefficients, where only one complex number represents
each grating cell. By means of the Panofsky-Wenzel
theorem [9], this single complex number also allows to
determine the transverse kicks experienced by a particle
while traveling through one grating period.
When the three-dimensional kicks are applied to the

beam particles in a symplectic scheme (we use symplectic
Euler, which is equivalent to Leap Frog) the tracking
becomes phase space volume preserving. Thus, with no
numerical (artificial) emittance increase, the physical emit-
tance increase due to the nonlinear fields in the DLA
interaction can be calculated. Moreover, since the equations
of motion are coupled, there is also emittance exchange
between the different planes which can be analyzed.
In the present study we neglect all intensity dependent

effects as space charge, wakes, and radiation emission. The
number of particles is chosen such that smooth spectra are
obtained, a reasonable value is 106, at which the computa-
tional time is about one second per grating cell.
With no loss of generality, we restrict ourselves to

symmetric grating structures driven from both lateral sides.
This makes sure that the axis of symmetry is in the center
and the fields have a cosh profile. In the case of non-
symmetric structures or nonsymmetric driving, the fields
will have an exponential or an off-axis cosh profile.
However, single driver systems can be combined with
Bragg mirrors in order to obtain a good approximation to an
on-axis cosh profile with a single side driver (see again
Fig. 1). Another option is to reshape the structure as e.g.,
presented in [4], or, just to accept the asymmetry which
then leads to a smaller effective aperture. Furthermore, we
restrict ourselves to linear dielectrics. Driving the dielectric
into its nonlinear regime is discussed in [10] (experimen-
tal), whereas the theoretical reader [11] particularly covers
quantum aspects of high fields.
As it is usually done, e.g., for the synchrotron motion in

ion synchrotrons, we take the limit from the tracking
difference equations to differential equations. Since the
three-dimensional kick must be irrotational due to the
Panofsky-Wenzel theorem, it can be derived from a scalar
potential. This potential directly allows to determine the 6D
Hamiltonian which completely describes the single particle
dynamics analytically.
Both the numerical and the analytical approach can be

generalized from ordinary DLA gratings to tilted DLA
gratings, which have been proposed as deflectors or laser

driven undulators [12–14]. Such a grating is depicted in
Fig. 2. However, since our code does not include the
radiation fields, a dedicated code as, e.g., [15] can be used
to treat the dynamics self-consistently. The analytical kicks
reported here can serve as input quantities. Our approach
aims at maximal simplicity such that studies of fundamen-
tal questions, as, e.g., transverse focusing and deflection,
are quickly possible.
The paper is organized as follows. Section II presents the

determination of the longitudinal and transverse fields and
kicks in a single grating period. Here we use CST Studio
Suite [16] to calculate the longitudinal kick at the center of
the structure. The dependence on the transverse coordinates
as well as the transverse kicks are modeled analytically.
In Sec. III we present a symplectic 6D tracking method
based on one kick per grating period. Analytical descrip-
tions of the coupled longitudinal and transverse beam
dynamics as well as the full 6D Hamiltonian are given
in Sec. IV. Simplifications and beam matching in linearized
fields are also discussed in this section. In Sec. V we
address the three crucial examples: subrelativistic accel-
eration, relativistic acceleration, and deflection by means of
DLA gratings. The paper concludes with a summary and an
outlook to DLA focusing channels in Sec. VI.

II. FIELDS AND KICKS IN PERIODIC
STRUCTURES

Usual particle tracking algorithms solve Maxwell’s
equations with a predefined time step. Instead of that,
we make use of the periodicity of the structure and apply
only the kicks which are known not to average out a priori.
The other field harmonics are neglected. The validity of
this neglect depends on the effect of transients which is
effectively suppressed when the structure period is matched
to the beam velocity. With no loss of generality we restrict
ourselves here to an infrared laser with λ0 ¼ 1.96 μm and
structures made of Silicon (εr ¼ 11.63). A single cell of
a symmetrically driven Bragg mirror cavity structure is
shown in Fig. 3.

A. Analysis of the longitudinal field

A coordinate system is applied such that the electron
beam propagates in positive z-direction and the z-polarized
laser propagates in y-direction. The unit cell of a periodic
dielectric structure has dimensions λgx and λgz. In order to

FIG. 2. Tilted Bragg cavity grating, where the dual drive laser
comes from top and bottom and is polarized in the electron beam
direction (left to right).
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allow the laser field to escape the structure, open bounda-
ries in positive and negative y-direction are assumed.
The energy gain of a particle in one cell is

ΔWðx;y;sÞ¼q
Z

λgz=2

−λgz=2
Ezðx;y;z;t¼ðzþsÞ=vÞdz ð1Þ

¼ q
Z

λgz=2

−λgz=2
RefEzðx; y; zÞeiωðzþsÞ=vgdz; ð2Þ

where the underlined electric field is a phasor at the
fixed frequency ω ¼ 2πc=λ0 of the laser, and q is the
charge (q ¼ −e for electrons). The variable s denotes
the relative position of the particle behind an arbitrarily
defined reference particle moving at z ¼ vt. Thus z is
the absolute position in the laboratory frame, while s
denotes the phase shift with respect to z. Due to the
z-periodicity, the laser field can be expanded in spatial
Fourier series

Ezðx; y; zÞ ¼
X∞

m¼−∞
emðx; yÞe−im

2π
λgz

z ð3Þ

emðx; yÞ ¼
1

λgz

Z
λgz=2

−λgz=2
Ezðx; y; zÞeim

2π
λgz

zdz; ð4Þ

which allows us to compute the energy gain integral
[Eq. (2)] as

ΔWðx; y; sÞ ¼ qRe

�
e
2πis
βλ0

X∞
m¼−∞

emðx; yÞλgzsinc
�
λgz
βλ0

−m

��
; ð5Þ

where sincð·Þ ¼ sinðπ·Þ=ðπ·Þ. The electric field phasor
and its spatial Fourier coefficients for the structure in
Fig. 3 are plotted in Fig. 4. It has a small real part, which is
coincidental, and a strong first and weak second harmonic.
If the round braces in Eq. (5) is non-integer, the energy
gain averages to zero, if it is integer other than zero, it
directly vanishes. Thus we have the phase synchronicity
condition

λgz ¼ mβλ0 ð6Þ

and the particle’s energy gain simplifies to

ΔWðx; y; sÞ ¼ qλgzRefe2πi
s

βλ0emðx; yÞg

¼ qλgzjemj cos
�
2π

s
βλ0

þ φm

�
; ð7Þ

where φm ¼ arctan Imfemg=Refemg is the phase of the
Fourier coefficient. The energy gain is maximal at sopt ¼
−φmβλ0=2π for positively charged particles and sopt ¼
−ðφm þ πÞβλ0=2π for electrons. Zero acceleration is found
at s0 ¼ −ðφm � π=2Þβλ0=2π, where all these expressions
are to be takenmodulo βλ0=m. The integer spatial harmonic
m has the same meaning as the harmonic number in
conventional accelerators, i.e., the number of buckets per
grating period andEq. (6) resembles theWideroe condition.

FIG. 3. One period of a symmetric Bragg mirror cavity
structure.

FIG. 4. Longitudinal electric field on the beam axis for the Bragg mirror structure in Fig. 3 and spatial Fourier harmonics for incident
laser field normalized to 1 V=m.
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As shown in Eq. (5), the higher nonsynchronous
harmonics average out. It can be shown, that their second
order (ponderomotive) contribution is also small. However,
the lower non-synchronous (sub-) harmonics can provide
ponderomotive focusing, as discussed in [17]. In our code,
they can be represented by modifying the synchronous
Fourier coefficient e1ðnÞ along the grating cells n, which
however is beyond the scope of this paper.
For subrelativistic accelerators, the grating needs to be

chirped in period length in order to always fulfill Eq. (6) on
the energy ramp. The change of period length is given by
the energy velocity differential

Δz
λgz

¼ 1

β2γ2
ΔW
W

ð8Þ

and is in the range of ≲1% for Wkin ¼ 30 keV and
ΔW=λgz ¼ 1 GeV=m. The thus created “quasiperiodic"
gratings can be seen in good approximation as periodic,
however, phase drifts have to be compensated in the
structure design [18].

B. Analysis of the transverse field

The transverse field probed by a rigidly moving charge
can be obtained using the Panofsky-Wenzel theorem [9],
which holds for either vanishing fields at infinity or
periodic boundary conditions as

∇0 × Δp⃗ðr⃗⊥; sÞ ¼
Z

T=2

−T=2
dt½∇ × F⃗ðr⃗⊥; z; tÞ�z¼vt−s

¼ B⃗jT=2−T=2 ¼ 0: ð9Þ
Here the “relative gradient” is defined as ∇0 ¼
ð∂x; ∂y;−∂sÞ T and λgz ¼ βcT. The transverse kick per
cell can be written as

Δp⃗⊥ðx; y; sÞ ¼ −
Z

ds∇⊥Δp∥ðx; y; sÞ ð10Þ

¼−
λgz
2πm

q
1

βc
∇⊥

Z
λgz=2

−λgz=2
ImfEzðx;y;zÞeiωðzþsÞ=vgdz; ð11Þ

where the energy momentum differential Δp∥ ¼ ΔW=ðβcÞ
was applied. Moreover, if the phase-synchronicity con-
dition [Eq. (6)] is fulfilled, the kick becomes

Δp⃗⊥ðx; y; sÞ ¼ −
λ2gz
2πm

q
1

βc
∇⊥Imfe2πi s

βλ0emðx; yÞg ð12Þ

¼ −
λgz
m

q
1

βc
Imfe2πi s

βλ0 f⃗
m
ðx; yÞg; ð13Þ

where f⃗
m
ðx; yÞ ¼ λgz∇⊥emðx; yÞ=2π. In the following, the

structure under investigation is generalized to a tilted
grating as visible in Fig. 5, which reproduces the ordinary
grating for tilt angle α ¼ 0. The tilted grating is periodic
in z and x direction. Thus for any function Fðx; y; sÞ
must hold

∂F
∂x ¼ ∂F

∂s
∂s
∂z

∂z
∂x ¼ ∂F

∂s tan α: ð14Þ

The s-derivative can be calculated in the Fourier repre-
sentation by Eq. (7) as

∂emðx; yÞ
∂x ¼ tan α

2πi
βλ0

emðx; yÞ: ð15Þ

The derivatives in y-direction can be determined by the
dispersion relation for the synchronous mode. We have

kz ¼
ω

βc
; kx ¼

2π

βλ0
tan α and k ¼ ω

c
ð16Þ

and thus

ky¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2−ðk2zþk2xÞ

q
¼�ω

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

1

β2
ð1þ tan2αÞ

s
: ð17Þ

For a nontilt grating (α ¼ 0) this is the well-known
evanescent decay of the near field ky ¼ iω=ðβγcÞ. Once
kx, ky are determined, the fields can be found from

emðx; yÞ ¼ emð0; 0Þ coshðikyyÞeikxx; ð18Þ

where λgx ¼ λgz= tan α.
A map of the energy gain and transverse kicks for the

grating in Fig. 6 can be seen in Fig. 7 for a grating tilt angle

FIG. 5. Tilted grating with periodic boundary conditions in x
and z direction and tan α ¼ λgz=λgx ¼ v=u.

FIG. 6. Single cell of the tilted grating deflector structure and
enlargement of kick integration curves array. The integrated kicks
are displayed in Fig. 7.
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α ¼ 30 deg. The results labeled numerical are obtained by
line integration [Eq. (7)] of the electric field simulated with
CST MWS [16] and the analytical results correspond to
Eq. (18). The transverse kicks are obtained by Eq. (13) as

f⃗
m
ðx; yÞ ¼ emð0; 0Þ coshðikyyÞeikxxim tan αe⃗x

þ emð0; 0Þ sinhðikyyÞeikxxðikyλgz=2πÞe⃗y ð19Þ

and are depicted as arrows in Fig. 7. For the numerical
results, the gradient is determined by finite differences
in MATLAB [8]. Note that −iky ∈ Rþ, i.e., the kick in
x-direction is in phase with the acceleration while the kick
in y-direction is 90 degrees shifted.
For a particle that is only slightly displaced from the

beam axis by Δx⃗ ¼ ðΔx;ΔyÞ, the kick can be written as
two-dimensional Taylor expansion

f⃗
m
ðx; yÞ ¼ f⃗

m
ðx0; y0Þ þ ð∇⊥f⃗mðx0; y0ÞÞΔx⃗þOðjjΔx⃗jj2Þ

¼ λgz
2π

ð∇⊥emðx0; y0Þ
þ ð∇⊥∇T⊥Þemðx0; y0ÞΔx⃗Þ þOðjjΔx⃗jj2Þ; ð20Þ

where

∇⊥∇T⊥ ¼
� ∂2

x ∂x∂y

∂y∂x ∂2
y

�
ð21Þ

is the Hessian. The expansion Eq. (20) about x0 ¼ 0,
y0 ¼ 0 of Eq. (18) results in

f⃗
m
ðΔx;ΔyÞ ¼ λgz

2π
emð0; 0Þ

�
ikx − k2xΔx
−k2yΔy

�
; ð22Þ

i.e., a position independent (coherent) kick component in
x-direction, vanishing for α ¼ 0. Using this abstract der-
ivation, the results of several papers proposing DLA
undulators [12–14] can be recovered.

III. TRACKING EQUATIONS

In order to study the motion of particles in the fields of
periodic gratings we approximate the forces by one kick per
grating period and track with the symplectic Euler method.
In spite of the very high gradients in DLA structures, the
energy can still be seen as an adiabatic variable, as it is the
case in conventional linacs. Tracking the full time depend-
ence of γ, as required for example in plasma accelerators,
can be avoided due to the shortness of the periods. For
simplicity, we restrict ourselves to m ¼ 1 from this
point and introduce normalized variables in the paraxial
approximation

FIG. 7. Contour lines of e1ðx; yÞ and kick field f⃗
1
ðx; yÞ for the tilted grating with α ¼ 30 deg. The fields have been obtained both

analytically and numerically, the bottom plots show the relative difference.
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x0 ¼ px

pz0
; Δx0 ¼ Δpxðx; y;φÞ

pz0
;

y0 ¼ py

pz0
; Δy0 ¼ Δpyðx; y;φÞ

pz0
;

φ ¼ 2π
s
λgz

; δ ¼ W −W0

W0

;

Δδ ¼ ΔWðx; y;φÞ − ΔWð0; 0;φsÞ
W0

; ð23Þ

where W0 ¼ γmec2 and pz0 ¼ βγmec. The particle at the
synchronous phase φs has Δδ ¼ 0, i.e., its energy gain is
entirely described by the acceleration ramp. The energy
gain ΔW is given by Eq. (7) and thus the energy gain of the
synchronous particle is

ΔWð0; 0;φsÞ ¼ qλgzRefeiφse1g; ð24Þ

where we write e1 ¼ e1ðx ¼ 0; y ¼ 0Þ for brevity.
Note that the synchronous phase and the phase of each

particle always refer to the laser phase. The sum of the
kicks

WðNÞ ¼ Winit þ
XN
n¼1

ΔWðnÞð0; 0;φðnÞ
s Þ ð25Þ

describes the acceleration ramp,where the synchronousphase
φs can be chosen arbitrarily in each grating cell. The variables
e1, λgz,W0, β, γ, φs and all variables in Eq. (24) are stored as
arrays indexed by the grating cell number. The kicks are
obtained using Eqs. (7), (18), (19), and (13) and read

Δx0 ¼ −
qλ0
pz0c

tanðαÞ coshðikyyÞRefe1eiφþi2πxλgxg ð26aÞ

Δy0 ¼ −ikyλ20qβ
2πpz0c

sinhðikyyÞImfe1eiφþi2πxλgxg ð26bÞ

Δδ ¼ qλgz
γmec2

Refe1ðcoshðikyyÞeiφþi2πxλgx − eiφsÞg; ð26cÞ

where ky is given by Eq. (17). The tracking equations are

0
BBBBBBBBBB@

x

x0

y

y0

φ

δ

1
CCCCCCCCCCA

ðnþ1Þ

¼

0
BBBBBBBBBB@

x

Ax0 þ Δx0ðx; y;φÞ
y

Ay0 þ Δy0ðx; y;φÞ
φ

δþ Δδðx; y;φ;φsyncÞ

1
CCCCCCCCCCA

ðnÞ

þ

0
BBBBBBBBBB@

λgzx0ðx; y;φÞ
0

λgzy0ðx; y;φÞ
0

− 2π
β2γ2

δðx; y;φÞ
0

1
CCCCCCCCCCA

ðnþ1Þ

; ð27Þ

where an explicit scheme is obtained by applying first the
“kicks” and then the “pushes”. The adiabatic damping in
the transverse planes is described by

AðnÞ ¼ ðβγÞðnþ1Þ

ðβγÞðnÞ ¼ 1þ
�
λ0qRefeiφse1g

βγmec2

�ðnÞ
: ð28Þ

Symplecticity of the scheme is confirmed by calculating

det
∂ðx; x0; y; y0;φ; δÞðnþ1Þ

∂ðx; x0; y; y0;φ; δÞðnÞ ¼ AðnÞ2; ð29Þ

which holds independently of the realization of the kick
functions Δx0ðx; y;φÞ, Δy0ðx; y;φÞ and Δδðx; y;φÞ.
Equations (27) contain the full nonlinear kicks which
cannot be linearized, since the usual bunch lengths and
widths are not significantly smaller than the grating periods
and apertures. However, in the idealized case of extremely
small bunches, linearization results in a scheme equivalent
to one linear R-matrix transformation per grating period.

Relevant information about the particle ensemble mov-
ing in space is given by statistical quantities such as
envelope and emittance, which can be derived from the
beam matrix (second order moment matrix) as function of
the period number. We define the 6D coordinate vector as

r⃗ ¼ ðx; px; y; py;Δs;ΔPzÞT; ð30Þ
whereΔs¼ðφ−φsÞλgz=2π andΔPz¼Δpz=γ¼W0=ðβcγÞδ.
The symmetric and positive definite beam matrix reads

M ¼ hr⃗r⃗Ti; ð31Þ
where the average is taken component-wise. In the absence
of nonlinearities, particular emittances are conserved. That
is in the case of coupling only the 6D emittance given by

ε6D ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
detM

p
: ð32Þ

In case of decoupled planes, the determinants of the
diagonal blocks (the emittances of the respective plane)
are conserved individually. They read
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εx;n ¼
1

mec

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detM1

p
;

εy;n ¼
1

mec

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detM2

p
;

εz;n ¼
1

e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detM3

p
; ð33Þ

in the usual units of m rad and eVs, respectively.
The analysis of emittance coupling by means of the
eigen-emittances

εeig;i ¼ eigsðJMÞ; ð34Þ
where J is the symplectic matrix, is also possible with our
code, however beyond the scope of this paper.

IV. CONTINUOUS EQUATIONS OF MOTION

In order to address the continuous motion in
DLA structures we employ positions and momentum as
canonically conjugate variables in all directions. The
transformation for the energy is Δpz ¼ ΔW=ðβcÞ. We
address the flat and the tilted grating separately and assume
for simplicity je1j to be constant for all cells and
argðe1Þ ¼ 0.

A. Flat grating

Hamilton’s equations can be written as

_x ¼ px

meγ
ð35aÞ

_px ¼ 0 ð35bÞ

_y ¼ py

meγ
ð35cÞ

_py ¼ −qe1
λgz
2π

ω

βγc
sinh

�
ωy
βγc

�
sin

�
2πs
λgz

�
ð35dÞ

_s ¼ Δpz

meγ
3

ð35eÞ

_Δpz ¼ qe1

�
cosh

�
ωy
βγc

�
cos

�
2πs
λgz

�
− cosφs

�
: ð35fÞ

Due to Eq. (9) the force field is irrotational and can be
derived from a potential as F⃗ ¼ −∇0V, where integration
yields

V ¼ qe1

�
λgz
2π

cosh

�
ωy
βγc

�
sin

�
2πs
λgz

�
− s cosφs

�
: ð36Þ

This potential and its adiabatic change with β is illustrated
in Fig. 8. The full 6D Hamiltonian reads

H ¼ 1

2meγ
ðp2

x þ p2
y þ ΔP2

zÞ þ V; ð37Þ

where Δpz=γ was replaced with ΔPz. The coupled equa-
tions of motion are

ẍ ¼ 0 ð38aÞ

ÿ ¼ −
qe1
meγ

2
sinh

�
ωy
βγc

�
sin

�
2πs
λgz

�
ð38bÞ

̈s ¼ qe1
meγ

3

�
cosh

�
ωy
βγc

�
cos

�
2πs
λgz

�
− cosφs

�
: ð38cÞ

If the beam size is significantly smaller than the aperture
(y ≪ βγc=ω), the longitudinal equation decouples and
becomes the ordinary differential equation of synchrotron
motion. The transverse motion becomes linear in this case,
however still dependent on the longitudinal motion via φ.
The equation of motion,

ÿ ¼ −qe1ω
meγ

3βc
sinðφÞy; ð39Þ

is Hill’s equation, with the synchrotron angle being the
focusing function. However there is a crucial difference to
ordinary magnetic focusing channels. The focusing force
scales as γ−3 as expected for acceleration defocusing [19],
rather than with γ−1 as would be expected for a magnetic
quadrupole focusing channel. The solution to Eq. (39) as
function of z for fixed s ¼ λgzφs=2π, i.e., when the bunch
length is significantly shorter than the period length, is

y ¼ y0 exp

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−qe1ω

meγ
3β3c3

sinφs

r
z

�
ð40Þ

and a synchronous particle with nonzero transverse offset is
expected to grow to double transverse amplitude in

FIG. 8. The potential (Eq. (36) as function of φ and y at the
synchronous phase indicated by the solid vertical line. The
longitudinally unstable fixed point (dashed line) flips the sign
of the transverse potential. The color scale indicates the adiabatic
change of the potential with β.
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L2 ¼
ln 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−qe1ω
meγ

3β3c3 sinφs

q : ð41Þ

For subrelativistic particles L2 can reach down to a few
micron.However, longer interaction lengths can be achieved
by focusing the beam into the DLA structure externally.
As shown in Fig. 9, the phase ranges of longitudinal and

transverse focusing are disjoint. This is a consequence of
Earnshaw’s theorem [20] which can be directly observed in
Eq. (36), i.e., V has no minima but only saddle points.
Similarly as in Paul traps (see, e.g., [21]), stable motion in
both the y- and z-planes can only be achieved by rotating
the saddle. For an accelerator this means alternating the
synchronous phase. This so called alternating-phase-
focusing (APF) scheme has been developed for ion rf
linacs already in the 1950s (e.g., [22]) but later rejected in
favor of the RFQ [19].
For an adiabatic Hamiltonian and if stable orbits exist, a

matched locally Gaussian distribution is given by

f ¼ Ce−H=hHi ð42Þ

and a locally elliptic (Hofmann-Pedersen [23]) matched
distribution is given by

f ¼ C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hmax −H

p
: ð43Þ

The normalization constant C is determined by integration.
Note that in the case of nonperiodic motion f will not be
integrable. Thus, we can only write a matched distribution
for the longitudinal plane if φs ∈ ½π=2; π� and for the
transverse plane if φs ∈ ½π; 3=2π�.
The Hamiltonian is not time independent, however its

dependence on β and γ is adiabatic. Thus, if φs is changing
at most adiabatically, the distribution will deform such that
the emittance increase is bounded, i.e., also the emittance
remains an adiabatic invariant. First, we consider the
longitudinal plane and linearized fields. For a given bunch
length σΔs the matched energy spread is

σΔW ¼ c0
λ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2πλgzmeγ

3qe1 sinφs

q
σΔs: ð44Þ

For a slow change of the potential and filling the
bucket only up to a small fraction, the phase space area
given by πσΔφσΔW is conserved. Moreover, using Eq. (44)
a normalized bunch length and energy spread can be
written as [19]

σΔW;n ¼
1ffiffiffiffiffiffiffiffiffi
β3γ34

p σΔW
ð45aÞ

σΔφ;n ¼
ffiffiffiffiffiffiffiffiffi
β3γ3

4

q
σΔφ: ð45bÞ

Accordingly, in position and momentum coordinates,
this reads

σΔPz;n
¼

ffiffiffi
β

γ
4

s
σΔPz

ð46aÞ

σΔs;n ¼
ffiffiffi
γ

β
4

r
σΔs: ð46bÞ

Thus the adiabatic phase damping in DLAs behaves in the
same way as in rf linacs.

As a test of the code, we plot the long time evolution of
the longitudinal emittance at zero transverse emittance for
3 different setups in Fig. 10. First, we consider a bunch
matched according to Eq. (44) in linearized fields. As
expected, the symplectic code preserves the emittance in
linear fields. However, the linearly matched bunch shows
emittance growth in the non-linear fields. Even stronger
emittance increase is to be expected, when there is a
mismatch of the bunch length and the energy spread (here
we chose 10% excess energy spread). The according result

FIG. 9. Overview of electron acceleration and focusing proper-
ties for an x-invariant grating.

FIG. 10. Longitudinal emittance evolution for a linearly
matched Gaussian beam in linearized fields, with the full fields,
and with 10% excess energy spread.
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is obtained for the y-emittance when setting the synchro-
nous phase into the transverse focusing regime and taking
the longitudinal emittance as zero.
The effect of adiabatic damping also appears in DLAs in

the transverse plane. The linearized transverse Hamiltonian
reads

H⊥ ¼ p2
y

2meγ
þ qe1ω sinφs

2βγ2c
y2 ð47Þ

and the matched momentum spread is

σpy
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
meqe1ω sinφs

βγc

s
σy: ð48Þ

The area πσyσpy
is conserved and thus we can write

normalized spreads as

σy;n ¼
1ffiffiffiffiffi
βγ4

p σy ð49aÞ

σpy;n ¼
ffiffiffiffiffi
βγ4

p
σpy

: ð49bÞ
One observes, that for increasing beam energy the transverse
beam size increases, while the momentum spread decreases.
This is in accordance with the potential becoming flatter in
the transverse plane, while it becomes steeper in the
longitudinal plane for increasing beam energy (cf. Fig. 8).

B. Tilted grating

The Hamiltonian for the tilted grating is obtained by
modifying the potential [Eq. (36)] as

V¼qe1

�
λgz
2π

coshðikyyÞsin
�
2πs
λgz

þ2πx
λgx

�
−scosφs

�
: ð50Þ

The coupled equations of motion are

ẍ ¼ −
qe1
meγ

λgz
λgx

cosh ðikyyÞ cos
�
2πs
λgz

þ 2πx
λgx

�
ð51aÞ

ÿ ¼ −ikyλgzqe1
2πmeγ

sinh ðikyyÞ sin
�
2πs
λgz

þ 2πx
λgx

�
ð51bÞ

s̈¼ qe1
meγ

3

�
coshðikyyÞcos

�
2πs
λgz

þ2πx
λgx

�
−cosφs

�
: ð51cÞ

One can observe that a bunch which is not significantly
shorter than the grating period is accelerated in both
positive and negative x-direction dependent on s.
Therefore, a coherent deflection can only be obtained for
extremely short bunches. In the following we assume
no net acceleration, i.e., φs ¼ π=2, and replace s ¼
λ0φs=2π þ Δs. Since tilted gratings are outlined for the
generation of wiggler radiation we restrict ourselves to the
ultrarelativistic case (β → 1) here. From Eq. (17) one finds
�iky ¼ kx ¼ ω=c tan α, which simplifies the potential to

V¼qe1
λ0
2π

cosh

�
ω tanα

c
y

�
cos

�
ω

c
ðΔsþx tanαÞ

�
: ð52Þ

The equations of motion become

ẍ ¼ qe1
meγ

tanðαÞ cosh
�
ω tan α

c
y

�
sin

�
ω

c
ðΔsþ x tan αÞ

�
ð53aÞ

ÿ ¼ −ikyλgzqe1
2πmeγ

sinh

�
ω tan α

c
y

�
cos

�
ω

c
ðΔsþ x tan αÞ

�
ð53bÞ

Δ̈s ¼ qe1
meγ

3
cosh

�
ω tan α

c
y

�
sin

�
ω

c
ðΔsþ x tan αÞ

�
: ð53cÞ

Injecting the beam with an offset x0 ≪ λ0=ð4 tan αÞ results
in a coherent oscillation around the x-axis with the longi-
tudinal period

λu ¼
2πcffiffiffiffiffiffiffiffiffiffiffi

−2πqe1
meγλ0

q
tan α

ð54Þ

for a particle with Δs ¼ y ¼ 0. In linearized fields, the
oscillation amplitude is arbitrary. However, in the nonlinear
fields, additionally to the longitudinal plane, we find
“buckets” with a distance λgx also in the x-plane. These
buckets split a ribbon beam which is large in x-direction
into multiple beamlets, where the momentum spread
acceptance is maximum at zero and vanishes at λgx=2,
where integer multiples of λgx can be added.

V. APPLICATIONS

We apply our approach to similar experimental param-
eters as for the subrelativistic experiments at FAU Erlangen
[3] and the relativistic experiments at SLAC [1,2]. Although
the structures are idealized, the results are qualitatively
recovered. As a next step, we show modifications and
idealizations of the beam parameters, which outline the
way to a microchip accelerator.

A. Subrelativistic acceleration

A subrelativistic DLA structure needs to be chirped in
order to always fulfill the synchronicity condition (6) for
the synchronous particle. The proper chirp for each cell and
the synchronous velocity are obtained by iterating the two
equations

Δzðnþ1Þ ¼ qe1λ20 cosφ
ðnÞ
s

mec2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − βðnÞ2

q
3

ð55Þ

βðnþ1Þ ¼ βðnÞ þ Δzðnþ1Þ

λ0
: ð56Þ

The cell length and synchronous energies are
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λðnÞg ¼ λg0 þ
Xn
j¼2

Δzðj−1Þ ð57Þ

WðnÞ
0 ¼ Winit þ qe1

Xn
j¼2

cosφðj−1Þ
s λðj−1Þg : ð58Þ

In the following simulations, we assume that the con-
struction of the grating was made such that the cells always
fulfill Eq. (57). We start with very low energy electrons
Wkin ¼ 27.7 keV, i.e., β ¼ 0.3165.
For λ0 ¼ 1.96 μm the initial grating period is 620 nm.

For simplicity we assume e1 ¼ 1 GV=m with zero phase
for all cells. Aiming for a gradient of 500 MeV=m, the
synchronous phase has to be 120 degree. The ramp
according to these parameters is depicted in Fig. 11.
Since the electron bunches in the experiments are signifi-
cantly longer than the grating period, we look at initially
unbunched beams with σE ¼ 10 eV.
In free space, the full Rayleigh length (cf. Appendix) of

the beam with assumed geometric emittance 1 nm at the
aperture of A ¼ 200 nm is LR ¼ A2=ð4εyÞ ¼ 10 μm, i.e.,
about 16 cells. This requires the optimal initial focusing
angle of 20 mrad. However, as shown in Fig. 12, in the
presence of strong acceleration defocusing forces, the waist
appears earlier, i.e., in cell 4.
The particle loss and the energy spectrum are plotted in

Fig. 13. The spectrum shows clearly that only a fraction of
the particles is trapped in the bucket, the particles with

FIG. 11. Acceleration ramp according to Eqs. (56) and (58).

FIG. 12. Longitudinal (bottom) and transverse (top) phase space for 16 cells of the chirped grating with an initially unbunched beam,
focused into the structure. The axes are −100 nm < y < 100 nm and 0 < φ < 2π. The color represents the phase space density, where
the initial plots are normalized to their maximum and all other plots are normalized to the respective maxima of the second column.

FIG. 13. Energy spectra and particle survival rate for the unbunched beam.
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δ ≈ −13 × 10−3 are lost, although they do not hit the
aperture. The physical loss of particles happens when they
reach the aperture in y-direction (�100 nm). The longi-
tudinal bucket capture process is illustrated more clearly for
zero transverse emittance in Fig. 14, where no transverse
losses appear and a full synchrotron period is displayed.
As next step, we take a bunched beam with σz ¼ 30 nm

and a reduced transverse emittance of εy ¼ 0.1 nm. As
shown in Fig. 15, the waist appears approximately at cell 7,
when the beam is strongly focused initially with 45 mrad.

Without the acceleration defocusing, the Rayleigh length
would be 100 μm at an initial focusing angle of 2 mrad.
The bunch has initially again an energy spread of 10 eV,
which is significantly smaller than the matched energy
spread. Thus a coherent quadrupole oscillation appears,
which is also visible in the energy spectrum in Fig. 16.

B. Relativistic acceleration

In this example we take the full aperture to be
A ¼ 800 nm, λg ¼ λ0 ¼ 1.96 μm, je1j ¼ 1 GV=m, and

FIG. 14. Longitudinal phase space evolution for zero transverse emittance. The vertical axis is 0 < φ < 2π.

FIG. 15. Longitudinal (bottom) and transverse (top) phase space for 16 cells of the chirped grating with the beam initially focused into
the structure. The axes are −100 nm < y < 100 nm and 1.5 < φ < 2.6. Again, the color represents the phase space density, normalized
to the maximum of the second column.

FIG. 16. Energy spectra and particle survival rate for a short low energy bunch.
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the number of grating cells is 100. Taking the reference
particle on-crest, i.e.,φs ¼ π, the design ramp is linearwith a
slope of 1 GeV=m. The incident electron beam has a bunch
length significantly larger than the grating period and is
again assumed as unbunched. The kinetic energy is 60MeV
and the spread is σW ¼ 10 keV. The spot size is taken as
σy ¼ 400 nm and the geometric emittance εy ¼ 1 nm. The
full Rayleigh range is thus LR ¼ A2=ð4εyÞ ¼ 160 μm,
which is practically achieved when the beam is focused
with 5mrad into the structure. Figure 17 shows the evolution
of the y and z phase spaces. The particle loss is monitored in
Fig. 18, where the first jump is again the loss at the initial
aperture. The plateau is within the Rayleigh range, however
already before the end of the Rayleigh range the particles
with excess momentum are being lost. Exactly at the
Rayleigh range (after cell 81), the particle, that was initially
the intersection of the ellipse diagonal with the aperture, is
lost. The acceleration defocusing plays only a minor role for
highly relativistic beams, i.e., the Rayleigh range is not
significantly shortened. Figure 18 shows also the energy
spectrum which becomes broader along the grating. This is
due to particles being accelerated and decelerated according

to their phase. Such spectra were also practically measured
in [1,2]. The dashed lines in the plot show the same spectra in
the case of zero transverse emittance, where also no loss on
the aperture occurs.

C. Dynamics in tilted gratings

Finally, we address the tilted grating with the same
laser parameters and a bunched electron beam with
parameters εx ¼ εy ¼ 1 nm, σx ¼ 1 μm, σy ¼ 0.4 μm,
σz ¼ 30 nm, σW ¼ 10 keV and a focusing angle of
5 mrad in the y-direction. The grating tilt angle is
70 degrees and again je1j ¼ 1 GV=m. Figure 19 shows
the evolution of the phase space in all three planes.
Evaluating Eq. (54), one finds λu ≈ 160λ0, i.e., half an
oscillation period in the x-direction in the displayed 80
grating cells.
As visible in Fig. 19, the horizontal and longitudinal

phase spaces are correlated. The projections of the energy
spectrum can be seen in Fig. 20 together with the particle
loss, which takes place at the physical aperture in y-direction
at �400 nm. Unlike the straight grating with relativistic

FIG. 17. Evolution of the y and z phase spaces. The axes are−400 nm < y < 400 nm and 0 < φ < 2π. Again, the color represents the
phase space density, normalized to the second column.

FIG. 18. Energy spectra with 1 nm (solid lines) and zero (dashed lines) transverse emittance normalized to the initial number of
particles 106 (left) and particle survival rate (right).
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particles, the tilted grating creates a defocusing force in the
y-direction which significantly decreases the Rayleigh
range. The energy spread shows a breathing mode, similar
to the quadrupole modes in the synchrotron motion.
However, since the synchrotron motion is practically frozen
due to the high γ, this mode arises entirely due to the
correlation with the x-plane. Excluding the defocusing by
setting εy ¼ 0, two coherent oscillation periods are dis-
played in Fig. 21.

VI. CONCLUSION AND OUTLOOK

The laser fields in a periodic DLA grating can be
represented by spatial Fourier harmonics, where only the
resonant harmonic, which fulfills the Wideroe condition,
provides a first order net kick. Exploiting this property,
we showed that the entire 6D beam dynamics without
collective effects can be modeled by applying kicks in
all spatial directions once per grating period. These kicks
are not independent, but analytically connected by the

FIG. 19. Horizontal, vertical, and longitudinal phase space projection for every tenth cell. The axes are −1.5μm < x < 1.5 μm,
−0.4 μm < y < 0.4 μm and 1.3 < φ < 1.8. Again, the color represents the phase space density, normalized to the second column.

FIG. 20. Evolution of the energy spectrum and particle loss.

FIG. 21. Horizontal and longitudinal phase space for every fortieth cell for εy ¼ 0. The axes are −1.5 μm < x < 1.5 μm and
1.3 < φ < 1.8. Two periods of transverse oscillations are visible [cf. Eq. (54)].
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Panofsky-Wenzel theorem. If the structure is not periodic,
but slightly chirped (quasiperiodic), our approach is
still applicable. However, fringe fields at the end of the
structure are neglected.
As an example we introduced a novel Bragg-reflection

based grating structure, which shows a particularly high
first harmonic. The structure is discussed in [18,24] in more
detail. Here we restrict ourselves in representing the grating
structures by the one resonant Fourier coefficient, i.e., one
complex number for each grating cell.
We also showed that our tracking approach still works

for tilted gratings that have been proposed for beam
deflection or optical undulators. However, in the case of
curved gratings, which have been proposed for focusing,
the fields cannot be determined analytically, since the decay
constant is not uniform. In order to still use our tracking
algorithm, the longitudinal kicks must be provided numeri-
cally for each pair of transverse coordinates.
Additionally to our fast, symplectic tracking approach, we

also derived the Hamiltonian for the single particle motion
in DLA structures. This allows analytical approaches to the
6D nonlinear and coupled equations of motion in DLA
structures. In the case of constant synchronous phase, the
longitudinal beam dynamics is identical to the one for
conventional drift tube linacs. However, for longitudinally
stable buckets, the transverse fields are always defocusing.
Due to the high gradients in DLA, this strong defocusing
cannot be compensated by ordinary means as magnets,
which is particularly critical at low electron beam energy.
At relativistic energies the full Rayleigh range of an
externally focused beam can be reached, however this is
also only in the range of several hundred microns.
In future a focusing scheme for DLA needs to be

developed. One candidate is the proposed higher order
harmonic focusing [17]. In order to simulate this with our
code, the additional harmonic kicks would have to be
implemented. The other candidate is alternating phase
focusing (APF), which can be directly approached with
our code. In this scheme the synchronous phase is alter-
nated between longitudinally stable and unstable ranges,
similarly as a FODO cell, but instead of x-y, rather in the
y-z planes.
We plan to achieve such phase jumps by inserting drift

sections as already outlined in Fig. 1. Other options are to
modify the accelerating Fourier coefficient in each cell,
e.g., by phase masking within the structure or by active
phase control of individual parts of the laser pulse. In
general, we believe that this paper gives a beam dynamics
foundation on which DLA structures providing stable long
distance beam transport schemes can be developed.
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APPENDIX: RAYLEIGH RANGE FOR
LIGHT AND PARTICLE BEAMS

The Rayleigh range for a particle beam can be defined in
the same way as for a light beam. The envelope of an
externally focused beam is

w ¼ w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
z
z0

�
2

s
: ðA1Þ

Inserting into the envelope equation

w00 ¼ w−3 ðA2Þ
results in w0 ¼ ffiffiffiffiffi

z0
p

. The beam size is given by aðzÞ ¼ffiffiffi
ε

p
wðzÞ and thus the Rayleigh length is z0 ¼ a20=ε, where

a0 is the beam size at the waist. The beam size at the
Rayleigh length, where it is limited by the aperture, is
a1 ¼

ffiffiffi
2

p
a0. The full Rayleigh range LR ¼ 2z0 as function

of the full aperture A ¼ 2a1 is thus

LR ¼ A2

4ε
: ðA3Þ

The same result is obtained for a light beam, where
the emittance is identified with the wavelength, i.e.,
εlight ¼ λ0=π.
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