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Measurement and correction of focusing errors is of great importance for performance and machine
protection of circular accelerators. Furthermore LHC needs to provide equal luminosities to the
experiments ATLAS and CMS. High demands are also set on the speed of the optics commissioning,
as the foreseen operation with β�-leveling on luminosity will require many operational optics. A fast
measurement of the β-function around a storage ring is usually done by using the measured phase advance
between three consecutive beam position monitors (BPMs). A recent extension of this established
technique, called the N-BPM method, was successfully applied for optics measurements at CERN, ALBA,
and ESRF. We present here an improved algorithm that uses analytical calculations for both random and
systematic errors and takes into account the presence of quadrupole, sextupole, and BPM misalignments,
in addition to quadrupolar field errors. This new scheme, called the analytical N-BPM method, is much
faster, further improves the measurement accuracy, and is applicable to very pushed beam optics where the
existing numerical N-BPM method tends to fail.

DOI: 10.1103/PhysRevAccelBeams.20.111002

I. INTRODUCTION

In recent years the field of optics measurement and
correction is growing in interest with the design of pushed
optics like the high-luminosity LHC (HL-LHC) upgrade
and next generation light sources. A review of the progress
in the last years is given in [1]. The original method to
determine the β function from turn-by-turn phase data
makes use of three adjacent beam position monitors
(BPMs) [2]. The betatron phase of the BPMs is derived
from the harmonic analysis. The phase advance between
BPMs is then used to calculate β-functions according to the
formula [2]

βðsiÞ ¼
cotϕij − cotϕik

cotϕm
ij − cotϕm

ik
βmðsiÞ; ð1Þ

where ϕij ¼ ϕðsjÞ − ϕðsiÞ are the measured phase
advances between BPMs j and i; the superscript (m)
denotes model values. The phase measurement is indepen-
dent of BPM calibration and transverse misalignments.
This method is sensitive to the position of the BPMs
relative to each other. If the phase advance between two of

them is too close to nπ, errors in the phase measurement get
strongly enhanced. In order to measure the transversal
displacement of the beam as accurately as possible, in the
LHC the beam is excited by an AC-dipole [3].

A. Original N-BPM method

To avoid such cases with unsuitable phase advances
and to improve statistics, BPMs can be skipped and more
combinations can be used and averaged over with appro-
priate weights. The N-BPM method was developed [4] to
implement this feature. It is illustrated in Fig. 1. If we use a
range of N BPMs, where the probed BPM is fixed at
position si, there are n ¼ ðN − 2ÞðN − 1Þ=2 combinations
of BPMs. The N-BPMmethod was successfully used in the
LHC [4], as well as in the storage rings of ALBA [5] and
ESRF [6]. In comparison to the original three BPMmethod,
there is a huge gain in precision in the interaction regions
(IRs) of colliders, where neighboring BPMs have unsuit-
able phase advances with respect to each other. Systematic
errors from the model and random phase uncertainties are
taken into account separately where only statistical uncer-
tainties are calculated analytically. Systematic errors are
determined using Monte Carlo simulations.
The β function of the lth combination reads

βlðsiÞ ¼
cotϕijl − cotϕikl

cotϕm
ijl
− cotϕm

ikl

βmðsiÞ: ð2Þ

Unfortunately, the more lattice elements there are
between BPMs the more sources of errors may lie between
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them, Eqs. (1) and (2) being derived under the assumption
of having error-free regions between BPMs. Furthermore
the different results for the β function at one location are not
independent of each other which also has an impact on the
quality of the final result.
Especially in the LHC IRs, where the phase advance

between the BPMs is close to 0 or π, the three BPMmethod
fails. At the same time a high precision of the measurement
of beta beating is needed to control β� and to optimize the
aperture.
To find the best estimation for the measured β we

calculate a weighted average

β̂ðsiÞ ¼
X
l

βlðsiÞgl; ð3Þ

where the weights gl are calculated using a least-squares
estimation. The sum runs over all n BPM combinations
(details are worked out in Appendix A). The weights are

gl ¼
P

kV
−1
lkP

i;jV
−1
ij

; ð4Þ

where V denotes the covariance matrix of the βl. The
uncertainty of the averaged β is then given by

σ2β ¼
X
l;j

glgjVlj: ð5Þ

β is a function of the measured phase advances which are
subject to measurement uncertainties. We can get the error
matrix V from the single variances by

V ¼ TMT−1; ð6Þ

where M ¼ diagðσ2ϕ1
;…; σ2ϕn

Þ is a diagonal matrix con-
sisting of the variances of the phases and T is the Jacobian
matrix

TlλðsiÞ ¼
∂βlðsiÞ
∂ϕλ

����
δϕ¼0

; ð7Þ

δϕ ¼ 0 meaning that the derivatives are evaluated with all
phase advance errors set to zero. The correlation of
statistical errors (coming from BPM noise) is

Tϕ
lλðsiÞ ¼

∂βlðsiÞ
∂ϕλ

����
δϕ¼0

¼ ðδλi − δλjlÞsin−2ϕm
ijl
− ðδλi − δλklÞsin−2ϕm

ikl

cotϕm
ijl
− cotϕm

ikl

βmðsiÞ:

ð8Þ

We place here intentionally a superscript ϕ to highlight that
the T matrix only includes statistical errors coming from
the uncertainty of the phase measurement. δαβ denotes the
Kronecker δ. Including systematic errors, the total error
matrix is

V ¼ Vstat þ Vsyst; ð9Þ

where Vstat ¼ TϕMTϕ−1 and the total uncertainty of the
averaged β̂ is then given by

σ2
β̂
¼ σ2stat þ σ2syst: ð10Þ

In the existing numerical N-BPM method only the
statistical errors are calculated analytically while Vsyst

and hence σ2syst are evaluated fromMonte Carlo simulations
of lattices with errors. For that the statistics over many
simulations is gathered. Even with a highly parallelized
code on a multicore machine this procedure takes about
1 hour for a “fast” set of 1000 simulations. Since the
computation time scales linearly with the number of
simulations, this can take up to 10 hours for 104 simulations
which were used in the post processing of a measurement.

B. Extension of the N-BPM method

In this paper we introduce a new method that calculates
also the systematic errors analytically. On the same
computer the analytical N-BPM method takes only 30 sec-
onds to compute the β function for more than 500 BPMs
whereas the N-BPM method takes about one hour. It
provides a fully analytical calculation of the uncertainties
while the precision of the original method depends on the
number of simulations. Any source of uncertainties can be
taken into account if its analytical expression is known.
The method does not depend on the stability of the lattice
whereas the Monte Carlo simulations fail if, for some
combinations of errors, no closed orbit can be found. This
is a limiting factor when the N-BPM method is used for
pushed optics with very low β� like the HL-LHC.
Equation (2) will be modified in Sec. II for taking into

account the presence of quadrupolar field errors as done in
[7], as well as transverse misalignments of sextupoles and
longitudinal displacement of quadrupoles and BPMs. In

FIG. 1. TOP: the 3 BPM method takes only adjacent BPMs.
The blue BPM is the one whose β function is being determined.
BOTTOM: The N-BPM method allows to skip BPMs in order to
use a bigger amount of data to increase statistics and to avoid
unsuitable phase advances.
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Sec. III we then incorporate these results in the develop-
ment of a fully analytical N-BPM method which does
not require the splitting of the statistical phase uncertainties
and the systematic errors. This was a limitation of the
N-BPM method described in [4]. We eventually compare
the methods through simulations for the current LHC lattice
design as well as the Achromatic Telescopic Squeeze (ATS)
lattice proposed for the HL-LHC upgrade.

II. β FUNCTION FORMULA WITH
IMPERFECTIONS

Equation (2) assumes that no error is present in the
region between the involved BPMs. A new formula has
been developed in [7] that takes quadrupolar errors into
account,

βðs1Þ ¼
cotϕ12 − cotϕ13

cotϕm
12 − cotϕm

13 þ h̄12 − h̄13
βmðs1Þ þOðδK2

1Þ;

ð11Þ

with

h̄ij ¼
P

i<w<jβ
m
wδKw;1sin2ϕm

wj

sin2ϕm
ij

: ð12Þ

The sum runs over all elements w between BPMs i and j.
δKw;1 is the integrated quadrupolar field error of element w.
The definition ofKn follows the MAD [8] convention. Note
that Eq. (12) is only defined for the case s1 < s2 < s3 i.e.
the β function is calculated at the position of the first BPM.
Since we want to use as many BPM combinations as
possible we will derive below a form of Eq. (11) without
this constraint.
In [7] the quality of Eq. (11) has been assessed for the

ESRF storage ring by simulating a lattice with errors and
comparing the results of Eq. (11) to the beta beating of the
simulated lattice. In this paper the same study is repeated
for the LHC and its future upgrade the HL-LHC. Table I

summarizes those uncertainty estimates for the LHC
elements that are relevant for this study. In Fig. 2 a
comparison between Eqs. (1) and (11) is shown in the
horizontal plane. The plot shows a histogram of the
deviation of the formulas (1) and (11) from the real (i.e.,
simulated) β function values. The histogram contains the
values of all the individual BPMs for one simulated lattice.
The top plot shows the case with only quadrupolar field
errors whereas in the bottom plot also misalignment errors
were included in the lattice. The introduction of errors not
taken into account in Eq. (12) deteriorates the result.
However Eq. (11) still yields a clearly better estimate.
Moreover Eq. (11) may be easily modified for taking

into account a more realistic set of errors—quadrupolar
field errors as well as sextupole transverse misalignments,
quadrupole longitudinal misalignments, and BPM longi-
tudinal displacements.
While the magnet misalignment errors can be approxi-

mated as effective quadrupolar field errors and integrated in
Eq. (12) the BPM misalignments need a different approach
as shown in the next paragraph.

TABLE I. Estimates for the LHC gradient and misalignment
errors. MQ are focusing and defocusing quadrupoles, MS are
sextupoles. The values of the magnet errors are derived from
magnetic measurements of [9,10].

Element σK=K1 [10−4] σs [mm] σx [mm]

MQ 18 1.0
MQM 12 1.0 � � �
MQY 11 1.0 � � �
MQX 4 6.0 � � �
MQW 15 1.0 � � �
MQT 75 1.0 � � �
MS � � � � � � 0.3
BPM � � � 1.0 � � �

FIG. 2. Top: Difference between the real (simulated) horizontal
β-functions and the ones calculated by Eq. (1) in red and (11) in
blue, respectively. Data are from MADX simulations of a lattice
with quadrupolar errors only. Bottom: The same quantities are
evaluated for the case with additional magnet misalignments. rms
denotes the root mean square of the deviations and p-t-p denotes
peak-to-peak deviation.
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A. Effect of transverse sextupole misalignments

The magnetic field of a sextupole displaced horizontally
by Δx reads

By ¼
B
2
½ðxþ ΔxÞ2 − y2�: ð13Þ

This induces a quadrupolar field error whose strength
δK1 is

δK1 ¼
1

B0ρ0

∂By

∂x
����
x¼y¼0

¼ B
B0ρ0

Δx: ð14Þ

This term can be used in Eq. (12) to include sextupole
offsets in h̄ij.

B. Effect of longitudinal quadrupole misalignments

The effect of a longitudinal displacement δs of a
quadrupole magnet can be approximated by leaving the
magnet at its original position and introducing two thin
magnets at its edges to mimic the displacement, as shown in
Fig. 3. In the direction of the displacement there is an
additive element with integrated field strength δK1 ¼ k1δs
(k1 being the nonintegrated quadrupole strength), whereas
an error −δK1 is placed at the opposite end.

C. Effect of BPM misalignments

An error, δsi, in the longitudinal position of a BPM
affects the evaluation of Eqs. (11) and (12) which rely on
the model values of β and ϕ at the nominal position of the
BPM. To determine the effect we start with the definition of
the phase advance

ϕij ¼
Z

sj

si

1

βðsÞ ds: ð15Þ

We can approximate the phase error and the resulting β shift
at the position si þ δsi as

~ϕi ≈ ϕi þ
1

βi
δsi; ð16Þ

~βi ≈ βi þ
∂βi
∂s δsi ¼ βi − 2αiδsi; ð17Þ

up to first order in δsi. By αi we denote the α function at the
position of element i, defined as

α ¼ −
1

2

∂β
∂s : ð18Þ

We have to rederive an equation similar to Eq. (11) by
taking into account the considerations of the preceding
sections. The steps of the derivation are elaborated in
Appendix B. The final formula up to first order reads:

βlðsiÞ≈
cotϕijl −cotϕikl

cotϕm
ijl
−cotϕm

ikl
þ ḡijl − ḡikl

½βmðsiÞ−2αmðsiÞδsi�;

ð19Þ

with

ḡij¼ sgnði−jÞ
1

βmðsjÞδsj−
1

βmðsiÞδsiþ
P

w∈Iβ
m
wδKw;1sin2ϕm

wj

sin2ϕm
ij

;

ð20Þ

where δKw;1 now includes quadrupolar-like errors coming
from sextupole misalignments and quadrupole longitudinal
misalignments, as described in the previous sections.
Having defined the set I as

I ¼ ½minði; jÞ;maxði; jÞ� ⊂ N; ð21Þ

so that an element with index w ∈ I lies between elements i
and j, Eqs. (19) and (20) hold for every combination i, j, k
of the BPMs. By doing so, we do not need to distinguish
the three cases where the probed BPM is in the middle, left
or right.
All these considerations can be put into Eq. (19) and

used to get a more accurate β function. To verify the validity
of Eq. (19), its horizontal β-functions are compared to the
ones simulated by MADX along with the ones inferred
from Eq. (1), this time including sextupole radial offsets
and BPMs longitudinal shifts.
The result is shown in Fig. 4. The accuracy is now as

good as the one of Eq. (11) when only quadrupolar field
errors were introduced in the lattice, which in turn is much
greater than the old formula, Eq. (1).

FIG. 3. The top sketch shows the displaced quadrupole (solid
gray) relative to the original position (dashed). In the bottom
sketch one can see the quadrupole at its original position with thin
magnets on both ends.
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III. THE ANALYTICAL N-BPM METHOD

A. Calculation of the correlation matrix

The Jacobian T of Eq. (7) can be split into blocks

T ¼ ðTϕTKTsÞ; ð22Þ

for the uncertainties of phase Tϕ, quadrupole field TK and
BPM misalignment Ts. Tϕ is the same of Eq. (8). For the
quadrupolar field errors we get

TK
lλðsiÞ ¼

∂βlðsiÞ
∂K1;λ

����
δK¼0

¼ ∓ βmðsiÞβmðsλÞ
cotϕm

ijl
− cotϕm

ikl

�
sin2ϕm

λjl

sin2ϕm
ijl

AijlðλÞ

−
sin2ϕm

λkl

sin2ϕm
ikl

AjklðλÞ
�
; ð23Þ

with

AijðλÞ ¼
8<
:

1 if i < λ < j

−1 if j < λ < i

0 else

: ð24Þ

The contribution from the BPM misalignment is calculated
analogously:

Ts
lλðsiÞ¼

∂βlðsiÞ
∂sλ

����
δs¼0

¼−2αmðsiÞδλi

∓
sgnði−jlÞ
sin2ϕm

ijl

ð βmðsiÞβmðsjl Þ
δjlλ −δiλÞ− sgnði−klÞ

sin2ϕm
ikl

ð βmðsiÞβmðskl Þ
δklλ −δiλÞ

cotϕm
ijl
−cotϕm

ikl

:

ð25Þ

In Eqs. (23) and (25) the minus and plus signs refer to the
horizontal and vertical case, respectively.

B. Removal of bad BPM combinations

Since a phase advance ϕij ≈ nπ results in an enhance-
ment of phase measurement errors and in the extreme case
numerically unstable values, a filtering was introduced.
Instead of keeping a constant number of combinations as in
[4] we set a threshold for bad phase advances. A phase
advance Δϕ is considered bad if Δϕ ∈ ½nπ − δ; nπ þ δ� for
n ∈ N and a given threshold δ. If any of the four phase
advances ϕijl ;ϕikl ;ϕ

m
ijl
;ϕm

ikl
in Eq. (2) is bad, the corre-

sponding BPM combination is disregarded in the calcu-
lation of the weighted mean. This allows us to still use
several combinations but skipping those which are numeri-
cally unstable. The current value for the threshold is
δ ¼ 2π × 10−2. The use of fewer combinations results in
a lower computation time.
To test the analytical N-BPM method and compare it to

the original 3-BPM and the Monte Carlo N-BPMmethod, a
large set of LHC lattices with β� ¼ 40 cm with randomly
distributed errors is generated and a measurement is
simulated by tracking a single particle via polymorphic

FIG. 4. Accuracy of the horizontal β-function evaluated via
Eq. (1) and (19) with the effect of magnets and BPM misalign-
ments taken into account. The accuracy of Eq. (19) is similar to
the one of Eq. (11) with quadrupolar field errors only (Fig. 2).

FIG. 5. Comparison of the 3-BPM method, the original
N-BPM method and the analytical N-BPM method (denoted
as A.N-BPM) for the nominal LHC lattice at collision, with
β� ¼ 40 cm. Bottom: histogram of the difference to the real
β-function in percent. Top: the average of the error bars and
the accuracy spread (width of a standard distribution fit to the
distribution in the bottom plot) in percent. The analytical N-BPM
method has the best accuracy both in the arcs and in the IRs. Data
have been cleaned of outliers.

ANALYTICAL BEAM POSITION MONITOR METHOD PHYS. REV. ACCEL. BEAMS 20, 111002 (2017)

111002-5



tracking code (PTC) [11]. The random errors are created
from Table I and a Gaussian noise of σx ¼ 0.1 mm is
applied to the BPM signal. No singular value decompo-
sition cleaning is applied since it would clean the artificial
noise too efficiently [5]. The excitation amplitude is
0.8 mm at a β function of about 120 m. The tracked
particle positions are then analyzed by the three methods
(3-BPM, N-BPM, and analytical N-BPM) and the respec-
tive deviation from the real horizontal β function is shown
in the bottom plot of Fig. 5. The analytical N-BPM method
includes the filtering of phase advances. Especially in the
IR, where neighbouring BPMs have often unsuitable phase
advances, the N-BPM and analytical N-BPM method yield
more accurate values.
The top diagram of Fig. 5 shows that the error of the

3-BPM method is considerable larger, whereas the N-BPM
and analytical N-BPM method are very accurate with
similar accuracies in the IR and arcs.

C. HL-LHC

The ATS optics [12] is the baseline choice for the
HL-LHC and our optics measurement tools have to be
prepared for the challenges imposed by such an optics. In
Fig. 6 the three methods are compared in the sameway as in
Fig. 5. The excitation amplitude was 0.8 mm at a β function

of 127 m. For the current HL-LHC collision optics
(β� ¼ 15 cm) the performance of N-BPM and analytical
N-BPM method is again better than the 3-BPM method,
especially in the IRs. All three methods are, however, about
a factor two more inaccurate than for the β� ¼ 40 cm optics
of LHC, in agreement with Fig. 7 of [4].
In the post-processing of the data taken during the LHC

Machine Development measurement (MD) [13] for testing
the ATS principle with a β� ¼ 10 cm optics, the analytical
N-BPM method was used for the first time with filtering
of bad phase advances. Figure 7 demonstrates that the
analytical N-BPM method deals well with the ATS MD
optics. Monte Carlo simulations were not possible for this
optics.
Figure 8 shows the precision of the final results for the

β� ¼ 10 cm optics of both beams compared to the simu-
lations of the HL-LHC lattice with β� ¼ 15 cm. To ease the
comparison the error bars are shown in the bottom plot.
They are slightly larger for the real measurement than those
in simulations. We believe that the use of lower beam
excitation to ensure machine protection is behind these
larger error bars. Figure 7 shows also that the 3-BPM
method has many outliers and error bars up to several
kilometers caused by bad phase advances. Large error bars
have been excluded for the mean shown in Fig. 8.
The Monte Carlo simulations failed for low β� optics and

so we were not able to use the original N-BPM method
during ATS MDs. This is another advantage of the

FIG. 6. Same comparison of Fig. 5 between the three methods
for the HL-LHC β� ¼ 15 cm ATS optics. The analytical N-BPM
method yields clearly better results, both in the IRs and in the
arcs. Compared to the β� ¼ 40 cm optics shown in Fig. 5, the β
function reconstruction is less accurate: This was also demon-
strated for the β� ¼ 20 cm optics in [4].

FIG. 7. Horizontal β beating of beam 1 at β� ¼ 10 cm during
the ATS MD 2016. Top: 3-BPM method. Bottom: analytical
N-BPM method. The 3-BPM method suffers from bad phase
advances and has many outliers. The regions of high β beating at
around 8000 m and 23000 m lie in the telescopic arcs.
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analytical N-BPM method that it is able to evaluate the
systematic errors independently of the success of particle
tracking.

IV. CONCLUSION

A new method for the measurement of β and α
functions has been developed based on the existing
N-BPM method. A fully analytical calculation of the
covariance matrix provides a faster and more accurate
measurement of β and α functions. The analytical N-BPM
method also avoids the complications from failing to find
closed optics that occur in the Monte Carlo simulations
needed by the existing N-BPM method. This stability
with respect to the choice of optics model makes it more
suitable for low β� optics. Simulations show that, together
with a filtering of BPM combinations according to the
phase advances, the method is optimal for the HL-LHC
upgrade.
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APPENDIX A: LEAST-SQUARES ESTIMATION

We search for the weights gi of Eqs. (3)–(4) through a
least-squares optimization. We can rewrite the weighted

mean, ⃗β̂, as system of linear equations

β⃗ ¼ Bγ⃗ þ ϵ⃗ ¼ ⃗β̂ þ ϵ⃗;

β⃗ ¼

0
BB@

β1

..

.

βn

1
CCA B ¼

0
BB@

β⃗T

..

.

β⃗T

1
CCA γ⃗ ¼

0
BB@

ĝ1

..

.

ĝn

1
CCA;

ϵ⃗ ¼

0
B@

ϵ1

..

.

ϵn

1
CA; ⃗β̂ ¼

0
BB@

β̂

..

.

β̂

1
CCA; ðA1Þ

where ϵi is the error of measurement βi, i.e. the difference
to the weighted mean. ĝi are the weights and n is the
number of measured β values. We seek a set of weights gi
for which the squared errors in Eq. (A1) are minimal. Since
the different βi are correlated and have a covariance matrix
Cov½β⃗� ≠ diagðσ21;…; σ2nÞ we have to apply the theory of
generalized least-squares estimation [14].
The covariance matrix of a set of random variables ωi is

defined as

Cov½ω⃗� ¼ E½ðω⃗ − E½ω⃗�Þðω⃗ − E½ω⃗�ÞT �
¼ E½ω⃗ω⃗T � −E½ω⃗�E½ω⃗�T; ðA2Þ

whereE½ω⃗� is the expected value of the random variables ω⃗.
Equation (A2) can be expressed component-wise:

ðCov½ω�Þij ¼ E½ωiωj� − E½ωi�E½ωj�: ðA3Þ

1. Error propagation

Wehave a set of unperturbed phasemeasurements fϕ1;…;
ϕng and nonobservable parameters fK1;1;…; K1;m; s1;…;
sν; x1;…xμg with corresponding errors Δϕα;ΔK1;β;Δsγ;
Δxκ. We collect all parameters into a vector

FIG. 8. A comparison of the error bars of the β� ¼ 10 cm optics
of the October 2016 MD. Top: histogram of the error bars of
beam 1. Center: histogram of the error bars of beam 2. Bottom:
mean of the size the error bars. The mean of the analytical
N-BPM method is a factor 4 more accurate than the 3 BPM
method. The third set of values shows the mean of the error bars
of the simulations as shown in Fig. 6 but for the whole ring.
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Ω⃗0 ¼

0
BBBBB@

ϕ⃗

K⃗

s⃗

x⃗

1
CCCCCA
; Δ⃗Ω ¼

0
BBBBB@

Δ⃗ϕ

Δ⃗K
Δ⃗s
Δ⃗x

1
CCCCCA
: ðA4Þ

Using a Taylor expansion we can propagate the errors in
these parameters

βlðΩ⃗Þ ¼ βlðΩ⃗0Þ þ ∂iβlðΩ⃗0ÞΔΩi

þ ∂i∂jβlðΩ⃗0ÞΔΩiΔΩj þOðΔΩ3Þ; ðA5Þ

where the Einstein summation convention is used and
the derivatives are with respect to Ωi: ∂iβl ≡ ∂βl∂Ωi

. In the

following we omit the argument ðΩ⃗0Þ for the β function and
its derivatives at the unperturbed position Ω⃗0. For the
calculation of the covariance matrix, we truncate Eq. (A5)

to second order and derive the two summands of Eq. (A2)
separately.

E½βlðΩ⃗Þ� ≈ E½βl þ ∂iβlΔΩi þ ∂i∂jβlΔΩiΔΩj�
¼ βl þ ∂iβlE½ΔΩi� þ ∂i∂jβlE½ΔΩiΔΩj�: ðA6Þ

We assume that there are no systematic errors in the
measurement instruments and so E½ΔΩi� ¼ 0 and the
middle term vanishes. We can conclude

E½βlðΩ⃗Þ�E½βmðΩ⃗Þ�
≈ βlβm þ ðβl∂i∂jβm þ βm∂i∂jβlÞE½ΔΩiΔΩj�; ðA7Þ

where terms proportional to the square of the variance go
into the remainder OðΔΩ3Þ.
To calculate the term E½βlβm� more steps are needed:

E½βlðΩ⃗ÞβmðΩ⃗Þ� ¼ E½ðβl þ ∂iβlΔΩi þ ∂i∂jβlΔΩiΔΩjÞðβm þ ∂iβmΔΩi þ ∂i∂jβmΔΩiΔΩjÞ�
≈ E½βlβm þ ðβl∂iβm þ βm∂iβlÞΔΩi þ ∂iβl∂jβmΔΩiΔΩj þ ðβl∂i∂jβm þ βm∂i∂jβlÞΔΩiΔΩj�
¼ βlβm þ ∂iβl∂jβmE½ΔΩiΔΩj� þ ðβl∂i∂jβm þ βm∂i∂jβlÞE½ΔΩiΔΩj�: ðA8Þ

Finally, subtracting Eq. (A7) from Eq. (A8), we obtain

ðCov½β�Þlm ¼ ∂iβl∂jβmE½ΔΩiΔΩj� ¼ ∂iβl∂jβmCov½Δ⃗Ω�ij:
ðA9Þ

In the last step we made again the assumption EðΔΩiÞ ¼ 0,
implying

Cov½Δ⃗Ω�ij ¼ E½ΔΩi�E½ΔΩj�−E½ΔΩiΔΩj� ¼ E½ΔΩiΔΩj�:
ðA10Þ

In matrix notation Eq. (A9) reads

Cov½β⃗� ¼ TCov½Δ⃗Ω�TT; ðA11Þ

where

Tij ¼
∂βi
∂Ωj

: ðA12Þ

If the parameters Ω⃗ are uncorrelated, the covariance matrix
of Δ⃗Ω simplifies to

ðCov½Δ⃗Ω�Þij ¼ 0 if i ≠ j; ðA13Þ

ðCov½Δ⃗Ω�Þii ¼ σ2i ; ðA14Þ

⇒ E½ΔΩiΔΩj� ¼ E½ΔΩi�E½ΔΩj� if i ≠ j; ðA15Þ

and Eq. (A9) reads

ðCov½β⃗�Þlm ¼ ∂iβl∂iβmE½ΔΩ2
i � ¼ ∂iβl∂iβmσ

2
i ; ðA16Þ

with the variance being defined by

σ2i ¼ E½ΔΩ2
i �: ðA17Þ

2. The generalized least-squares estimator

After computing the covariance matrix of β, we can
calculate the generalized least-squares estimator by solving
the translated system

X−1β⃗ ¼ X−1Bγ⃗ þX−1ϵ⃗ ðA18Þ

where the translation X is such that XTX ¼ V ¼ Cov½ β⃗�.
The least-squares estimation searches for a minimum of

∥X−1ðβ⃗ −Bγ⃗ Þ∥2 ¼ ðβ⃗ − Bγ⃗ ÞTV−1ðβ⃗ −Bγ⃗ Þ: ðA19Þ

We solve Eq. (A19) in the index notation:
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∂
∂gk

X
i;j

�
βi −

X
l

βlgl

�
V−1
ij

�
βj −

X
m

βmgm

�

¼ 2
X
i;j

βkV−1
ij

�
βj −

X
m

βmgm

�
¼ 0

⇒
X
i;j

V−1
ij βj ¼

X
i;j

V−1
ij

X
m

βmgm

⇒
X
m

gmβm ¼
P

i;jV
−1
ij βjP

i;jV
−1
ij

¼
X
m

P
iV

−1
imP

i;jV
−1
ij

βm ðA20Þ

where we renamed the summation index in the numerator
to highlight a solution of the system:

giðVÞ ¼
P

kV
−1
ikP

j;kV
−1
jk

: ðA21Þ

The uncertainty of the weighted average is then

σ2ðX−1β⃗Þ ¼ g⃗TVg⃗ ¼
X
i;j

giVijgj: ðA22Þ

APPENDIX B: β FUNCTION FROM PHASE WITH
QUADRUPOLE AND MISALIGNMENT ERRORS

In this Appendix we briefly present the derivation of
Eqs. (19) and (20). It is basically a repetition of Appendix A
of [7] without the constraint si < sj < sk and with BPM
longitudinal misalignments from Eqs. (16) and (17)
included. The derivation is based on the resonance driving
terms (RDTs) formalism of [15] and references therein. As
in [7] it is assumed that coupling RDTs are negligible, tune
lines from nonlinear RDTs are small and Hamiltonian
octupolar-like terms can be neglected. The important RDTs
and Hamiltonian terms for the derivations are

f2000;j ¼
P

W
w βmwδKw;1e

2iϕm
wj

8ð1 − e4πiQxÞ þOðδK2
1Þ

h1100 ¼ −
1

4

XW
w

βmwδKw;1 þOðδK2
1Þ; ðB1Þ

for the horizontal plane. It is understood that in the above
equations the β function and phase are the horizontal ones.
For the vertical plane the RDT f0200;j and the Hamiltonian
term h0011 shall be used while both terms have the opposite
sign. For the sake of brevity the vertical plane will not be
regarded in this derivation. The sums run over all W
quadrupole errors (including misalignments that act as
quadrupolar field errors).
The indices jklm of the RDTs fjklm;j will be suppressed

in the following discussion. Under the assumptions of
Eq. (16), the RDT fj ≡ f2000;j behaves as follows

fj ¼ fjjδs¼0
þOðδKδsÞ: ðB2Þ

Subtracting two Hamiltonian terms i and j yields

h1100;ij ¼ h1100;j − h1100;i

¼ −
1

4

X
i<w<j

βmx;wδKw;1 þOðδK2
1Þ if si < sj;

ðB3Þ

and

h1100;ij¼þ1

4

X
j<w<i

βmx;wδKw;1þOðδK2
1Þ if sj <si: ðB4Þ

We can use the ratio of the components m11 and m12 of the
transport matrix Mðsi; sjÞ (see [2], chapter 2) to calculate
the β function:

m11

m12

¼ 1

βi
ðcotϕij þ αiÞ: ðB5Þ

From [7] the β and α functions and the phase advance are
calculated as:

βj ¼ βmj ð1þ 8I ½fj�Þ þOðδK2
1Þ;

ϕij ¼ ϕm
ij − 2hij þ 4R½fj − fi� þOðδK2

1Þ;
αj ¼ αmj ð1þ I ½fj�Þ − 8R½fj� þOðδK2

1Þ; ðB6Þ

with hij ≡ h1100;ij from Eqs. (B3) and (B4). Introducing the
BPMmisalignments as described in Eqs. (16), (17) changes
the equations above to:

βj ≈ ðβmj − 2αmj δsjÞð1þ 8I ½fj�Þ;

ϕij ≈ ϕm
ij − 2hij þ 4R½fj − fi� þ

1

βmj
δsj −

1

βmi
δsi;

αj ≈ ðαmj þ α0jδsjÞð1þ I ½fj�Þ − 8R½fj�; ðB7Þ

up to first order in δsi. fj can be expressed in terms of fi, as
developed in [16–18]

fj ¼ ĥije
−2iϕm

j þ fie
2iϕm

ij

with ĥij ¼ sgnði − jÞ 1
8

X
w∈I

βmwδKw;1e−2iϕ
m
w : ðB8Þ

Thus, we can eliminate the fi dependence in the second line
of Eq. (B7)

R½fj − fi� ¼ R½ĥije2iϕ
m
j � þR½fi�ð−2 sinϕm

ijÞ
− I ½fi�2 sinϕm

ij cosϕ
m
ij: ðB9Þ

Before putting everything into Eq. (B5), we have to expand
cotϕij
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cotϕij ≈ cotϕm
ij þ

2hij − 4R½fj − fi� − 1
βmj
δsj þ 1

βmi
δsi

sin2ϕm
ij

:

¼ cotϕm
ij þ

2hij − 4R½ĥije2iϕ
m
j �

sin2ϕm
ij

þ 8R½fi� þ 8I ½fi�
cosϕm

ij

sinϕm
ij
−

1
βmj
δsj − 1

βmi
δsi

sin2ϕm
ij

¼ cotϕm
ijð1þ 8I ½fi�Þ þ ḡij þ 8R½fi� ðB10Þ

with

ḡij ≡
2hij − 4R½ĥije2iϕ

m
j � − 1

βmj
δsj þ 1

βmi
δsi

sin2ϕm
ij

: ðB11Þ

We can still simplify 2hij − 4R½ĥije2iϕ
m
j � a bit:

2hij − 4R½ĥije2iϕ
m
j �

¼ sgnði − jÞ
X
w∈I

βmwδKw;1½1 −R½e2iϕm
wj ��

¼ sgnði − jÞ
X
w∈I

βmwδKw;1½1 − cosð2ϕm
wjÞ�

¼ sgnði − jÞ 1
2

X
w∈I

βmwδKw;1sin2ðϕm
wjÞ: ðB12Þ

Now instead of h̄ij in Eq. (12) we have the terms ḡij defined
as follows:

ḡij ¼
1
βmj
δsj − 1

βmi
δsi þ sgnði − jÞPw∈Iβ

m
wδKw;1sin2ϕm

wj

sin2ϕm
ij

:

ðB13Þ

Combining Eqs. (B7), (B10) and the result for ḡij into (B5)
yields

1

βi
ðcotϕij þ αiÞ ≈

1

βmi − 2αmi δsi
ðcotϕm

ij þ αmi þ ḡijÞ;

ðB14Þ

for the horizontal plane. We note here that for the vertical
plane ḡij would have the opposite sign and β and ϕ would
of course be the vertical β function and phase.
For a fixed probed BPM i we can exchange j → k in

Eq. (B14). We can solve for βi by taking the difference of
the resulting equations:

βi ¼
cotϕij − cotϕik

cotϕm
ij − cotϕm

ik þ ḡij − ḡik
ðβmi − 2αmi δsiÞ þOðδs2Þ:

ðB15Þ
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de Portugal, and R. Tomás, Utilizing the N beam position
monitor method for turn-by-turn optics measurements,
Phys. Rev. Accel. Beams 19, 092803 (2016).

[6] L. Malina, J. Coello de Portugal, T. Persson, P. K. Skow-
roński, R. Tomás, A. Franchi, and S. Liuzzo, Improving the
precision of optics measurement based on turn-by-turn beam
position monitor data after a pulsed excitation in lepton
storage rings, Phys. Rev. Accel. Beams 20, 082802 (2017).

[7] A. Franchi, Error analysis of linear optics measurements
via turn-by-turn beam position data in circular accelerators,
arXiv:1603.00281.

[8] http://mad.web.cern.ch/mad.
[9] P. Hagen, M. Giovannozzi, J.-P. Koutchouk, T. Risselada, S.

Sanfilippo, E. Todesco, and E. Wildner, WISE: an adaptive
simulation of the LHC optics, in Proceedings of the 10th
EuropeanParticle AcceleratorConference, Edinburgh, Scot-
land, 2006 (EPS-AG, Edinburgh, Scotland, 2006), p. 2248.

[10] P. Hagen, M. Giovannozzi, J.-P. Koutchouk, T. Risselada, F.
Schmidt, E. Todesco, and E. Wildner, WISE: a simulation of
the LHC optics including magnet geometrical data, in Pro-
ceedings of the 11th European Particle Accelerator Conf-
erence, Genoa, 2008 (EPS-AG, Genoa, Italy, 2008), p. 1744.

[11] F. Schmidt, E. Forest, and E. McIntosh, CERN Reports
No. CERN-SL-2002-044-AP, No. KEK-REPORT-2002-3,
2002.

[12] S. Fartoukh, Achromatic telescopic squeezing scheme and
application to the LHC and its luminosity upgrade, Phys.
Rev. ST Accel. Beams 16, 111002 (2013).

[13] S. Fartoukh, R. Bruce, F. Carlier, J. Coello De Portugal, A.
Garcia-Tabares, E. Maclean, L. Malina, A. Mereghetti, D.
Mirarchi, T. Persson, M. Pojer, L. Ponce, S. Redaelli, B.
Salvachua, P. Skowronski, M. Solfaroli, R. Tomás, D.
Valuch, A. Wegscheider, and J. Wenninger, Experimental
validation of the achromatic telescopic squeezing scheme
at the LHC, J. Phys. Conf. Ser. 874, 012010 (2017).

[14] T. Kariya and H. Kurata, Generalized Least Squares, Wiley
Series in Probability and Statistics (Wiley, New York, 2004).

[15] A. Franchi, L. Farvacque, F. Ewald, G. Le Bec, and K. B.
Scheidt, First simultaneous measurement of sextupolar and
octupolar resonance driving terms in a circular accelerator
from turn-by-turn beam position monitor data, Phys. Rev.
ST Accel. Beams 17, 074001 (2014).

[16] R. Tomás Garcia, Ph.D. thesis, Valencia U., 2003.
[17] R. Tomás, M. Bai, R. Calaga, W. Fischer, A. Franchi, and

G. Rumolo, Measurement of global and local resonance
terms, Phys. Rev. ST Accel. Beams 8, 024001 (2005).

[18] A. Franchi, R. Tomás, and F. Schmidt, Magnet strength
measurement in circular accelerators from beam position
monitor data, Phys.Rev. STAccel.Beams10, 074001 (2007).

WEGSCHEIDER, LANGNER, TOMÁS, and FRANCHI PHYS. REV. ACCEL. BEAMS 20, 111002 (2017)

111002-10

https://doi.org/10.1103/PhysRevAccelBeams.20.054801
https://doi.org/10.1103/PhysRevSTAB.11.084002
https://doi.org/10.1103/PhysRevSTAB.11.084002
https://doi.org/10.1103/PhysRevSTAB.18.031002
https://doi.org/10.1103/PhysRevSTAB.18.031002
https://doi.org/10.1103/PhysRevAccelBeams.19.092803
https://doi.org/10.1103/PhysRevAccelBeams.20.082802
http://arXiv.org/abs/1603.00281
http://mad.web.cern.ch/mad
http://mad.web.cern.ch/mad
http://mad.web.cern.ch/mad
http://mad.web.cern.ch/mad
https://doi.org/10.1103/PhysRevSTAB.16.111002
https://doi.org/10.1103/PhysRevSTAB.16.111002
https://doi.org/10.1088/1742-6596/874/1/012010
https://doi.org/10.1103/PhysRevSTAB.17.074001
https://doi.org/10.1103/PhysRevSTAB.17.074001
https://doi.org/10.1103/PhysRevSTAB.8.024001
https://doi.org/10.1103/PhysRevSTAB.10.074001

