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NORMA is a design for a normal-conducting racetrack fixed-field alternating-gradient accelerator for
protons from 50 to 350 MeV. In this article we show the development from an idealized lattice to a design
implemented with field maps from rigorous two-dimensional (2D) and three-dimensional (3D) FEM
magnet modeling. We show that whilst the fields from a 2D model may reproduce the idealized field to a
close approximation, adjustments must be made to the lattice to account for differences brought about by
the 3D model and fringe fields and full 3D models. Implementing these lattice corrections we recover the
required properties of small tune shift with energy and a sufficiently large dynamic aperture. The main
result is an iterative design method to produce the first realistic design for a proton therapy accelerator that
can rapidly deliver protons for both treatment and for imaging at up to 350 MeV. The first iteration is
performed explicitly and described in detail in the text.
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I. INTRODUCTION

A. Proton therapy and the need for imaging

Modern radiotherapy is a mainstay of cancer treatment
today, and in the developed world around half of cancer
patients will receive radiotherapy as part of their treatment.
The bulk of radiotherapy treatments are given by using
x rays from a low-energy linac (approximately 10–20 MeV
kinetic energy), where the method of intensity-modulated
radiotherapy (IMRT) utilizes numerous treatment field
directions and a movable set of multileaf collimators that
may obtain a highly conformal dose to a prescribed
treatment volume [1–7]. Whilst accurate pretreatment
patient imaging (such as computed tomography) are of
course crucial to creating and delivering the planned
treatment, the inherent near-exponential reduction of
x-ray intensity with depth makes x-ray treatment compa-
ratively less sensitive to errors in the patient density that is
inferred from the patient imaging process.
Proton therapy is an alternative method of delivering a

radiotherapeutic treatment to a patient, already known since
1947 [8] to potentially offer an inherently more precise

delivered dose since the proton stopping transfers those
particles’ kinetic energy to deposited dose according to the
Bethe-Bloch equation [9]. A well-known initial proton
energy coupled with a well-known tissue density allows
one to place the maximum dose—at the Bragg peak at the
end of the particle range—at a desired position within the
patient. The overlap of numerous Bragg peaks from protons
with differing initial energy allows a conformal dose in the
treatment volume whilst potentially better sparing the
surrounding tissue from unwanted dose, particularly impor-
tant for nearby organs at risk. That said, proton therapy is
not thought to be advantageous over x-ray therapy for all
radiotherapy treatments, and is often prescribed for par-
ticular complex or pediatric treatments where the unwanted
ancillary dose may cause a later induction of secondary
cancers as a treatment side effect.
The treatment advantages of proton therapy have led to

the creation of the more than 50 operating centers around
the world today [10,11]. Supplanting early facilities at
research laboratories, today’s hospital-based centers pre-
dominantly utilize cyclotrons although synchrotrons are
also used. Modern cyclotrons—particularly superconduct-
ing ones—offer a number of advantages in terms of
simplicity, capital cost and possible dose rate at the patient;
1 Gy may be accurately delivered to a patient by such a
source in less than a minute using an average current of
<1 nA [9]. However, higher-intensity cyclotrons are typ-
ically limited to around 230–250 MeV kinetic energy due
to relativistic effects, and their fixed-energy extraction
requires the use of a mechanical degrader (typically
graphite) to lower the proton energy for shallower proton
dose delivery. 230 MeV protons are sufficient for treating
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adult patients (this energy corresponds to about a 33 cm
proton range in water), but some treatments would benefit
from more rapid (and therefore finer) variation of the
energy than is readily achieved using cyclotrons. The latter
benefit has led to the proposal both of linacs and of fixed-
field alternating-gradient accelerators (FFAGs) for particle
therapy; each offers the possibility of obtaining a rapid
change of the delivered proton energy at rates up to 1 kHz.
Various FFAG designs have therefore been put forward, a
notable example being the French RACCAM study that
showed how such an accelerator could operate with
multiple treatment rooms [12].
Irrespective of the accelerator technology used to deliver

the particles, the benefits of proton therapy are today
limited by inadequacies in the patient imaging used to
estimate the patient tissue density [9]. This determination is
crucial to deriving a suitable treatment plan, and is further
complicated by the complex scattering effects around
inhomogeneities that demands Monte-Carlo dose estima-
tion [13]. X-ray computed tomography is seen as some-
what inadequate as the patient density and composition
derived from the Hounsfield measurement can lead to
several millimeters of error in the resulting proton range
[14–16]. Proton tomography is a better, more direct,
measure of the desired proton stopping power and therefore
several groups are developing clinical proton tomography
instruments that typically track millions of individual
protons to assemble a three-dimensional image with a
resolution approaching a millimeter [17,18]. But, proton
tomography requires protons of sufficient energy to pass
through the part of the patient to be imaged, implying
significantly higher incident energies than those that would
be used to deliver a (stopped beam) treatment in that same
volume. A proton source of 250 MeV could be used for
imaging through smaller thicknesses, but patients requiring
treatment with 230 MeV protons of course require imaging
with much higher proton energies—perhaps as high as
330 MeV or more depending on the image resolution
required. No commercial cyclotron today offers this higher
energy, and whilst linacs and synchrotrons both in principle
could offer such an energy only ProTom has offered a
330 MeV system commercially [19]. This lack has pre-
viously motivated both the PAMELA design study [20]—
which examined a combined accelerator system offering
both protons and carbon ions—and our NORMA study
[21,22]. Both designs aimed at providing proton energies
suitable for tomography, but in the latter proton-only
NORMA study the additional goal has been to offer a
simple, robust design.

B. FFAGs for proton therapy and imaging

In our previous work on NORMAwe concluded that an
FFAG design utilizing a focusing-defocusing-focusing
(FDF) arrangement of normal-conducting gradient dipoles
was the best way to achieve our desired 350 MeV. The

maximum field of around 1.6 T necessitates a somewhat
larger circumference than could be obtained with super-
conducting magnets, but allows for an easier control of the
tune during proton bunch acceleration using the higher-
order field components in the magnets. Injection of a single
proton bunch would be obtained from a cyclotron at an
energy of at least 50 MeV, and both injection and extraction
would be via a conventional pulsed kicker/septum combi-
nation that may benefit from lengthening two of the straight
sections between the ten FDF cells to give a racetrack
layout; the acceleration cycle of around 1 ms per extracted
single bunch would enable rapid bunch-by-bunch variation
of the delivered energy at the patient. A more detailed
discussion of the accelerator magnet lattice design is given
by Garland et al. [21], and is summarized in Sec. II. In this
previous article both the round and racetrack configurations
of NORMA are considered; however, here we focus on just
the round variant.
The optics design of NORMA presented in [21] was

performed with idealized magnet models, to enable the
overall beam dynamics to be studied and optimized. This
is a common approach that allows optimization using a
reduced number of variables, and gives a tractable simulation
time. Our idealized magnet models use analytic expressions
for the magnetic field within the body of the magnet, and a
simple analytic expression for the fringe field falloff; this is a
compromise between simplicity and realism. However, once
a design has been obtained with idealized magnets it is of
course important to check that the approximations used
do not have a significant effect on the dynamics of the
accelerator. For example, the presence, size and shape of the
realistic fringe fields will affect the focusing of a magnet and
the fields from the physical magnets will not completely
match analytic models. Their shape can introduce higher-
order effects that are not expressed in their ideal analytic form
and manufacturing tolerances will cause deviations from the
ideal field. This is an issue that must in particular be
addressed in FFAG design—where the magnets are large
in aperture and inherently nonlinear in nature—before one
can be confident that a realistic and therefore buildable
design has been obtained.
In this article we build on our previous work [21], and

discuss the detailed 2D and 3D magnet modeling carried
out to improve the realism of the NORMA design. Realistic
magnet fields introduce perturbations on the idealized
dynamics such as tune shift and a reduction in the dynamic
aperture. We show how this can be mitigated—by rematch-
ing and reoptimizing—in order to recover acceptable
dynamical properties; we demonstrate the recovery of a
sufficiently flat tune profile and sufficient dynamic aperture
for injection and acceleration. We introduce the magnet
models in three stages, so as to methodically understand the
importance of different effects.
The layout of this paper is as follows. In Sec. II we

describe the original NORMA lattice and the methods used
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for modeling complex elements and performing long-term
stability studies. This is followed in Sec. III by the magnet
design process. In Sec. IV NORMA is modeled using the
radial profile from the 2D magnet simulations, with realistic
transverse fields but with a simplified fringe model; the
effects on the dynamical properties are shown to be small.
Then in Sec. V we show the effects of changing the
parameters used for the fringe fields, and how these can
be mitigated by rematching the overall lattice; the results
show that all realistic likely fringe field perturbations to the
dynamical properties can be absorbed by retuning the
strength and field index of the magnets. Finally, in
Sec. VI we model NORMA with a full set of 3D magnet
models. Here the effects on the dynamics are more signifi-
cant, and so we show the necessary corrections to the field
profile to restore thedynamical properties and crucially of the
dynamic aperture. The overall result is a method for the
iterative design of realistic magnets for a medical FFAG
capable of delivering 350 MeV protons for imaging, and a
demonstration of the first step of the iteration.

II. THE NORMA ACCELERATOR

In this section we introduce the nominal NORMA
design, as described in detail in [21], as well as the code
Zgoubi [23] which is used for tracking particles through
the lattice.

A. The NORMA lattice

The round NORMA lattice design variant is a FFAG
consisting of ten identical FDF triplets. It accelerates proton
bunches to 350 MeV, with injection from a cyclotron with
at least 50 MeV kinetic energy. NORMA utilizes normal-
conducting sector magnets with a scaling FFAG field
achieved by pole-face shaping. Within the 36° cell, each
magnet has a sector angle of 6°; within the FDF triplet the
magnets are spaced by 1.8°. The scaling FFAG magnets
result in a flat tune (tune shift below 10−3) over the full
energy range from 50 to 350 MeV. The magnet field falloff
is modeled using Enge-like fringe fields with a 6 cm
extent [24,25].
A NORMA triplet cell is shown in Fig. 1. The full ring

composed of ten cells is shown in Fig. 2. Between each

triplet is 2.4 m of magnet-free drift space. The parameters
for the round NORMA lattice are given in Table I. In this
article we refer to this lattice as the nominal NORMA
design and use it as the baseline for further study.
Note that—during the early stages of this work—with

idealized and 2D magnets we considered an energy range
down to 30 MeV. Some of the dynamic aperture simu-
lations in Secs. IV and V were carried out at 30 MeV,
however this is always a tougher requirement than at higher
energy due to adiabatic damping.

B. Tracking simulations

Zgoubi, which was used for tracking simulations, is a
charged-particle tracking code widely used for designing
and studying FFAGs. It uses a stepwise ray-tracing method;
the particle is propagated in small steps and at each of these

FIG. 1. NORMA cell, showing the midplane magnetic field
strength in the three scaling FFAG magnets forming the FDF
triplet, and the closed orbits for a range of energies.

FIG. 2. NORMA round lattice, with minimum and maximum
closed orbits shown in red.

TABLE I. The main parameters of the nominal NORMA
lattice.

Parameter

Injection energy 50 MeV
Maximum energy 350 MeV
Average radius 9.61 m
Circumference 60.4 m
Average orbit excursion 0.43 m
Ring tune (Qx, Qy) 7.72, 2.74
Field index 27.47
Number of cells 10
Maximum field in F magnet 1.57 T
Maximum field in D magnet −1.19 T
Dynamic aperture (normalized) 68.0 mm mrad
Magnet-free drift LLD 2.4 m
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themagnetic field and its derivatives are evaluated. This gives
accurate results for particles over a wide range of momenta
and trajectories when moving through large-aperture mag-
nets. Zgoubi features a range of magnet descriptions that
together are capable of simulating the complex magnets
which are typical of FFAGs. We use the PyZgoubi [22,26]
framework around Zgoubi to expand its capability, allowing
advanced scripting and optimization.

Zgoubi features both analytic and field-map-based magnet
descriptions. In each, the magnet description is used to
calculate the field and its derivatives at each integration step
along the charged-particle’s trajectory. In our studieswe have
used several magnet models: FFAG, an analytic model of a
sector scaling FFAGmagnet; DIPOLES, a sector dipolewith
optional higher multipole fields; POLARMESH, a 2D polar
midplane field map with an out-of-plane expansion.

1. Analytic scaling FFAG

Zgoubi offers an idealized scaling FFAG sector magnet,
which we use as the reference model for the nominal error-
free lattice. The field is composed of the product of the
radial scaling law

BN ¼ B0ðr=r0Þk; ð1Þ
where r0 is the reference radius and k is the field index, and
a longitudinal fringe function

F ¼ 1

1þ exp½C0 þ C1ðsλÞ þ C2ðsλÞ2 þ � � �� ; ð2Þ

where s is the distance from the effective field boundary, λ
is the fringe field extent and Ci are the well-known Enge
coefficients [24]. In the nominal design we use C1 ¼ 2.24
and λ ¼ 4 cm with other coefficients set to zero. Zgoubi

allows any field overlap between magnets to be modeled by
assuming linear superposition.
We use the FFAG element for initial optimization of the

lattice; however it is limited in its flexibility for error
studies as only the position and strength can be adjusted.

2. Multipole expansion

Zgoubi’s DIPOLES element can be used to model a sector
dipole, but also allows additional multipole components in
the field. This can be used to describe combined-function
magnets, but also to approximate more complex fields such
as a scaling FFAG. It allows the radial field profile to be
expressed as

BN ¼ B0 þ B1ðr − r0Þ þ B2ðr − r0Þ2 þ � � � ; ð3Þ
where Bi are the multipole components. Again this is
multiplied by the longitudinal fringe field given in Eq. (2)
to give the midplane field.
There are two methods to find the multipole coefficients

to use with the DIPOLES element. The ideal FFAG scaling
field can be Taylor expanded about a given radius, usually

halfway between the minimum and maximum orbits.
Alternatively a multipole expansion can be fitted over
the required good field region. ATaylor expansion of BðrÞ
around R0 gives

BN ¼ B0

�
1þ k

R0

ðr − R0Þ þ
kðk − 1Þ
2!R2

0

ðr − R0Þ2

þ kðk − 1Þðk − 2Þ
3!R3

0

ðr − R0Þ3 þ � � �
�
; ð4Þ

which can be equated with Eq. (3) to obtain the coefficients.
Whilst the Taylor expansion gives the correct field and
derivatives about the expansion point, using a fit gives a
lower maximum deviation in field for any given expansion
order, as illustrated in Fig. 3. Use of DIPOLES with a fit up
to ninth order gives a very good agreement to the dynamics
of the FFAG element: the mean closed orbit deviation is
below 10−9 cm and the mean fractional deviation of the
tune is below 10−10 horizontally and below 10−5 vertically.

3. Midplane field maps

Zgoubi’s POLARMESH element allows a magnet to be
defined in terms of a 2D polar field map in the midplane,
with field maps generated in external magnet simulation
codes such as OPERA [27]. This allows simulation of the
deviations from an ideal field that are likely to occur in a
real magnet. It is also possible to generate field maps
representing the ideal field by evaluating the analytic
equations for a scaling FFAG magnet at the grid points.
This can be used to distinguish simulation effects due to an
interpolation step from actual effects due to the imperfec-
tions of a realistic magnet. It also allows investigation into
the resolution requirements for the field map. We find that
for the nominal NORMA lattice a 1000 × 1000 grid of

FIG. 3. Multipole Taylor expansion and fit to an example
analytic scaling field; both with dipole, quadrupole and sextupole
terms.
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mesh points per half cell (from the start to the center of
the triplet) is sufficient to give a mean closed orbit deviation
of 10−6 cm and mean fractional tune deviations of 10−5

horizontally and 10−4 vertically. Increasing the mesh
density to 2000 × 2000 does not significantly improve
agreement with the analytic models.

C. Dynamic aperture

Dynamic aperture (DA) is a measure of the stable area of
phase space for particles circulating in an accelerator.
A particle within the stable area will survive a large number
of turns through the accelerator lattice, while a particle
outside this region will be lost after a small number of turns.
In practice a finite number of turns must be simulated in
order to predict the stability. For NORMA we consider a
coordinate stable if a particle starting there will survive
1000 turns, as this is representative of the length of the
acceleration cycle of around 1 ms. We use a strict definition
for dynamic aperture where—for any given amplitude—a
set of particles with a range of phase-space angles are tested
and must all be stable, as described in [22].
A large dynamic aperture is required to transport the

injected bunches through the accelerator with a low loss.
A large dynamic aperture increases overall transmission
efficiency (from injection to extraction) and therefore
reduces radiation and activation. The injected bunches
from the cyclotron will have a typical normalized emittance
of less than 10 mmmrad [28]. We therefore require that the
normalized dynamic aperture is kept around 50 mmmrad
or greater, a specification considered sufficient for this
application [20].
It is useful to see the effect on the dynamic aperture of the

nominal lattice design from using the differing tracking
methods, before studying modifications to the lattice. This
allows us to distinguish DA changes that are due to using a
different field from those due to the choice of tracking
method. Figure 4 shows the dynamic aperture over a range of
real space angles in x and y, i.e. where 0° is the horizontal and
90° is the vertical dynamic aperture, using FFAG, DIPOLES
and POLARMESH elements. As before, the DIPOLES
shows good agreement to the FFAG element. However,
with POLARMESH we see a significant reduction in DA.
Increasing the number of mesh points used in the
POLARMESH does not improve agreement with the ana-
lytic models. We believe that this is due to small errors from
the interpolation of the field map building up when tracking
for a large number of turns. Therefore, we consider only
FFAG and DIPOLES elements to be suitable for DA
calculations.

D. Field errors

Deviations of a given field from an ideal field can be
measured in a number of ways, and it is common to specify
maximum deviations from the ideal field or gradient. In

general the deviation of each multipole component from the
ideal field can be measured. In a synchrotron a multipole
expansion about the magnet center can be used, but for a
magnet that accepts a wide range of orbits one needs to be
careful about where the multipole components are mea-
sured. This is important because introducing a multipole
error of a given order at one location will change the lower-
order multipole values everywhere else; for example a
sextupole error at a given orbit radius causes a quadrupole
and dipole shift across the magnet. For a field map defined
by field strengths on a regular grid, the multipole compo-
nents can be found either by fitting a polynomial to the
whole map or a subsection of it, or by repeated numerical
differentiation (e.g. the quadrupole component is propor-
tional to the first derivative of the field with respect to the
radius).

III. MAGNET DESIGN AND OPTIMIZATION

This section describes the finite element models of the
lattice magnets, the strategy chosen for their optimization
and the main steps of its implementation.

A. 2D magnet models

The required nominal radial field profile BNðrÞ is given
by Eq. (1). The values of the parameters r0, B0, k and the
extent of the good-field region required are specified for
each magnet. The first step of the magnet design and
optimization process is to fit Eq. (1) to a polynomial within
the good field region. By following the standard procedure
(see e.g. [29]) the coefficients of the fitting polynomial can
be used to obtain the two-dimensional scalar potential
Ψ ¼ Ψðx; yÞ such that B ¼ ∇Ψ in the air gap of the two
magnets. Figure 5 shows the result. Note that the 2D
magnet modeling and optimization is performed in a
coordinate system with an origin located at the center of

FIG. 4. Dynamic aperture as a function of real space angle
for the nominal design modeled with FFAG, DIPOLES and
POLARMESH elements.
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the good-field region of each magnet and the x-axis points
along the machine radius.
If the permeability of the magnet yoke material is

infinitely high the lines of constant scalar potential in
Fig. 5 coincide with the faces of the magnet poles that
generate the required field. The good-field region (plus any
reasonable contingencies) must fit within the air gap of the
magnet and this determines uniquely the actual magnet
pole shapes and the nominal value of the scalar potential
that the magnet will be operated at. Indeed, as Fig. 5 shows,
each pole configuration is uniquely determined by the
absolute value of its scalar potential jΨ0j. Finally, the
nominal magnet current IN ¼ 2jΨ0j=μ0 (Ampère turns) can
be obtained from Ampère’s law as usual, where μ0 is the
vacuum permeability.
However, in reality the permeability of ferromagnetic

steel normally employed in accelerator magnet construc-
tion is finite. Therefore, strictly speaking the magnet pole
shape obtained by means of the multipole expansion
technique described in the preceding paragraph is an
approximation only. In addition, the onset of magnetic
steel saturation lowers the permeability even further and
this leads to field errors that cannot be neglected, particu-
larly in the high-field regions of the magnets. If the field
error ΔB ¼ BN − BM, where BM ¼ Byðx; y ¼ 0Þ is the
actual field generated by the magnet, is too high then
the pole shape y ¼ yðxÞ must be replaced with a new pole
shape ~y ¼ yðxÞ þ ΔyðxÞ such that the magnitude of the
field error BN − ~BM it generates is acceptable. The approxi-
mate relationship between ΔB and ΔyðxÞ can be obtained
as follows. Since both BN and BM are functions of x, i.e.
BN ¼ BNðxÞ and BM ¼ BMðxÞ, one can substitute x ¼
xðyÞ in the two expressions by inverting the known
expression for the pole profile y ¼ yðxÞ and obtain the

new expressions BN ¼ BNðyÞ and BM ¼ BMðyÞ. Naturally,
this is only possible under the assumption that the inverse
pole profile function exists. The next step is to express BN
in the form

BN≈BMþdBM

dx
dx
dy

Δyþ1

2

d
dy

�
dBM

dx
dx
dy

�
Δy2þ��� ; ð5Þ

where ΔyðxÞ is the correction to the pole profile. In Eq. (5)
terms of the order of Δy3 and higher have been neglected.
An approximate solution to Eq. (5) is easy to obtain and the
result is

Δy ≈ α1ðBN − BMÞ½1 − 0.5α2ðBN − BMÞ þ � � ��; ð6Þ

where

α1 ¼
dy
dx

�
dBM

dx

�
−1

and

α2 ¼
�
dBM

dx

�
−1
�
d2BM

dx2

�
dBM

dx

�
−1

−
d2y
dx2

�
dy
dx

�
−1
�
:

In Eq. (6) terms of the order of ðBN − BMÞ3 and higher have
been neglected. Equivalently Eq. (6) can be derived by
formally inverting the function BM ¼ BMðyÞ and Taylor
expanding the result y ¼ yðBÞ.
It is clear that dBM

dx must not be zero as it is present in the
denominators of both of the expressions for α1 and α2.
However, in deriving Eq. (6) it has been assumed that the
term of the order of ðBN − BMÞ2 is a small perturbation
compared to the term of the order of ðBN − BMÞ [or
equivalently, the term proportional to α2 in Eq. (6) is much
smaller than one], and so the series can be truncated
without any significant loss of accuracy. This assumption
may not be valid if the value of j dBM

dx j is sufficiently small.
This means that in the vicinity of local extrema of BM

Eq. (6) becomes inaccurate. In addition dy
dx must be nonzero

in order to ensure the existence of the inverse pole profile
function x ¼ xðyÞ. If however, j dydx j → ∞ (i.e. dydx has a pole,

see Fig. 5) then in the vicinity of that pole j d2ydx2 ðdydxÞ−1j → ∞
and the term proportional to α2 in Eq. (6) may no longer be
small compared to one. Hence, the applicability of Eq. (6)
relies upon the following two conditions: (i) j dydx j is nonzero
and not too large and (ii) j dBM

dx j is not too small.
A magnet pole optimization procedure based on Eq. (6)

must be applied iteratively as Eq. (6) itself is an approxi-
mation. The zeroth-order approximation to the pole profile
y0ðxÞ is obtained by means of the multipole expansion

technique and the field distribution Bð0Þ
M ðxÞ it generates is

obtained from finite-element (OPERA 2D [27]) simulations.

FIG. 5. Lines of constant scalar potential for the D-magnet
(blue). The good-field region required is represented by the
rectangle (red) and the origin of the coordinate system is the
center of the good-field region. The vectors (green) are propor-
tional to the local gradient of the scalar potential.
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Bð0Þ
M ðxÞ and y0ðxÞ are then substituted into the right-

hand side of Eq. (6) to obtain the corrected pole profile
y1 ¼ y0 þ Δy0 which is in turn used to obtain the field

distribution Bð1Þ
M ðxÞ and so on. The implementation of this

scheme on a computer uses MATLAB [30] to calculate the
pole profile correction according to Eq. (6) from field
distribution data generated by OPERA 2D and the result is
then fed to OPERA 2D, which in turn calculates the updated
field distribution. This process is repeated until the desired
maximum field error is reached. Figure 6 shows the result
from a test run. The initial (zeroth-order) pole profile and
the current strength were obtained with the multipole
expansion technique. In order to test the optimization
algorithm the coil current was intentionally increased so
that the field in the main part of the magnet (which operates
far from saturation) is 2% higher than the nominal field.
Within seven iterations the peak relative field error was
reduced by a factor of over 200: from 2% to less than 10−4.
Figure 7 shows the good match for the dipole, quadrupole
and sextupole components between the 2D field profiles
and the ideal nominal magnet field.
The first four iterations were performed in the region

−0.3 m < x < 0.3 m and the remaining three in the region
−0.25 m < x < 0.25 m while the specified good field
region for this test was −0.23 m < x < 0.23 m. It was
noted that the convergence in the central region of the
magnet was faster than in the low-field and high-field
regions. Indeed, as Fig. 6 shows, the extent to which the
error is reduced by the first iteration is greater in the central
part of the magnet than towards the magnet ends.
A possible explanation for this is that in the low-field
region dy

dx gradually increases towards the pole roll-off area

whilst in the high-field region dBM
dx approaches zero near the

peak of the magnetic field. As pointed out earlier these are

precisely the conditions when Eq. (6) is no longer
accurate.
Figure 8 shows the correction to the pole profile obtained

after seven iterations. As can be seen, ΔyðxÞ ≥ 0 in the
region −0.23 m < x < 0.23 m, which corresponds to

FIG. 6. A test of the pole optimization procedure performed on
the 2D F magnet model. Distribution of the relative field error
obtained from three different iterations. The inset shows the 2D
flux density distribution as obtained with OPERA 2D illustrating
the low-field and high-field regions of the magnets. The red color
corresponds to high flux density.

(a) F dipole component (b) D dipole component

(c) F quadrupole component (d) D quadrupole component

(e) F sextupole component (f) D sextupole component

FIG. 7. Multipole components of the 2D field profiles com-
pared to the nominal field. r is the radial distance from the
machine center.

FIG. 8. Correction to the pole profile of the F magnet obtained
after seven iterations.
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increasing the magnet gap and decreasing the field strength
in full accordance with Fig. 6. The notch formed near
x ¼ 0.3 m is most likely a result of Eq. (6) becoming
less accurate close to the region where dBM

dx → 0.

B. 3D magnet models

The 3D magnet models were created by extruding the 2D
magnet shapes; Fig. 9 shows the OPERA 3D model of the
focusing (F) magnet. Two clamping plates were added on
each side of the magnets to restrict the extent of their fringe
fields and eliminate possible cross talk between adjacent
magnets. In order to save time the overall height of each
magnet, the size of its back leg, the thickness of the
clamping plates and the geometry of its roll-off in the high-
field region were not optimized. The optimization in 3D
was performed on the integrated field strength only and no
attempt was made to adjust the main field (generated in the
air gap of the magnet) and the fringe field (generated
outside the air gap) separately.
The integrated field strength IðrÞ is defined as

IðrÞ ¼
Z

Γ0

−Γ0

Byðr;φ; y ¼ 0Þdφ; ð7Þ

where the origin of the cylindrical coordinate system is
located in the machine center, and r, φ and y are the radial,
azimuthal and axial coordinates, respectively, and
Byðr;φ; yÞ is the vertical (axial) magnetic field component.
The integration limit Γ0 > 0 was chosen such that
Byðr; jφj > Γ0; y ¼ 0Þ → 0.
Both magnets were specified as six-degree sector mag-

nets. It was found that the integrated field strength
distribution generated by the 3D six-degree sector magnet
models with straight edges deviate considerably from the
ideal, “hard-edge,” six-degree sector magnetic field distri-
bution given by Eq. (1) (see Fig. 10). This means that pole

edges of the magnets need to be adjusted accordingly. To
achieve this the new pole edge shape φ ¼ φðrÞ in the polar
coordinate system employed is calculated from Newton-
Raphson’s formula,

φðrÞ ≈ φ0 þ ½IðrÞ − I0�
�
ΔI
Δφ

�
−1
; ð8Þ

where φ0 ¼ 6° is the initial approximation to the magnet
edge profile and IðrÞ is the specified value of the integrated
field strength obtained fromEqs. (1) and (7). The ratio ΔI

Δφwas
obtained by creating another magnet model with φ1 ¼ 5°
sector angle and subtracting the integrated field strengths
obtained from both models. To simplify the task a discrete
version of the good-field region of each magnet was
considered. The radial coordinates r1, r2, …; r5 split
the good-field region into four intervals of equal
length and the corresponding azimuthal coordinates
φðr1Þ;φðr2Þ;…;φðr5Þ were obtained from Eq. (8). The
corrected pole edge shape was recovered by fitting a
polynomial to the calculated nodes fri;φig, 1 ≤ i ≤ 5. As
Fig. 10 shows this procedure reduces the peak relative
integrated field error by an order of magnitude. Further
improvement can be obtained by “tweaking” the nodes
individually until the desired accuracy goal has been reached.
Figure 11 shows the pole edge profile of the F magnet
obtained from Eq. (8) compared to a 6°-edge and a 5°-edge.
Whilst the radial profile in the final 3D magnets deviates

from that of the nominal design, the integrated field along
each arc of constant radius is well matched by this
adjustment of the edge geometry. Figure 12 shows the
peak and integrated fields for the focusing and defocusing
magnets. The peak field is different from the nominal
values by up to 7.3% in the F magnet and 1.5% in the D
magnet, whereas the greatest deviation from nominal for
the integrated field is 1.7% in the F and 1.5% in the D.

FIG. 9. 3D model of the F magnet. (a) Side view without the
clamping plates. (b) View from the top showing the pole edge
profile without the clamping plates. (c) Half of the pole area with
the clamping plates. Their role is to limit the extent of the fringe
fields and to eliminate cross talk between adjacent magnets. The
magnetizing coil is not shown.

FIG. 10. Relative integrated field error for the F magnet for a
6°-sector model, 5°-sector model and a model with an optimized
edge. Here r is the radial coordinate of the auxiliary cylindrical
coordinate system ðr;φ; yÞ introduced.
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The 2D and 3D magnet models can now be used to
obtain field maps for particle tracking. In the following
sections we analyze the beam dynamics with these realistic
magnet models.

IV. BEAM DYNAMICS WITH 2D MAGNETS

In this section we model NORMA using the field profiles
from the 2D magnet models, to compare the dynamics with
those due to the nominal fields.

A. Implementing the 2D field maps in Zgoubi

The 2D magnet design is output from OPERA as a table of
the vertical component of the field, By, along a radial line

through the magnet. The Bx and Bz are zero by symmetry.
These radial profiles can be used in Zgoubi with either the
POLARMESH or DIPOLES elements.
To track the 2D model with POLARMESH a midplane

field map must be generated. For each magnet the radial
profile is combined with a longitudinal Enge fringe
function [Eq. (2)] to give the field at each point on a 2D
mesh. We use the same Enge parameters as in the nominal
model. These are summed to give the whole cell midplane
field map. The process is shown in Fig. 13.
To use the DIPOLES element, a set of multipole

coefficients are found by fitting a polynomial to the radial
profile. These coefficients are used along with parameters
of the fringe fields and geometry, as shown in Fig. 14.
The multipole fit for DIPOLES can be a global fit across

the whole magnet giving a single model that can be used at
every energy. Alternatively, a region around each orbit can
be selected and fitted. The latter gives a higher accuracy,
avoiding any smoothing from the fit, but means that the
magnet description must be refitted at every energy. For
simulations, we used ninth-order local fits about each
energy.

B. Dynamics and DA with 2D magnets

The 2D model gives good agreement with the nominal
design. Figure 15 shows the horizontal and vertical tunes
for the 2D models against the nominal design. The mean
tune is within 10−4 in both planes and the tune excursion
grows from 6.4 × 10−5 and 9.1 × 10−4 to 7.9 × 10−4 and
1.5 × 10−3 between the nominal and the POLARMESH
model. Agreement between the POLARMESH and
DIPOLES simulation methods is very good, demonstrating
that the multipole expansion is an effective method to use
for tracking.
An increased tune excursion may cause accelerated

particles to cross resonances that reduce their stability.
In order to confirm that this is not the case for the 2D

FIG. 11. The pole edge profile φ ¼ φðrÞ of the F magnet
obtained from Eq. (8) is plotted in a Cartesian coordinate system
X ¼ r cosφðrÞ and Z ¼ r sinφðrÞ and compared to a straight
6°-edge and a 5°-edge.

(a) F peak field (b) F integrated field

(c) D peak field (d) D integrated field

FIG. 12. F and D magnet peak and integrated field for map
compared to the nominal design. Dashed vertical lines show the
good field region extents. The horizontal axis is the radial
distance from the machine center.

FIG. 13. Using the 2D OPERA model as input to the POLAR-
MESH element.

FIG. 14. Using the 2D OPERA model as input to the DIPOLES
element.

MEDICAL THERAPY AND IMAGING FIXED-FIELD … PHYS. REV. ACCEL. BEAMS 20, 104702 (2017)

104702-9



magnets we determine the 1000-turn DA. Using DIPOLES
with fits to the 2D radial field profile at each orbit, we find a
45° DA (i.e. where particle amplitude is increased equally
in both transverse planes) that is very close to the nominal
lattice over the full range of energies; this is shown in
Fig. 16. The figure shows that deviations from the ideal
field in the 2D model do not cause a significant drop in
DA. As with the nominal design, the DA is kept above
50 mm mrad over the full range of energies in the
accelerator.
We can also add random multipole errors to the magnets.

By using errors of a similar magnitude to those seen in the
2D field we can obtain some understanding of how the
worst-case errors might affect the DA. However, applied
multipole errors tend to cause big field changes away from
the point that they are applied, which would not be seen in a
well-designed real magnet. For a given error size, the ideal
field is expanded around the mean position of a given orbit;

Gaussian-distributed errors are then applied to a given
multipole component. Figure 17 shows how the DA is
reduced as quadrupole and sextupole errors applied around
the 30 MeVorbit increase, using 20 seeds per error size; the
dotted vertical lines represent the actual size of the errors in
the 2D magnet model. We can see that quadrupole and
sextupole errors of magnitudes similar to those in the 2D
OPERA model do not cause the DA to drop significantly
below 50 mm mrad.
Overall, the deviations of the 2D profile from the

nominal design do not affect the dynamics enough to
cause problems. We find that the increased tune shifts as a
function of energy are tolerable. Random quadrupole and
sextupole errors of similar magnitudes can also be added
without causing the DA to drop significantly below our
50 mm mrad requirements.
Whilst the 2D simulations are a good indicator that it is

feasible to produce the magnetic field profile specified in
the nominal lattice design, the following sections show that
the longitudinal and full 3D fields are needed for a
sufficient understanding of the lattice dynamics. 2D mod-
eling is however a useful step in the design and optimi-
zation stage, as it can be performed more rapidly than with
full 3D models.

V. BEAM DYNAMICS WITH FRINGE FIELDS

In this section the effect of the fringe extent and radial
dependence is investigated. For the initial lattice design an
Enge fringe field was used, with a 4 cm extent constant with
respect to radius. In the real magnet, the fringe extent
depends on the pole shapes. It should be expected that
adjustments to the magnet strengths and/or field profile will
be needed to account for the realistic fringe fields.

FIG. 15. Cell tune shift for 2D magnets modeled with POLAR-
MESH and DIPOLES compared to the nominal design.

FIG. 16. DA for 2D field profiles compared to nominal
magnets.

FIG. 17. DA for random quadrupole and sextupole error
distributions around the 30 MeV orbit. Crosses show individual
seeds and the blue bars show their mean and standard deviation.
Dotted vertical lines represent the actual size of the errors in the
2D magnet model.
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The fringe-field extent has a significant effect on the
edge focusing of the magnets and therefore contributes to
the tune of the cell. Changes in the fringe-field extent as a
function of radius will therefore have an effect on the tune
as a function of energy.
To show the effect on the tune, the fringe extent was

varied while all other lattice and magnet parameters were
held fixed and no rematching was performed. Figure 18
shows the change in tunes as a function of fringe extent; the
original value of 4 cm in the nominal lattice is highlighted.
As the tune shifts, the working point moves and approaches
resonances. At an extent of around 10 cm the vertical tune
approaches 0.25; the black points in Fig. 19 show how this
causes a large drop in DA as the working point approaches
a fourth-order resonance.
The fringe-field extent can be varied by extending the

fringe-field description from Eq. (2) with the variable κ and
making λ a function of r, so that

λ ¼ λ0ðr0=rÞκ: ð9Þ

A positive κ gives a fringe field with a larger extent at
smaller radii, as would be expected due to the larger pole
gap. Figure 20 shows the tune as a function of energy
for a range of κ values. These tune shifts with energy
can cause problems as the beam will cross resonances
during acceleration, so it is important that they can be
corrected.
The tune shift due to a change in the fringe field can be

compensated by changing the magnet body fields. For a
given fringe extent the working point of the lattice can be
rematched to recover the original tunes by adjusting the
magnet strengths B0 of the F and D magnets, and the field
index k shared by both F and D magnets. The match is
constrained to keep the outer closed-orbit position constant.
DA is most critical at injection energy before the emittance
is reduced somewhat by adiabatic damping, so the rematch-
ing was performed at 30 MeV. PyZgoubi’s optimization
feature, making use of the Nelder-Mead downhill simplex
method, was used for the rematching. Figure 19 shows how
the rematch recovers some of the lost DA for lattices where
the change in fringe field caused the tune to approach a
resonance.
We find that the original working point is not necessarily

optimal for maximizing DA, as the shape of the fringe field
can affect the relative strength of the resonances. It is
therefore important to reoptimize the working point to find
the largest DA region. Reoptimization is performed by
scanning the lattice through a range of working points and
calculating the dynamic aperture at each point. Figure 21
shows how the working point is rematched for a fringe
extent of 6 cm. Rematching the tune to the original values
recovers some DA, but the scan is required to recover a DA
above 50 mm mrad.

FIG. 18. Effect on cell tune at 30 MeVas the fringe field extent
length is varied.

FIG. 19. Black diamonds show the DA at 30 MeVas the fringe
length is adjusted. Recovery of DA by rematching tune to the
original value is shown in blue squares.

FIG. 20. Effect on cell tune of fringe field that varies with
radius.
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The extent and shape of the fringe fields play a large role
in the dynamics of an accelerator. The lattice must be
reoptimized to account for their effects. This shows that 3D
magnet simulation, which will give the fringe field, is a
necessary step for realistic lattice design.

VI. BEAM DYNAMICS WITH 3D MAGNETS

In this section we model NORMA using field maps from
3D magnet simulations. These contain not just the radial
field profile but also how the field falls off outside the
magnet body.

A. Implementing the 3D field maps in Zgoubi

3D magnets are output from the OPERA simulation as
midplane field maps, i.e. the By component at grid points
on a horizontal midplane; the Bx and Bz are zero by
symmetry. The midplane is sufficient to fully define the
field over the vacuum region of the magnet including the
fringe field, while significantly reducing the computational
resources required to generate and store the field map.
Figure 22 shows the midplane fields for each magnet.

The dynamics in the full magnet design will be strongly
influenced by both the body field and the fringe fields. For
example, the reduced peak field in the F magnet is
compensated by an extended field length such that the
integrated field is close to the nominal design. The 3D field
maps must therefore be used as a whole, as the radial and
fringe parts cannot be independently combined with the
nominal field.
The midplane maps from the 3D magnet simulation can

be used in Zgoubi with either the POLARMESH or
DIPOLES elements. The F and D magnets are designed
independently, as this allows simple boundary conditions
and reduction in computation time due to symmetry. The
midplane maps for the magnets are combined assuming a
linear superposition to create the map for the full cell,
which is then read into the POLARMESH element as
shown in Fig. 23. At the field crossover point in the overlap
between the F and the D magnets, the residual field from
the magnets is about 5%–10% of the body field, greatest at
the low-energy orbits. Figure 24 shows the overlap at
50 MeV. A further step would be to combine the magnets
within the FEM simulations so that the overlap region is
fully calculated. If this is found to cause a significant effect,
then either clamp plates can be used to reduce the fringe
extent or rematching as described below can be used to
account for it.
Alternatively, the 3D magnet can be modeled with a

DIPOLES element, as shown in Fig. 25. This makes
rematching simpler by reducing the description to a smaller
set of variables, gives more reliable long-term tracking and

FIG. 21. Rematching the cell tunes with a 6 cm fringe extent at
30 MeV. The star marker shows the working point shift due to
changing the fringe extent. The dot shows the working point after
rematching to the original tunes. The square and diamond
markers show the highest DA point, and the region of highest DA.

FIG. 22. Full midplane fields from 3D OPERA simulation.

FIG. 23. Using the 3D OPERA model as input to the POLAR-
MESH element.

FIG. 24. Overlap of individual magnet fields and the full field
found by linear summation, along the 50 MeV orbit.
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improves performance compared to tracking in the map
directly. The DIPOLES element has several parameters that
allow it to model a range of magnets. The radial profile is
specified as a ninth-order polynomial, the entrance and exit
boundaries can be moved and rotated independently, the
fringe can be specified with up to six Enge coefficients and
the fringe extent can be a function of radius.
We fit the DIPOLES using only the magnetic field and

then use tracking to verify that the solution is good. For the
initial fit we minimized the difference between the map and
the DIPOLES at each grid point within the good field
region, using a Nelder-Mead downhill simplex, allowing
the above parameters to vary. This however did not give a
good match for the dynamics. Much better dynamic
agreement was found by including the differences of the
integrated field and integrated gradient along the particle
trajectories in the objective function.
The dynamics of the resulting 3D fit are shown,

compared to the POLARMESH and the nominal FFAG
in Figs. 26 and 27.

B. Dynamics with 3D magnets

The difference between the nominal fields and the 3D
maps causes significant changes to the tune of the lattice.
Figures 26 and 27 show the tune for POLARMESH in
green and fitted DIPOLES in red, compared to the nominal
FFAG in blue. It can be seen that the fit does a good job
of reproducing the dynamics of the field map. At low
energies the vertical tune with the 3D magnets crosses the

quarter-integer resonance so we expect a large drop in DA
below 100 MeV.
We simulate the 1000-turn DA in the 3D magnet using

both the POLARMESH and fitted DIPOLES magnet
elements. Figure 28 shows a significant reduction com-
pared to the nominal FFAG design, especially for energies
below 100 MeV where the vertical tune crosses below the
quarter-integer resonance. It is clear that the uncorrected
map does not result in a sufficiently large stable region.
In order to improve the DA the magnets must be

rematched so that the tune no longer crosses the harmful
resonances. Ideally the tune can be flattened such that the
dynamics are similar to the nominal FFAG design. This
rematching is carried out by varying the multipole compo-
nents of the fitted analytic field, and optimizing to obtain
the nominal tune at all energies. The shape of the fringe
falloff is held fixed as it is expected that a small change to

FIG. 25. Using the 3D OPERA model as input to the DIPOLES
element.

FIG. 26. Horizontal cell tune as a function of energy for 3D
magnets and rematched fields.

FIG. 27. Vertical cell tune as a function of energy for 3D
magnets and rematched fields.

FIG. 28. DA as a function of energy for 3D magnets and
rematched fields.
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the body field will not have a dramatic effect on the fringe,
so that after another iteration of the magnet design the tune
flatness will be retained.
We found that a rematch varying multipole coefficients

up to decapole in the bodies of the magnets was sufficient
to flatten the tune such that it no longer crossed harmful
resonances. The light blue lines (3D rematched) in Figs. 26
and 27 show the improvement in tune flatness when the
magnets are rematched up to decapole order. Figure 28
shows the DA for the rematched magnets in light blue. The
rematched tune is sufficient to increase the DA to around
50 mmmrad in the critical region below 100 MeVand for it
to remain above 50 mm mrad at higher energies.
The main result from this work is the corrected

(rematched) field profile for each magnet that recovers the
original beam dynamics obtained with the idealistic (for-
mula) fields. These field profiles together with the original
(Map) field profiles obtained from the 3D Opera models are
plotted in Figs. 29 and 30 for the F and D magnets,
respectively. The plots labeled “Fitted” are practically

identical to the “Map” fields and represent an intermediate
result needed to obtained the corrected (rematched) fields. In
the F magnet the difference between the fitted field and the
rematched field is less than 5%. In the D at small radius there
is a 20% reduction in the field, falling to 1% at large radius.
These modifications to the body field are sufficient to
rematch the magnets that would otherwise give significantly
altered dynamics to the original design.
We now take the difference between the fitted and

rematched field profiles, and add it to the original field
profile given by Eq. (1) in order to obtain the updated pole
shapes of the two magnets that generate the rematched field
profiles shown in Figs. 29 and 30. The first step in this
process is to obtain the updated lines of constant scalar
potential. These are shown in Fig. 31 for the D magnet
(cf. Fig. 5) and represent the zeroth-order approximation to
the pole shape of the rematched D magnet. At this stage the
procedure described in Sec. III can be implemented to yield
the revised magnet designs that generate the rematched
field profiles followed by an analysis of the beam dynamics
produced by these updated magnet designs. The process is
repeated until the desired level of performance is reached.
Table II shows the parameters of the F and D magnets

achieved by our design process.

FIG. 29. Field profile for rematched F magnet.

FIG. 30. Field profile for rematched D magnet.

FIG. 31. Lines of constant scalar potential for the original and
adjusted D magnet.

TABLE II. Magnet parameters.

Focusing Defocusing

Number of poles 2 2
B0 (T) 1.50 −2.08
r0 (m) 9.82 9.82
k 27.50 27.50
Max absolute/relative field error 2D <10−4 <10−4

Max absolute/relative field error 3D <10−2 <10−2

Horizontal aperture (m) 0.53 0.48
Approximate length (m) 1.0 1.0
Max absolute field (T) 1.40 1.22
Min absolute field (T) 0.30 0.30
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VII. CONCLUSION

The NORMA design for a medical proton accelerator
has been previously demonstrated with idealized magnet
modeling. More detailed modeling using realistic magnet
designs is important to show that the design is robust, and
to understand the retuning needed to maintain the required
dynamics and stability of the original design. In this paper
we have shown that the NORMA lattice can be modeled
with magnet designs from 2D and 3D FEM simulations,
taking the design from an idealized lattice to a detailed
study with realistic magnets.
The F and D magnets were designed in 2D and 3D using

OPERA. The field maps from the these models were
imported into the PyZgoubi tracking code so that dynamics
of the proton bunches could be compared to the idealized
lattice. For the 2D models—which give a radial profile—no
significant effect on the dynamics was found. Random
multipole errors, with similar-sized deviations as between
the 2D profile and the analytic field, were found to have only
a small effect on the stability of the lattice. Performing the
magnet modeling and optimization work entirely in 3D is
not optimal because of the complexity of the problem. As
shown in the text, highly accurate 2D pole shapes for the two
magnets are easy to obtain. These solutions allow a quick
and realistic assessment of the available vertical and hori-
zontal magnet apertures, the attainable good field region
and, equivalently, the energy range of the machine to be
made. In addition, the 2D pole solutions are a convenient
starting point for the actual design work in 3D. The 3D
models in turn provide a realistic representation of the actual
magnetic fields and allow a detailed study and mitigation of
field errors, fringe field and magnet cross-talk effects.
To see the importance of the fringe fields, simulations

with altered fringe extents were carried out. It was found
that changing the fringe length had a significant effect on
the focusing of the lattice, and that for any given fringe
extent the lattice must be retuned. By rematching the field
strength and index in the magnets the working point could
be reoptimized and sufficient DA recovered. 3D magnet
models predict greater shifts from the nominal fields.
However, we show that it still possible to make small
adjustments to the body fields that recover a sufficient DA
over the energy range from injection to extraction; further
iterations of the 3D design may be used to refine it. More
detailed modeling of the overlap region between the
magnets is also needed, though it is expected that any
changes to the dynamics can be accounted for by similar
reoptimization.
This work demonstrates the importance of relying on

rigorous 3D magnet simulations to model an FFAG
accelerator, in order to obtain a realistic assessment of
the overall machine performance. It also demonstrates
methods of retuning an accelerator design to account for
these effects, and to recover the original dynamic properties
and beam stability.
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