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This article shows that the effect of all quadrupole errors present in an interaction region with low β� can
be modeled by an equivalent magnetic kick, which can be estimated from action and phase jumps found on
beam position data. This equivalent kick is used to find the strengths that certain normal and skew
quadrupoles located on the IR must have to make an effective correction in that region. Additionally,
averaging techniques to reduce noise on beam position data, which allows precise estimates of equivalent
kicks, are presented and mathematically justified. The complete procedure is tested with simulated data
obtained from MADX and 2015-LHC experimental data. The analyses performed in the experimental data
indicate that the strengths of the IR skew quadrupole correctors and normal quadrupole correctors can be
estimated within a 10% uncertainty. Finally, the effect of IR corrections in the β� is studied, and a correction
scheme that returns this parameter to its designed value is proposed.
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I. INTRODUCTION

Local corrections of magnetic errors in the interaction
regions (IRs) are essential to achieve the maximum possible
luminosity for the experiments located in these regions and
to improve the overall performance of the accelerator. The
major contribution of these magnetic errors often corre-
sponds to quadrupole components, whether skew or normal
components. For the skew components, high-energy accel-
erators like RHIC and LHC have two skew quadrupole
correctors in each IR with strengths that need to be
estimated by any reliable technique. For the normal
components, corrections can be made directly with the
IR quadrupoles, and as in the previous case, it is necessary
to have a technique to estimate how much the strengths of
these quadrupoles must be changed to compensate for the
magnetic errors. In this paper, it is shown that the action and
phase jump (APJ) analysis [1–5] can achieve these goals
using turn-by-turn (TBT) beam position data.
Section II reviews how the APJ analysis has been used

to estimate a magnetic field error intentionally placed in
the IR of a high-energy accelerator. Section III shows that
if an equivalent magnetic kick is defined, the equations
used for the case of a magnetic field error can also be used
for the more general case of having multiple magnetic
errors. Section IV describes how turns or trajectories are

selected from TBT data to make the best possible estimate
of the quadrupole components of the equivalent kick under
ideal conditions, i.e., without noise in the beam position
measurements. Section V describes a technique to signifi-
cantly reduce this noise. In Sec. VI, it is shown that the
quadrupole components of the equivalent kick can be used
to find the strengths that certain normal and skew quadru-
poles located on the IR must have to make an effective
correction in that region. All equations and procedures are
initially deduced assuming that beam 1 data are being
used; Sec. VIII shows the changes that must be made in
order to estimate the corrector strengths from beam 2 data.
All equations and procedures presented are tested with
simulations in Sec. VII and with experimental data in
Sec. IX. Finally, the effect of IR corrections in the β� is
studied, and a correction scheme that returns this param-
eter to its designed value is proposed and tested through
simulations in Sec. X A. The experimental limitations of
this correction scheme and the plans to overcome them are
discussed in Sec. X B.

II. ONE MAGNETIC ERROR AND ACTION
AND PHASE JUMP ANALYSIS

Reference [6] shows that the betatron oscillations after
the particle has passed through a magnetic error can be
described by

zðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jz0βzðsÞ

q
sin½ψ zðsÞ − δz0 �

þ θz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βzðsÞβzðsθÞ

p
sin½ψ zðsÞ − ψ zðsθÞ� ð1Þ
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¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jz1βzðsÞ

q
sin½ψ zðsÞ − δz1 �; ð2Þ

where z represents either the x or the y axis, βz are the
nominal beta functions, Jz0 and Jz1 are the actions upstream
and downstream of the error, and sθ is the longitudinal
position of the error. The nominal betatron phase is repre-
sented byψ zðsÞ, while δz represents an arbitrary phase,which
remains constant except at longitudinal positionswhere there
are magnetic errors. In this paper, δz is simply called “the
phase.” Using this convention, δz0 and δz1 can be defined as
the phases upstream and downstream of the error respec-
tively. The kick θz of themagnetic error can be of any order: a
dipole, a quadrupole, etc., and it can be estimated from [3]

jθzj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jz0 þ 2Jz1 − 4

ffiffiffiffiffiffiffiffiffiffiffiffi
Jz0Jz1

p
cosðδz1 − δz0Þ

βzðsθÞ

s
; ð3Þ

and also

θz ¼
ffiffiffiffiffiffiffiffiffi
2Jz0

p
sin½δz0 − δz1 �ffiffiffiffiffiffiffiffiffiffiffiffi

βzðsθÞ
p

sin½δz1 − ψ zðsθÞ�
: ð4Þ

In practice, Eq. (3) is used to estimate the magnitude of
θz, and Eq. (4) is used to determine its sign. Additionally, the
different multipole components An and Bn of the magnetic
error (as defined in [6]) can be related to the magnetic kick
through

θx ¼ B0 − B1xþ A1yþ 2A2xyþ B2½y2 − x2� þ � � � ; ð5Þ

θy ¼ A0 þ A1xþ B1yþ 2B2xyþ A2½x2 − y2� þ � � � ; ð6Þ

where x and y are evaluated at s ¼ sθ.
Also in Ref. [6], it was shown that if Eq. (2) is extended

to the case in which the particle has passed k magnetic
errors, the trajectory between the kth and kthþ1 error is
given by
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FIG. 1. Action and phase analysis of 2015-LHC beam trajectories. Each point of the action and phase plots is calculated with
measurements of two adjacent Beam Position Monitors (BPMs) (see [6]) that have been preprocessed with averaging techniques, as
explained in Sec. V. The figure also contains a simplified representation of the LHC lattice with short bars corresponding to dipole
magnets and long bars corresponding to quadrupole magnets. The effect that local corrections have on the action and phase plots is also
illustrated.
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zðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jz0βzðsÞ

q
sin½ψ zðsÞ − δz0 �

þ
Xk
i¼1

θzi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βzðsÞβzðsiÞ

p
sin½ψ zðsÞ − ψ zðsiÞ� ð7Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2JzkβzðsÞ

q
sin½ψ zðsÞ − δzk �; ð8Þ

where si is the longitudinal position of the ithmagnetic error,
θzi is the kick of the corresponding magnetic error, and Jzk
and δzk are the action and phases after the kth magnetic error.
Equation (8) allows the exact description of a particle

trajectory in an error-free segment of the accelerator using the
lattice functions calculated directly from the ideal model of
the accelerator. This remains true even if the lattice has
magnetic errors outside the error-free segment regardless of
their strengths, number, or nature of these errors (either
quadrupole, sextupole, or higher orders errors). In particular,
estimates of the β beating generated by sources outside the
error-free segment are not necessary; the ideal or nominal
lattice functions exactly describe the trajectories within that
segment. This is not in contradiction with the usual approach
in which J and δ are constants of motion and the magnetic
errors modify the lattice functions all around the accelerator.
Equation (8) is an alternative approach that allows J and δ to
change due to the presence of magnetic errors, while the
lattice functions remain unchanged.
If the segment contains small randomly distributed

magnetic errors, it is still convenient to model the trajectory
of the particle with Eq. (8). The differences between the
data and the model are only due to magnetic errors within
the chosen segment, not to errors outside that segment
according to the previous discussion.
In high-energy accelerators, such as RHIC and LHC,

action and phase plots in the arcs show small variations when
compared to variations of the same quantities in the IRs (see
Fig. 1). Therefore, Eq. (8) can be used to model the particle
trajectory in the arcs with the nominal lattice functions and
constant values of Jzk and δzk in each of these arcs.
The action and phase of the arc on the left side of a

particular IR (J0 and δ0 in Fig. 1) and the action and phase
of the arc on the right side of the same IR (J1 and δ1 in
Fig. 1) can be used to estimate the kick produced by a
magnetic error in the IR by means of Eq. (3). Also, its
multipole components can be estimated applying Eqs. (5)
and (6). It has been shown in [6] that this method works
with good accuracy for experiments in which a magnetic
error is intentionally introduced at a particular place on a
high-energy accelerator.

III. SEVERAL MAGNETIC ERRORS
AND THE EQUIVALENT KICK

In a more general case, IRs have not only one but
multiple magnetic errors distributed in all their magnets. In

this section, it is shown that the same equations used for the
case of a single magnetic error can also be applied to the
case of multiple quadrupole errors if an equivalent mag-
netic kick is defined.
IRs designed for high-luminosity experiments are usu-

ally composed of two triplets of quadrupoles: one triplet on
each side of the interaction point (IP). The triplets focus and
reduce the beam to a very small size, which is achieved by
adjusting these magnets so that the beta functions are very
small in the IP. As a consequence, the betatron phase
advance between the triplets becomes very close to π, and
the betatron phase advances between the quadrupoles of
each triplet become almost zero. This particular condition
helps to simplify the equations that are presented below
and, in this paper, is called “the approximation of phases”.
Each of the six normal quadrupoles of the IR may have

magnetic field errors that give a kickθzi to the beam in addition
to the regular kick due to the nominal strength of the
quadrupole. This additional kick can be expanded in its
multipole magnetic components according to Eq. (5) as
follows:

θxi ¼ −B1ixðsiÞ þ A1iyðsiÞ; ð9Þ

where A1i and B1i correspond to the integrated skew and
normal quadrupole components, which are assumed to have a
much greater effect than the nonlinear components. Also,
dipole components can be assumed equal to zero since their
effect can be suppressed by subtracting the closed orbit from
the beam position measurements.
The first step to relate Eq. (9) to experimental measure-

ments is to express zðsiÞ as a function of the BPM
measurements available in the IR. Using Eq. (7) and the
approximation of phases, beam positions in the IR can be
written as

zðsiÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jz0βzðsiÞ

q
sin½ψ zL − δz0 �; ð10Þ

where ψ zL is the nominal betatron phase in the left triplet,
which remains almost constant inside this triplet. The sign is
positive if si is inside the left triplet and negative if si is inside
the right triplet.With the aid of Eq. (10), the beam position at
the ith magnet can be rewritten as a function of the beam
position at some arbitrary location se inside the IR as

zðsiÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
βzðsiÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffi
βzðseÞ

p zðseÞ; ð11Þ

where se is chosen so that it corresponds to the longitudinal
position of any of the six BPMs of the IR. The sign is positive
if si and se are in the same triplet otherwise it is negative.
After replacing Eq. (11) in Eq. (9), the kick due to the
magnetic error in the ith magnet is
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θxi ¼ ∓ B1i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
βxðsiÞ
βxðseÞ

s
xe � A1i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
βyðsiÞ
βyðseÞ

s
ye; ð12Þ

where xe and ye are the transverse components of the beam at
se. The signs of the first termand the second termare negative
and positive respectively if si and se are in the same triplet;
otherwise, the first sign is positive and the second one is
negative.
Replacing Eq. (12) in Eq. (7), it is found that the

horizontal component of the beam after passing through
the IR is

xðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jx0βxðsÞ

q
sin½ψxðsÞ − δx0 �

þ θx;e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βxðsÞβxðseÞ

p
sin½ψxðsÞ − ψxðseÞ�; ð13Þ

where

θx;e ¼ −B1x;exe þ A1;eye; ð14Þ

and

A1;e ¼
P

6
i¼1 A1i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βxðsiÞβyðsiÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βxðseÞβyðseÞ

p ; ð15aÞ

B1x;e ¼
1

βxðseÞ
X6
i¼1

B1iβxðsiÞ: ð15bÞ

In the vertical plane the corresponding equations can be
deduced by the same procedure, which leads to

yðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jy0βyðsÞ

q
sin½ψyðsÞ − δy0 �

þ θy;e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βyðsÞβyðseÞ

q
sin½ψyðsÞ − ψyðseÞ�; ð16Þ

where

θy;e ¼ B1y;eye þ A1;exe; ð17Þ

and

A1;e ¼
P

6
i¼1 A1i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βxðsiÞβyðsiÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βxðseÞβyðseÞ

p ; ð18aÞ

B1y;e ¼
1

βyðseÞ
X6
i¼1

B1iβyðsiÞ; ð18bÞ

Equations (13) and (16) have the same functional form as
Eq. (1), which was deduced for a single magnetic error.
Therefore, θz;e can be viewed as an equivalent kick that
behaves like the kick produced by a single magnetic error
located at se. Thanks to this equivalence, the value of θz;e

can be calculated from the actions and phases on each side
of the IR using Eq. (3).
The quadrupole components of the equivalent magnetic

kick [Eqs. (15) and Eqs. (18)] were deduced under the
assumption that the ith magnetic error was concentrated at a
longitudinal position si within the ith magnet, as done in
[1]. In reality, magnetic errors extend across the entire
magnet. To take this into account, skew and normal
quadrupole components K1s and K1 (same notation used
in MADX [7]) are related to their corresponding integrated
quadrupole components through

A1i ¼ K1s;iLi; ð19aÞ

B1i ¼ ΔK1iLi; ð19bÞ

where ΔK1i and K1s;i are assumed to be constant through-
out the ith-magnet length Li. The additional symbol Δ is
used to distinguish the error component from the total
strength of the magnet. Using the definitions of Eq. (19),
Eqs. (15) and (18) are rewritten as

B1x;e ¼
1

βxðseÞ
X6
i¼1

ΔK1iIx;i; ð20aÞ

B1y;e ¼
1

βyðseÞ
X6
i¼1

ΔK1iIy;i; ð20bÞ

A1;e ¼
P

6
i¼1K1s;iIxy;iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βxðseÞβyðseÞ

p ; ð20cÞ

where

Ix;i ¼
Z

sri

sli

ds0βxðs0Þ; ð21aÞ

Iy;i ¼
Z

sri

sli

ds0βyðs0Þ; ð21bÞ

Ixy;i ¼
Z

sri

sli

ds0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βxðs0Þβyðs0Þ

q
; ð21cÞ

and sli and sri are the longitudinal positions of the left and
right faces of the ith magnet.

IV. QUADRUPOLE COMPONENTS OF THE
EQUIVALENT KICK FROM TBT DATA

A beam trajectory with multiple turns can be obtained
after the closed orbit is removed from a TBT data set. From
this multiturn trajectory, one-turn trajectories can be
obtained either by choosing a particular turn or by selecting
an arbitrary number of one-turn trajectories and averaging
them. Throughout this paper, trajectories of the first case
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are called “simple trajectories” (or just “trajectories” if
there is no room for ambiguity), while the trajectories of the
second case are called “average trajectories”.
These trajectories can be combined with Eqs. (14) and

(17) to find the quadrupole components of the equivalent
kick. Since there are three unknown variables, at least two
trajectories are needed, which leads to a system of four
equations. One of the possible solutions to this system of
equations is

B1x;e ¼
ye1θx2;e − ye2θx1;e
xe1ye2 − xe2ye1

; ð22aÞ

B1y;e ¼
xe1θy2;e − xe2θy1;e
xe1ye2 − xe2ye1

; ð22bÞ

A1;e ¼
xe1θx2;e − xe2θx1;e
xe1ye2 − xe2ye1

; ð22cÞ

or

A1;e ¼
ye2θy1;e − ye1θy2;e
xe1ye2 − xe2ye1

; ð22dÞ

where the numerical subscripts in the right-hand side of the
equations help to distinguish variables from one trajectory
or the other, and in practice, A1;e is computed as the average
of the last two equations.
One of the desirable conditions of the two selected

trajectories is that they have the largest possible excursion
(positive or negative) at se in both planes. These types of
trajectories will be named max trajectories. To find max
trajectories from a TBT data set, each turn or trajectory is
modeled with the approximate equation,

zðs; nÞ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ~JzðnÞβzðsÞ

q
sin ½ψ zðsÞ − ~δzðnÞ�; ð23Þ

where

~δzðnÞ ¼
P

v
j¼1 δzðn; sjÞ

v
; ð24Þ

with j extending over all available v measurements of
δzðn; sjÞ in turn n. Similarly,

~JzðnÞ ¼
P

v
j¼1 Jzðn; sjÞ

v
: ð25Þ

According to Eq. (23), zðse; nÞ is maximum for those
trajectories whose turn number n ¼ nm satisfies the con-
dition

~δzðnmÞ ¼ ψ zðseÞ − p
π

2
; ð26Þ

where p is an odd, positive, or negative number. Therefore,
the procedure to find max trajectories from a TBT data set
is done by calculating ~δzðnÞ for all available trajectories and
those trajectories consistent with Eq. (26) are the desired
max trajectories.
Max trajectories can be of four different kinds according

to their phases in the horizontal and vertical plane (see
Fig. 2). The two trajectories required by Eq. (22) must have
different phases in at least one plane. Therefore, at least two
of these four kinds of trajectories are used to estimate the
quadrupole components of the equivalent kick.

V. NOISE REDUCTION THROUGH
AVERAGING TECHNIQUES

Two simple trajectories obtained from a TBT data set
should be sufficient to estimate the equivalent magnetic kick
in a particular IR, as shown in Sec. IV. However, noise
present in these trajectories may be large enough to signifi-
cantly affect these estimates. APJ analysis has been used
simultaneously with averaging techniques to reduce noise in
SPS-TBT data [8,9] and LHC-TBT data [5,10]. However,
there has been no formal demonstration of how these
averaging procedures affect the determination of magnetic
errors. In the first part of this section, it is proved that the
equivalent kick calculated from an average trajectory has the
same quadrupole components as the equivalent kick calcu-
lated from a simple trajectory but with much less noise.
Another factor to consider is the type of trajectories that

allow the most reliable estimate of the quadrupole compo-
nents of the equivalent kick. As mentioned in Sec. IV,
trajectories with maximum excursions at se (max trajecto-
ries) are the most convenient. Therefore, it is necessary to
build the average trajectory so that it is also a max
trajectory, which is shown in the second part of this section.
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FIG. 2. Max trajectory whose horizontal and vertical components
at se are positive and negative respectively. The other three possible
combinations produce a total of four kinds of max trajectories.
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A. The quadrupole components of the
equivalent kick from average trajectories

According to Eqs. (13) and (16), the particle trajectory in
the nth turn after having passed through the IR can be
written as

zðs;nÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jz0ðnÞβzðsÞ

q
sin½ψ zðsÞ−δz0ðnÞ�þηðs;nÞ

þθz;eðnÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βzðsÞβzðseÞ

p
sin½ψ zðsÞ−ψ zðseÞ�; ð27Þ

where a function ηðs; nÞ has been added to represent the
noise in the BPMs, which is assumed to obey a Gaussian
distribution with standard deviation σðsÞ.
A new trajectory can be built by averaging N selected

turns or trajectories as

z̄ðsÞ ¼
P

N
n¼1 zðs; nÞ

N
ð28Þ

¼
P

N
n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jz0ðnÞβzðsÞ

p
sin½ψ zðsÞ − δz0ðnÞ�

N

þ
P

N
n¼1 θz;eðnÞ

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βzðsÞβzðseÞ

p
sin½ψ zðsÞ − ψ zðseÞ�

þ
P

N
n¼1 ηðs; nÞ

N

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2JrβzðsÞ

p
sin½ψ zðsÞ − δr� þ

P
N
n¼1 ηðs; nÞ

N

þ θz;e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βzðsÞβzðseÞ

p
sin½ψ zðsÞ − ψ zðseÞ�; ð29Þ

where

θx;e ¼ −B1x;ex̄e þ A1;eȳe; ð30aÞ

θy;e ¼ B1y;eȳe þ A1;ex̄e; ð30bÞ

and the resulting action and phase Jr and δr are given by

Jr ¼
�PN

n¼1

ffiffiffiffiffiffiffiffiffiffiffiffi
Jz0ðnÞ

p
cos δz0ðnÞ

N

�2

þ
�PN

n¼1

ffiffiffiffiffiffiffiffiffiffiffiffi
Jz0ðnÞ

p
sin δz0ðnÞ

N

�2

; ð31aÞ

tan δr ¼
P

N
n¼1

ffiffiffiffiffiffiffiffiffiffiffiffi
Jz0ðnÞ

p
sin δz0ðnÞP

N
n¼1

ffiffiffiffiffiffiffiffiffiffiffiffi
Jz0ðnÞ

p
cos δz0ðnÞ

: ð31bÞ

From the central limit theorem, the second term of Eq. (29)
approaches zero with a standard deviation equal to
σðsÞ= ffiffiffiffi

N
p

, and if N is in the order of thousands, this term
is significantly smaller than the noise present in each simple
trajectory. Therefore, Eq. (29) has the same functional form
as Eqs. (13) and (16), and it is possible to use Eq. (3) to
calculate the equivalent kick with the actions and phases of

the average trajectory. Also, this equivalent kick has the
same quadrupole components as the kick of a simple
trajectory, as can be seen by comparing Eq. (30) with
Eqs. (14) and (17).

B. Building average max trajectories

In this section it is proved that if the selection of
trajectories is done such that their phases ~δzðnÞ are
uniformly distributed around ~δzðnmÞ, then the average
trajectory will also be a max trajectory.
With the help of Eq. (23), the average trajectory z̄ðsÞ can

be approximated as

z̄ðsÞ ≈
P

N
n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ~JzðnÞβzðsÞ

q
sin ½ψ zðsÞ − ~δzðnÞ�

N
ð32Þ

≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ~JzβzðsÞ

q
N

XN
n¼1

ðsin½ψ zðsÞ − ~δzðnÞ�; ð33Þ

where ~JzðnÞ is considered independent of n, an approxi-
mation that is generally valid since the initial Jz is usually
several times larger than the average changes that the
magnetic errors produce in this variable all around the
accelerator.
The condition of uniform distribution around ~δzðnmÞ

means that for any trajectory with turn number equal to k
and with phase ~δzðkÞ ¼ ~δzðnmÞ − σk, where σk is an
arbitrary number, there is a symmetric trajectory within
the selected trajectories with a phase that is equal to
~δzðnmÞ þ σk. Using this condition, the previous equation
can be written as

z̄ðsÞ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ~JzβzðsÞ

q
N

XN=2

k¼1

fsin½ψ zðsÞ − ~δzðnmÞ þ σk�

þ sin ½ψ zðsÞ − ~δzðnmÞ − σk�g

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 ~JzβzðsÞ

q PN=2
k¼1 cos σk

N
sin ½ψ zðsÞ − ~δzðnmÞ�;

where the phase of the resulting trajectory is ~δzðnmÞ, and
therefore z̄ðsÞ is a max trajectory, as defined in Sec. IV.
In a typical TBT data set, the phases ~δzðnÞ are distributed

almost evenly between 0 and 2π, and then it is sufficient to
select the trajectories according to

j ~δzðnmÞ − ~δzðnÞj < Ω; ð34Þ

where Ω sets the range of allowed phases around the phase
of the max trajectory. If Ω is equal to zero, only trajectories
with phase equal to ~δzðnmÞ are selected and therefore only a
few trajectories contribute to build the average trajectory,
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which in turn leads to a modest reduction of noise. As Ω
increases, the number of turns or trajectories that are
selected also increases.
In principle, Ω can have any value. In the extreme case

for which Ω ¼ π, all the turns of the TBT data set are
selected, and the noise reduction achieved is the largest
possible. However, the amplitude of the resulting average
trajectory is reduced almost to zero. An intermediate value,
such as Ω ¼ π=2, is a good choice for obtaining average
trajectories with amplitudes large enough to be measured
and with very good noise reduction.
Equation (34) defines two conditions: one for the x plane

and one for the y plane. Each of these conditions is applied
individually to select trajectories in each plane. Only the
trajectories with turn numbers that are common to both
planes are used to build the corresponding average
trajectory.

Figure 3 shows examples of average max trajectories
built from an experimental TBT data set of 6600 turns.
With Ω equal to 0.02 rads, only one simple trajectory is
selected to build the average trajectory: the trajectory with
phase equal to or very close to ~δzðnmÞ. IfΩ is increased, the
number of trajectories selected to build the average tra-
jectory also increases, but its phase does not change, as
seen in Fig. 3. Therefore, since the first average trajectory
(Ω ¼ 0.02 rads) is a max trajectory, the other two are also
max trajectories. Also, a clear reduction of the noise
fluctuations as Ω increases (and thus N) can be seen in
the action plots of Fig. 4.
Alternative techniques to reduce noise based on digital

filters have also been developed, and they can be found
in [11,12].

VI. RELATIONSHIPS BETWEEN THE
EQUIVALENT KICK AND THE CORRECTIONS

As discussed in Sec. III, the second term on the right-
hand side of Eqs. (13) and (16) corresponds to the
contribution of the IR magnetic errors to the particle
trajectory. To suppress this contribution, the strengths of
the skew quadrupole correctors and normal quadrupole of
the IR can be adjusted so that

½θz;eðnÞ þ θðcÞz ðnÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βzðsÞβzðseÞ

p
sin½ψ zðsÞ − ψ zðseÞ� ¼ 0;

ð35Þ

where θðcÞz is the equivalent kick at se due to the corrections
alone. Since Eq. (35) must be valid for any s after the IR,

θz;eðnÞ þ θðcÞz ðnÞ ¼ 0; ð36Þ

and since Eq. (36) must be valid for any n,

B1x;e þ BðcÞ
1x ¼ 0; ð37aÞ

B1y;e þ BðcÞ
1y ¼ 0; ð37bÞ

A1;e þ AðcÞ
1 ¼ 0; ð37cÞ

where BðcÞ
1x , B

ðcÞ
1y , and AðcÞ

1 are the quadrupole components

of θðcÞz . Equations (37) imply that at least the strengths of
two normal quadrupoles (a and b) and the strength of one
skew quadrupole corrector need to be adjusted to carry out
the correction.
The relationships between the corrector strengths and the

quadrupole components of the equivalent kick produced by
these strengths, obtained from Eq. (20), are

BðcÞ
1x ¼ 1

βxðseÞ
ðΔK1aIx;a þ ΔK1bIx;bÞ; ð38aÞ
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FIG. 3. Three average trajectories with different values of Ω.
The larger the allowed phase range (determined by Ω), the larger
is N the number of trajectories involved in the construction of the
average trajectory. All three average trajectories are in phase, and
since the first one is a max trajectory, the other two are also max
trajectories.
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FIG. 4. Action plots of the average trajectories shown in Fig. 3.
A significant reduction in fluctuations (noise) can be seen as more
turns are used to build the average trajectory.
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BðcÞ
1y ¼ 1

βyðseÞ
ðΔK1aIy;a þ ΔK1bIy;bÞ; ð38bÞ

AðcÞ
1 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

βxðseÞβyðseÞ
p KðcÞ

1s Ixy; ð38cÞ

where ΔK1a and ΔK1b quantify how much the normal
quadrupole strengths of magnets a and b have to be
changed to reduce the total normal quadrupole component
to zero, Iz;a and Iz;b correspond to the integrals defined by
Eqs. (21a) and (21b), Ixy corresponds to Eq. (21c) with the
integration made along the skew quadrupole corrector, and

KðcÞ
1s represents the strength at which the skew quadrupole

corrector should be set to suppress coupling in the IR.
Equations (37) and (38) lead to a system of linear

equations with solution

ΔK1a ¼
B1y;eβyðseÞIx;b − B1x;eβxðseÞIy;b

Ix;aIy;b − Ix;bIy;a
; ð39aÞ

ΔK1b ¼
B1x;eβxðseÞIy;a − B1y;eβyðseÞIx;a

Ix;aIy;b − Ix;bIy;a
; ð39bÞ

KðcÞ
1s ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βxðseÞβyðseÞ

p
Ixy

A1;e: ð39cÞ

Since the quadrupole components of the equivalent kick are
estimated from TBT data, the corrector strengths can be
calculated directly from Eq. (39).
In the derivation of Eq. (39), it is assumed that only one

skew quadrupole corrector is used. It is also possible to use
two IR skew quadrupole correctors, and in that case,
Eq. (38c) becomes

AðcÞ
1;e ¼

ðKðcÞ
1s;L þ KðcÞ

1s;RÞIxyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βxðseÞβyðseÞ

p ; ð40Þ

where the subscripts L and R are used for the skew
quadrupole correctors located in the left and right triplets,
respectively, and the integral Ixy, which in principle must be
calculated independently for each corrector, was found to
be the same in both cases for all LHC lattices used in this
article.
Equation (40) allows to rewrite Eq. (39c) as

KðcÞ
1s;L þ KðcÞ

1s;R ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βxðseÞβyðseÞ

p
Ixy

A1;e: ð41Þ

Therefore, the right-hand side of Eq. (39c) gives the total
strength at which the two skew quadrupoles correctors must

be powered to locally eliminate the coupling in the IR. Any
strength can be used in each correctorwith the only condition
that their sum equals the value estimated by Eq. (39c).
The corrector strengths estimated by Eqs. (39) not only

suppress the equivalent magnetic kick in the IR as
expressed through Eq. (36) but also suppress the β beating
and the coupling that originates in that IR, as shown
theoretically in Appendix D and through simulations in
the next section.

VII. ESTIMATING CORRECTIONS FROM
SIMULATED TBT DATA

The first part of this section shows a simulation with
MADX that validates the entire correction procedure in IR1,
while the second part shows the advantages of the use of
average trajectories to estimate corrector strengths.
For all simulations presented in this section, a LHC

lattice with β� equal to 65 cm at IP1 is used. Also, normal
and skew errors of the same strength (10−5 m−2) have been
added in all quadrupoles of IR1, and the magnets that are
used as correctors are the Q2L (left Q2 quadrupole or
magnet a), the Q2R (right Q2 quadrupole or magnet b), and
the left skew quadrupole corrector of IR1.

A. Simulation of the correction procedure at IR1

The simulation of the correction procedure is done in two
steps: before and after correction. In the first step, corrector
strengths are estimated from a simulated TBT data set
generated from the LHC lattice with errors that was
previously described. The corresponding values obtained
for the corrector strengths can be seen in the first row
(Before correction) of Table I.
In the second step, the previously calculated corrector

strengths are added to the lattice and the efficacy of the
correction is evaluatedwith differentmethods.A firstmethod
is to verify that the corrector strengths calculated after
correction are reduced to zero, as expected from theory.
To do this verification, a TBT data set is generated with the
new settings and the corrector strengths are recalculated. The
results shown in the last row of Table I (After correction)
indicate that the new corrector strengths are significantly
reduced. In addition, the correction can be verified through

TABLE I. This Table illustrates the two-step correction pro-
cedure in IR1. The first row shows the corrector strengths
estimated from a TBT data set, which was generated with a
LHC lattice with errors in IR1 (Before correction). The second
row shows the corrector strengths estimated after correction.

Case
ΔK1a

ð10−5 m−2Þ
ΔK1b

ð10−5 m−2Þ
KðcÞ

1s
ð10−3 m−2Þ

Before correction −1.91 −1.91 −1.61
After correction 0.02 −0.03 0.02
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the β beating obtained directly from the Twiss files generated
by MADX (Fig. 5) and through betatron oscillations induced
fromone plane to another,which can be seen directly on first-
turn trajectories (Fig. 6).

B. Corrector strengths from average max trajectories

The effect of BPM noise in the calculation of corrector
strengths is studied in this section using simulated TBT
data with Gaussian noise. In particular, Gaussian noise
with σ ¼ 0.8 mm (about 20% of the maximum amplitude
of the trajectory in the arcs) is added to the TBT data set
originally generated without corrections in order to
generate other ten TBT data sets. Corrector strengths
are estimated for each of these TBT data sets using
simple max trajectories. The averages of these strengths
and 3 times their standard deviation are reported in the

first row of Table II, which shows that corrector strengths
are hidden behind the noise.
The procedure is repeated for the same TBT data sets,

but this time average max trajectories are used instead of
simple max trajectories. The results, in the second row of
Table II, show that the uncertainties of the corrector
strengths are significantly lower than those obtained with
simple trajectories. Also, the new corrector strengths
coincide with the “ideal” corrector strengths reported in
Table I within the new and smaller uncertainties.

VIII. ESTIMATING CORRECTIONS
FROM BEAM 2 DATA

The procedure explained to estimate corrector strengths
assumes that the beam circulates from left to right in the
APJ plots. This is the case for beam 1, but for beam 2 the
circulation of the beam in the APJ plots occurs from right to
left since the lattice files for beam 2, obtained from LHC
databases, are arranged in a sequence opposite to the beam
direction. This issue is relevant to those equations that use
variables at the left and right sides of the IR, which are
Eq. (1) to Eq. (4), and it can be solved by exchanging the
subscripts 0 and 1, which are used to label these two sides.
The only equation used in the estimation of corrector
strengths affected by this exchange of subscripts is Eq. (4),
which undergoes a change of sign. Therefore, if the sign of
Eq. (4) is changed, the same procedure used to estimate
corrector strengths from beam 1 data can be used to
estimate corrector strengths from beam 2 data.
Once the above modification has been made for beam 2,

it can be verified that corrector strengths obtained with TBT
data from each beam separately are practically the same.
The reason for this equivalence lies in the symmetry
relations between the beta functions of both beams in
the IRs, which can be expressed as

βx ≈ β̂y; ð42Þ

βy ≈ β̂x; ð43Þ

and according to Eqs. (20) and (21) lead to
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FIG. 5. β beating due to quadrupole errors introduced in the
LHC lattice in IR1 (black), and the effect of adding the
corrections of Table I to the same lattice (red).
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FIG. 6. This first turn trajectory shows how betatron oscilla-
tions are fed into the y plane due to the skew quadrupole errors
placed in IR1 (black). Corrections of Table I reduce significantly
the induced trajectory in the y plane (red), which indicates a good
local compensation of linear coupling at IR1.

TABLE II. Corrector strengths estimated from simple and
average trajectories showing the significantly smaller uncertain-
ties reached with average trajectories. The TBT data from which
the trajectories are extracted has Gaussian noise with σ ¼ 0.8 mm
and has no corrections.

Trajectory
ΔK1a

ð10−5 m−2Þ
ΔK1b

ð10−5 m−2Þ
KðcÞ

1s
ð10−3 m−2Þ

Simple −2.2� 1.2 −1.8� 1.2 −1.6� 0.5
Average −1.90� 0.1 −1.93� 0.07 −1.60� 0.04
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Ix;i ≈ Îy;i; B1x;e ≈ B̂1y;e;

Iy;i ≈ Îx;i; B1y;e ≈ B̂1x;e;

Ixy;i ≈ Îxy;i; A1;e ≈ Â1;e;

where the circumflex is used to distinguish the variables of
beam 2 from those corresponding to beam 1. If these
relations are used in, for example Eq. (39a), the equivalence
between ˆΔK1a and ΔK1a can be verified as follows:

ˆΔK1a ¼
B̂1y;eβ̂yðseÞÎx;b − B̂1x;eβ̂xðseÞÎy;b

Îx;aÎy;b − Îx;bÎy;a

≈
B1x;eβxðseÞIy;b − B1y;eβyðseÞIx;b

Iy;aIx;b − Iy;bIx;a

¼ B1y;eβyðseÞIx;b − B1x;eβxðseÞIy;b
Ix;aIy;b − Ix;bIy;a

¼ ΔK1a: ð44Þ

Simulations of beam 2 with the same parameters used to
obtain the first row of Table I show that corrector strengths
calculated from beam 2 are equal to those obtained from
beam 1 with differences that start to appear from the third or
fourth significant figure. These differences are much
smaller than the experimental uncertainties (see Sec. IX),
and thus the measurements obtained from both beams can
be considered equal.

IX. ESTIMATING CORRECTIONS
FROM 2015-LHC DATA

The same two-steps procedure explained in Sec. VII is
used to test the technique with 41 TBT data sets acquired
during different optics corrections in which the strengths of
IR1 magnets were changed.
In the first step, corrector strengths are estimated using

each TBT data set available before changing the strengths
of IR1 magnets. Averages values and three-standard devi-
ations are estimated for each beam individually, and a

weighted average of these last two are calculated and
reported on the first row of Table III (Before correction).
For the second step, the ideal situation is to change the

corrector strengths in IR1 exactly by the values found in the
previous step and to generate TBTdatawith the new settings.
This was not possible since no dedicated experiments have
been done for this technique. TBT data generated with very
similar corrections installed in IR1 (3.5 × 10−6 m−2 in Q2L,
−7.0 × 10−6 m−2 in Q2R, and −1.4 × 10−4 m−2 distributed
between the two skewquadrupole correctors) is used instead.
Corrector strengths estimated from this TBT data (second
row of Table III) show a significant decrease in all values, as
expected. Also, a clear decrease in the action and phase jump
at IR1 is observed in the corresponding action and phase
plots (Fig. 1).
The small remaining values in the second row of Table III

can be explained in part by the above-mentioned differences
between the corrector strengths actually applied in the
machine and the corrector strengths estimated prior to
correction. Discounting these differences from the second
row, a new estimation of the corrector strengths is obtained in
the last row of Table III. In theory, all values in this row
should be equal to zero; any difference from zero that cannot
be explained by the statistical uncertainties corresponds to a
systematic uncertainty. Therefore, the uncertainties of the
normal corrector strengths are mainly systematic (about
6 × 10−7 m−2), while the uncertainty of the skew corrector
strength ismainly statistical (1.6 × 10−5 m−2). In both cases,
the total strength uncertainties are about 10% of the values
originally obtained before correction.

X. EFFECT OF CORRECTIONS ON
THE β� OF THE IRS

IR corrections using two normal quadrupole correctors
reduce the β beating that originates in the IR and propagates
around the ring, as shown throughout this paper. However,
in some cases, these IR corrections may not correct β� to its
designed value, as reported in [13,14]. In this section, it is
demonstrated through simulations that corrections involv-
ing two normal quadrupole correctors per triplet (four
correctors per IR) can achieve both objectives, i.e., reduce
the β beating that originates in the IR and at the same time
correct the β� to its designed value. The current exper-
imental limitations for achieving these triplet-by-triplet
corrections are also discussed.

A. Simulations

The change of the β� when using IR corrections is
illustrated in Fig. 7. This figure shows the β beating
resulting from a simulation using the LHC lattice with
magnetic errors and different corrections. To perform this
simulation, magnetic errors are introduced into the six
normal quadrupoles of IR1 according to Table IV and the
corresponding β beating is calculated (black curve of

TABLE III. Estimates of corrector strengths before and after
having modified the strengths of Q2L (magnet a), Q2R (magnet
b), and the skew quadrupole correctors of IR1. The last row
(After correction new) is obtained after subtracting from the
second row (After correction) the difference between the cor-
rector strengths estimated prior to correction and the corrector
strengths actually used in the machine.

Case
ΔK1a

(10−6 m−2)
ΔK1b

(10−6 m−2)
KðcÞ

1s
(10−4 m−2)

Before correction 3.02� 0.09 −7.82� 0.14 −1.83� 0.16
After correction −0.33� 0.02 −0.19� 0.03 −0.36� 0.03
After correction new 0.15� 0.09 0.63� 0.14 0.07� 0.16
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Fig. 7). Also, TBT data is generated to obtain the
corrections as explained throughout the paper, and these
numbers (third column of Table IV) are inserted into the
lattice to recalculate the corresponding β beating (red
curves of Fig. 7). It is evident that the corrections have
significantly reduced the β beating around the ring, but the
β beating at the IP (peak around 23520 m) has increased,
which could lead to undesirable effects, such as reduction
of luminosity at that point of the accelerator.
Triplet-by-triplet corrections can offer a solution to this

problem. The modifications in the APJ technique to
calculate this type of corrections imply the use not only
of the actions and phases in the arcs but also among triplets.
To obtain those values, at least two BPMs are needed
between the triplets. In the LHC these two BPMs are
present in the IRs of interest (BPMs with prefix BPMSW),
and in theory, the action and phase between the triplets can
be calculated.
The same TBT data from the first simulation of this

section (magnetic errors in the six quadrupoles of IR1
without corrections and without noise) are used to obtain
the actions and phases in the arcs and also between the

triplets to estimate two corrector strengths per triplet
instead of two corrector strengths per IR.
The four corrector strengths obtained are shown in the

fourth column of Table IV. The β beating that includes these
new corrections (blue line in Fig. 7) shows that not only the
β beating around the ring is eliminated but also the β
beating in IP1 is reduced almost to zero. Also, as done in
Sec. VII, if the corrector strengths are estimated again, they
are now 2 to 3 orders of magnitude smaller than before the
correction were applied.
The effect of the two types of corrections can also be

seen in the phase plots of Fig. 8. If there are no corrections,
a large jump between the phase before and after the IR can
be seen (black curve). IR corrections eliminate the jump in
phase between the arcs (red curve), but a large step can still
be seen between the arcs and the IR. After introducing
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FIG. 7. Comparison between the β beating generated by
magnetic errors in IR1, and the corresponding β beating after
IR and triplet-by-triplet corrections are applied.

TABLE IV. Distribution of the magnetic errors in the IR1
quadrupoles used in the simulations shown in Sec. X. IR
corrections (two correctors per IR) and triplet-by-triplet correc-
tions (two correctors per triplet, four per IR) estimated for this
distribution of errors are also shown.

Magnet
Magnetic errors
ð10−5 m−2Þ

IR correction
ð10−5 m−2Þ

Triplet-by-Triplet
correction ð10−5 m−2Þ

Q3L 0.30 0 −0.35
Q2L 0.50 0.42 −0.52
Q1L 0.20 0 0
Q1R −1.80 0 0
Q2R −1.50 1.92 1.74
Q3R −1.70 0 2.11
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FIG. 8. Phase plots before corrections (black) and after IR (red)
and triplet-by-triplet (blue) corrections are applied. The jumps
between the arcs disappear when IR corrections are applied,
but a large step can still be seen between the arcs and the IR.
After applying triplet-by-triplet corrections, the plot becomes
completely flat.
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FIG. 9. Simulation of the waist shift of the β� due to magnetic
errors and corrections. IR corrections increase the waist shift of
the β�, while triplet-by-triplet corrections eliminate this shift by
returning the beta functions to their nominal values. Similar plots
are found in the y plane.
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triplet-by-triplet corrections, the phase plot becomes com-
pletely flat (blue curve).
The main reason for the original large β beating at the IP

is the waist shift of the β�, as reported in [13]. This shift can
be seen in Fig. 9, where the beta functions of the previous
simulations around the IP are drawn. This figure compares
the beta functions of the LHC lattice with six magnetic
errors, with errors plus IR corrections, and with errors
plus triplet-by-triplet corrections. Figure 9 shows that the
nominal beta functions and the beta functions of the LHC
lattice with errors plus triplet-by-triplet corrections around
the IP are identical. Therefore, this last type of correction
completely eliminates the waist shift of the β�.

B. Experimental analysis

As mentioned in the previous section, BPMSWs are
needed to estimate actions and phases between the triplets.
Actions and phases calculated with these BPMs may have
significant uncertainties since the phase advance between
them is very close to π. High precision BPMs are needed to
reduce these uncertainties to acceptable levels. The
BPMSWs have been updated with new electronics called
DOROS [15] that reduces the noise level 1 order of
magnitude [16]. Tests with these new electronics must
be postponed until it is properly calibrated and fully
integrated into the LHC BPM system. Meanwhile, analyses
with regular IR BPMs can be done to understand their
limitations, and to see if DOROS electronics could over-
come those limitations.
For this purpose, triplet-by-triplet corrections are deter-

mined for the left triplet of IR1 from five TBT data sets
(without corrections) acquired during 2016 LHC run. The
required actions and phases between the triplets are
determined with BPMSW.1L1 and BPMSW.1R1 and
regular electronics. Analyses of the results (Table V)
indicate that these estimates are very sensitive to gain
errors in the BPMSWs. If, for example, all beam position
measurements of BPMSW.1R1 are multiplied by 1.01 (1%
change in the BPM gain), corrector strength estimates can
change as much as 50% (second row of Table V). At the
time of these experiments, there was evidence that the
BPMSWs had gain errors as large as 3%. Therefore,
corrector strengths calculated with these BPMs may have

large deviations from the actual values. The accuracy of the
BPMSWs calibration should be approximately 0.1% to
keep the deviations of the corrector strengths within
acceptable limits, as can be inferred by comparing the
first and the third row of Table V.
The most accurate BPM calibrations achieved in the

LHC with regular electronics are around 1% [17]. Since
DOROS electronics reduces the noise level 1 order of
magnitude, the accuracy of the calibrations is expected to
improve in the same way, which would allow to reach the
required accuracy of 0.1%.
It should also be noted that, in some cases, the statistical

uncertainties in Table V are comparable to their corre-
sponding corrector strengths, which could cause these
measurements to be unreliable. DOROS electronics will
significantly reduce these uncertainties since large reduc-
tions in noise also lead to large reductions in statistical
uncertainties, as can be inferred from Table X.

XI. CONCLUSIONS

It has been shown that the effect of all quadrupole errors
of a low-β� IR in the trajectory of a particle can be modeled
by an equivalent magnetic kick located at some arbitrary
position within the IR. The quadrupole components of this
equivalent kick can be used to estimate the strengths that
normal and skew correctors should have to eliminate the
effect of all quadrupole errors in the IR.
Through simulations and theoretical calculations, it was

shown that these corrections lead to a significant reduction
of the β beating generated by normal quadrupole errors in
the IR, and the same remains true for linear coupling and
skew quadrupole errors. However, these corrections can
result in a waist shift of the β�, which has been shown to be
corrected by the so-called triplet-by-triplet corrections in
which a total of four correctors per IR are powered instead
of only 2.
Estimates of corrector strengths have been made from

experimental data for both types of corrections. For IR
corrections, the normal corrector strengths can be deter-
mined within a 10% uncertainty, which it is mainly of a
systematic nature, and the skew corrector strengths can
be determined within the same uncertainty, but in this
case, the uncertainty is mainly of a statistical nature. For
triplet-by-triplet corrections, it was found that the two
BPMs that are closest to IP1 (BPMSWs) should be
calibrated to an accuracy of approximately 0.1% to have
acceptable estimates of the corrector strengths. DOROS
electronics is expected to help achieve this level of
accuracy.
It has also been shown that the noise reduction technique

based on selection of trajectories from TBT data and the
subsequent construction of average trajectories does not
introduce any bias in the determination of the quadrupole
components of the equivalent kick, which makes possible
accurate estimates of the corrector strengths.

TABLE V. Triplet-by-triplet corrector strengths for the left
triplet of IR1 obtained from experimental LHC data. The
quadrupoles used as correctors are Q2L (a) and Q3L (b). The
effect of gain errors in BPMSW.1R1 is also shown.

ΔK1a (10−5 m−2) ΔK1b (10−5 m−2)

BPMSW.1R1*1 −2.97� 0.26 2.83� 0.56
BPMSW.1R1*1.01 −2.12� 0.27 1.43� 0.59
BPMSW.1R1*1.001 −2.89� 0.26 2.70� 0.56
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APJ can be used as a complement or instead of another
technique called segment by segment (SBS), which has
been extensively applied in the LHC to correct quadru-
pole errors [18–24]. Just as APJ, SBS uses TBT data, but
unlike APJ, the analyses that are performed on these data
are based on Fourier analysis. Also, the BPMs used in
each case are different. SBS uses the BPMs that are
located in or near the IR, while APJ uses the BPMs that
are located in the arcs (except for the BPM required at se),
which allows an independent verification of the
measurements.
Also, considering the increasing importance of having

fast and accurate measurements while the accelerator
works, perhaps with malfunctioning BPMs, one technique
can replace the other as these malfunctioning BPMs are
activated again.
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APPENDIX A: CHOOSING se, THE LOCATION
OF THE EQUIVALENT KICK

When a particle crosses a low-β� IR in which there are
only quadrupole magnetic errors, the total effect of those
errors in the particle trajectory is equivalent to the effect of a
magnetic kick applied at some location se, as demonstrated

in Sec. III. The location se is arbitrary as long as it is inside
the IR, or more precisely, inside the region in which the
approximation of phases can still be used.
Different selections of se lead to different values for the

quadrupole components of the equivalent magnetic kick,
but the corrector strengths estimated from these compo-
nents are always the same. This can be seen in Tables VI
and VII, which are obtained with the same simulated data
of Sec. VII, and where the quadrupole components of the
equivalent kick and the corrector strengths are calculated at
different locations within the IR.
The theory also supports that the corrections are

independent of se, as it can be verified by replacing
Eq. (20) in Eq. (39). Since the components of the beam
position at se are required to estimate the corrector
strengths, se is usually chosen in the location of any of
the existing IR BPMs.

APPENDIX B: CORRECTIONS ARE
INDEPENDENT OF THE NOMINAL

VALUE OF β�

Simulations of Sec. VII can also be used to test how the
correction estimates change as the nominal value of β� is
changed. To perform these simulations, all quadrupole
errors are decreased by 1 order of magnitude such that

TABLE VI. Quadrupole components of the equivalent kick
estimated from the simulated data of Sec. VII. The quadrupole
components are calculated in eight different locations of IR1. se is
measured from IP1.

Elements
se
(m)

B1x;e

ð10−3 m−1Þ
B1y;e

ð10−3 m−1Þ
A1;e

ð10−3 m−1Þ
BPMSY.4L1 −58.3 0.58 0.30 0.38
MQSX.3L1 −46.5 0.39 0.40 0.36
BPMS.2L1 −31.5 0.39 1.05 0.59
BPMSW.1L1 −21.7 1.32 1.32 1.20
BPMSW.1R1 21.7 1.31 1.32 1.20
BPMS.2R1 31.5 1.04 0.39 0.58
MQSX.3R1 46.7 0.39 0.39 0.36
BPMSY.4R1 58.3 0.31 0.58 0.38

TABLE VII. Corrector strengths calculated from Table VI and
Eq. (39).

Elements
se
(m)

ΔK1a

(10−5 m−2)
ΔK1b

(10−5 m−2)
KðcÞ

1s
(10−3 m−2)

BPMSY.4L1 −58.3 −1.93 −1.89 −1.61
MQSX.3L1 −46.5 −1.91 −1.91 −1.61
BPMS.2L1 −31.5 −1.91 −1.92 −1.61
BPMSW.1L1 −21.7 −1.91 −1.92 −1.61
BPMSW.1R1 21.7 −1.89 −1.91 −1.60
BPMS.2R1 31.5 −1.90 −1.91 −1.61
MQSX.3R1 46.7 −1.94 −1.87 −1.60
BPMSY.4R1 58.3 −1.92 −1.89 −1.61

TABLE VIII. Corrector strengths for LHC lattices with differ-
ent nominal values of β�. The values with label “simu” are
obtained as in Sec. VII, while the values with label “theory” are
directly obtained from Eqs. (20) and (39).

Procedure
β�
(cm)

ΔK1a

(10−6 m−2)
ΔK1b

(10−6 m−2)
KðcÞ

1s
(10−4 m−2)

Simu 80 −1.9097 −1.9056 −1.6086
Simu 65 −1.9083 −1.9095 −1.6076
Simu 40 −1.9085 −1.9122 −1.6071
Theory 80 −1.9089 −1.9090 −1.5352
Theory 65 −1.9090 −1.9090 −1.5352
Theory 40 −1.9090 −1.9091 −1.5351
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their strengths are now equal to 10−6 1
m2. This change is

necessary since the accelerator lattice becomes more
sensitive to magnetic errors as the β� becomes smaller.
The estimated corrector strengths are summarized in
Table VIII, where it can be seen that the differences
between the corrector strengths corresponding to different
values of β� begin to appear after the third significant
figure. Since, in these simulations, all the magnetic errors
are known in advance, the corrector strengths can be
estimated directly from theory using Eqs. (20) and (39).
Table VIII shows that differences in these theoretical
estimates begin to appear after the fourth significant
figure.

APPENDIX C: CORRECTOR STRENGTH
ESTIMATIONS USING CONVENTIONAL

FITTING PROCEDURES

Each trajectory or turn in a TBT data set gives a value of
θz;e and ze. Therefore, for a typical TBT data set containing
a thousand turns, there will be a thousand different values
for each of these quantities in each plane. This data can be
directly fitted to Eqs. (14) and (17) using the quadrupole
components of the equivalent kick as fitting parameters,
and then Eq. (39) is used to estimate the corrector strengths.
This procedure was applied to the simulated data of
Sec. VII but with different Gaussian noise levels added
to all BPM readings. The results can be seen in Table IX,

while Table X shows the corrector strengths calculated with
the procedure discussed throughout this paper. After
comparing the uncertainties of both tables, it can be seen
that the technique for noise reduction presented in this
paper has better immunity to noise than conventional fitting
procedures.

APPENDIX D: APJ CORRECTIONS,
β BEATING AND COUPLING

It can be shown that the corrections predicted by Eq. (39)
also eliminate the contributions of IR magnetic errors
to typical observables, such as β beating and coupling
driving terms.
For the first case, the integral defining the β beating [25]

can be divided into the contribution from a particular IR
and the contribution of the rest of the ring ~R,

ΔβzðsÞ
βzðsÞ

¼
�
ΔβzðsÞ
βzðsÞ

�
IR
þ
�
ΔβzðsÞ
βzðsÞ

�
~R
; ðD1Þ

where�
ΔβzðsÞ
βzðsÞ

�
IR

¼ −
1

2 sin 2πQz

Z
IR
ds0ΔK1ðs0Þβzðs0Þ

× cos ½2jϕzðsÞ − ϕzðs0Þj − 2πQz�; ðD2Þ
and a similar equation for the second term of Eq. (D1). The
β beating produced by normal quadrupole errors in the IR
including corrections is equal to�
ΔβzðsÞ
βzðsÞ

�
IR

¼ −
1

2 sin 2πQz

Z
IR
ds0ΔK1ðs0Þβzðs0Þ

× cos ½2jϕzðsÞ − ϕzðs0Þj − 2πQz�

¼ −
cos ½2jϕzðsÞ − ϕzðseÞj − 2πQz�

2 sin 2πQz

×

�X6
i¼1

ΔK1iIz;i þ
X
j¼a;b

ΔK1jIz;j

�
; ðD3Þ

where Iz;i and Iz;i correspond to the integrals defined by
Eqs. (21a) and (21b), and the approximation of phases has
been used. If Eqs. (20a), Eq. (20b), (38a) and (38b) are
replaced in Eq. (D3), we obtain�
ΔβzðsÞ
βzðsÞ

�
IR

¼ −
cos ½2jϕzðsÞ − ϕzðseÞj − 2πQz�

2 sin 2πQz

× βzðseÞðB1z;e þ BðcÞ
1z Þ; ðD4Þ

which is equal to zero by virtue of Eqs. (37a) and (37b).
A similar analysis can be done for the skew quadrupole

component, which can be related to the minimization of the
coupling driving terms [26]—a technique frequently used
in accelerators to reduce coupling—which can also be
divided in two contributions,

TABLE IX. Corrector strengths estimated from the fitting
procedure explained in Appendix C. The strengths reported in
each row correspond to the average of strengths estimated from
ten different TBT data sets with Gaussian noise. The uncertainties
are estimated as 3 times the standard deviation.

σ
(mm)

ΔK1a

ð10−5 m−2Þ
ΔK1b

ð10−5 m−2Þ
KðcÞ

1s

ð10−3 m−2Þ
0 −1.91 −1.91 −1.60
0.04 −1.79� 0.03 −1.93� 0.06 −1.46� 0.03
0.2 −1.54� 0.14 −1.78� 0.23 −1.20� 0.08
0.4 −1.18� 1.75 −1.38� 2.66 −0.90� 0.50
0.8 −0.80� 6.54 −1.68� 2.03 −0.82� 0.24

TABLE X. Corrector strengths estimated with the same TBT
data sets used in Table IX but applying the analyses used to obtain
Table II with average max trajectories.

σ
(mm)

ΔK1a

ð10−5 m−2Þ
ΔK1b

ð10−5 m−2Þ
KðcÞ

1s

ð10−3 m−2Þ
0 −1.91 −1.91 −1.61
0.04 −1.91� 0.01 −1.91� 0.01 −1.61� 0.00
0.2 −1.91� 0.04 −1.92� 0.04 −1.61� 0.02
0.4 −1.92� 0.05 −1.90� 0.06 −1.61� 0.03
0.8 −1.91� 0.09 −1.92� 0.09 −1.61� 0.05
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κ� ¼ κðIRÞ� þ κ
~ðRÞ

� ; ðD5Þ

where

κðIRÞ� ¼ 1

2π

Z
IR
ds0K1;sðs0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βxðs0Þβyðs0Þ

q
× expi½ϕxðs0Þ�ϕyðs0Þ−ðQx�Qy−q�Þ2πs0L �; ðD6Þ

and a similar equation for the second term of Eq. (D5). Qx
and Qy are the horizontal and vertical tunes of the
accelerator, q� is an integer number, L is the circumference
of the accelerator. The sum and the difference of phases in

the exponential factor of κðIRÞ� remain constant by virtue of
the approximation of phases. Likewise, the variation of the
fraction s0

L is very small along the IR. Hence, the exponential
factor can be taken out of the integral leading to

κðIRÞ� ¼ 1

2π
expi½ϕxðseÞ�ϕyðseÞ−ðQx�Qy−q�Þ2πseL �

×

�X6
i¼1

K1s;iIxy;i þ KðcÞ
1s Ixy

�
; ðD7Þ

where Ixy;i and Ixy correspond to the integrals defined by
Eq. (21c), but in the latter case, the integration is performed
along the skew quadrupole corrector. Replacing Eqs. (20c)
and (38c) in Eq. (D7) leads to

κðIRÞ� ¼ 1

2π
expi½ϕxðseÞ�ϕyðseÞ−ðQx�Qy−qÞ2πseL �

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βxðseÞβyðseÞ

q
ðA1;e þ AðcÞ

1 Þ; ðD8Þ

which is equal to zero by virtue of Eq. (37c).
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