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We propose a novel method to align accelerating structures such as those used in the Compact Linear
Collider (CLIC) by exploiting a mode that copropagates with the normal accelerating mode. This mode has
an octupolar dependence in the transverse direction and is caused by radial waveguides intended to damp
higher-order modes. The nonlinear dependence of the octupolar mode makes it possible to determine the
center of the structure from the nonlinear dependence of the transverse kick, observed on a downstream
beam position monitor, while changing the transverse position of the beam with respect to the accelerating
structures. We discuss the method, its tolerances and disentangling the individual misalignments of two
adjacent accelerating structures that are powered from a single source.
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I. INTRODUCTION

The Compact Linear Collider (CLIC) [1] is a candidate
for a future lepton collider to probe physics on the TeV
scale beyond LHC. In order to achieve the high energies in
a reasonable length, normal-conducting accelerating struc-
tures with accelerating gradients of 100 MV=m are
required and have been experimentally shown [2] to have
adequate reliability. The fact that the structures are normal-
conducting implies that the accelerator is operated with
macropulse length below 1 μs and at a repetition rate of
50 Hz. In order to achieve luminosities above 1034=cm2 s
the beam size at the interaction point must be squeezed to
nanometer sizes. The beam size depends to a large extent
on the beam emittance that is initially determined by the
damping rings. Consequently, the emittance must be
preserved while the beam travels down the linear accel-
erator, but is, on the other hand, adversely affected by
transversely misaligned quadrupoles and acceleration
structures. They cause transverse wakefields that deflect
the beam and ultimately lead to an increased emittance and
reduced luminosity. Therefore the acceleration structures
must be aligned with utmost precision and the topic has
been extensively studied theoretically [3–5] and experi-
mentally [6–8]. Even the intrinsic mechanical alignment [9]
was addressed. For CLIC there is ongoing research for
using wakefield monitors for beam alignment [10].
In this report we discuss a novel method to complement

other alignment methods for the accelerating structures. It
is based on the existence of a mode in the accelerating

structures that is copropagating with the accelerating mode
but shifted 90 degrees in phase and transversely has an
octupolar amplitude dependence. The existence of the
octupolar mode is known, both from theoretical investiga-
tions [11] and experimentally [12,13]. In [13] we thor-
oughly analyzed the effect of the octupolar mode on the
beam and devised a method to extract information about the
beam matrix by scanning the beam across the entrance face
of the structure. Moreover, we determined the strength of
the octupolar mode. The fact that the field is nonlinear leads
to a nonlinear deflection of the beam and can be used to
determine the center of the accelerating cells, which for the
accelerating structure coincides with the center of the irises
with micrometer tolerance. The method is somewhat
inspired by using the nonlinear beam-beam deflections
to center the counterpropagating beams at the interaction
point of the SLC [14,15].
We propose to scan the beam transversely inside the

accelerating structures while measuring the beam position
downstream. From the beam position shifts, i.e., difference
in beam position for deflected and nondeflected beam, we
can determine the electromagnetic center in the structure. In
CLIC the radio-frequency (rf) power is generated by
deceleration of a drive beam in 24 sectors each about
900 m long. In the power extraction structures there is a
mechanism that allows rf to be switched on and off [16],
which means beam position measurements for deflected
and nondeflected beam can be made shot-to-shot. This
eliminates many systematic errors and lowers the sensi-
tivity to beam jitter. For this analysis we will use the CLIC
main beam parameters from Table I. We point out that
considering the large number of accelerating structures in
CLIC (∼140; 000 in the 3 TeV version) method that does
not require extra hardware is very attractive. Furthermore,
the method is easy to automate.
The magnitude of the kick due to the octupolar compo-

nent scales inversely with the beam energy and would
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render the method impractical at high energy. This prob-
lem, however, can be circumvented by powering only one
of the 24 drive beam sectors at a time and running the entire
linac at or close to the injection energy of 9 GeV. Moreover,
within the sector under consideration all power extraction
structures except the tested should be turned off. Of course
this requires suitably scaling the static magnetic elements
such as quadrupoles. Assuming that the magnetic centers of
the magnetic elements are unaffected by this scaling the
alignment of the acceleration structures then works for the
entire linac. This procedure is invasive, but only needs to
done once at the start of operation to ensure proper
alignment. We investigated stable operation of the entire
CLIC linac close to injection energy with simulations using
placet [17] and found that a beam with an injection error of
about 10 μm in both planes experiences only a moderate
growth during one sector. Moreover, operating the already
aligned sectors with 10% of the nominal gradient and
80 degree off-crest leads to a moderate beam size increase
to reach the next sector to be aligned. Running the linac at
low energy will constitute an operational challenge and will
likely be difficult. Aligning one sector at a time, before
progressing to the next, in order to prevent excessive
wakefield tails and emittance growth, will certainly be
necessary. We expect to empirically optimize parameters in
the upstream sectors to balance the requirement for stable
operation at low beam energy with the requirement for
adequate resolution for our alignment method.
In the following section we elaborate on the theory and

then apply it to alignment of the accelerating structures. We
first show the method for a single structure [18] and then we
expand the error analysis and apply the method to two
consecutive structures.

II. TRANSVERSE DEFLECTIONS

The accelerating structures, such as those used in CLIC,
support an octupole component of the rf fields that is
copropagating with the beam [11,12]. Therefore, the effect
on the beam can equivalently be described by a kick from a
static magnetic element. The multipole expansion of the
magnetic field can be written in complex form as
ðBy þ iBxÞ ¼ Cn−1ðxþ iyÞn−1 and for n ¼ 4 we retrieve
the octupole field. An electron, traveling in positive
z-direction will get a transverse deflection according to

Δx0 − iΔy0 ¼ Kðxþ iyÞ3 ð1Þ

where K ¼ C3l
ðBρÞ is the integrated octupole strength normal-

ized to beam energy and we have assumed a thin lens
approximation. This can be justified by numerical integra-
tions that show that the relative error due to higher order
effects is on the order of 2 × 10−4 with the parameters used.
The active length of the CLIC accelerating structure is
0.23 m and the integrated octupole strength normalized to
beam energy is K ¼ 2450 m−3, see Table II.
At a distance L downstream from the octupole field the

particle will have shifted horizontal position Δx̂ according
to Δx̂ ¼ LΔx0 and similarly for vertical position shift Δŷ.
This position shift is the difference of the beam position
with rf in the accelerating structure turned on and off. We
determine the position shifts of the centroid of the beamΔX̂
and ΔŶ by averaging over the particle distribution (denoted
by angle brackets) in the accelerating structure

ΔX̂ − iΔŶ ¼ KLhðxþ iyÞ3i: ð2Þ
We can expand these terms involving x and y and if we
assume a Gaussian beam distribution we can easily evaluate
the expectation values, e.g., by using the technique
described in Appendix A in [13]. In particular we note that

hx3i ¼ X3 þ 3Xσ2x

hxy2i ¼ XY2 þ 2Yσxy þ Xσ2y

hx2i ¼ X2 þ σ2x

hxyi ¼ XY þ σxy ð3Þ
where capital X and Y denote the first moments, i.e., X ¼
hxi etc. Then we obtain for the position change ΔX̂ and ΔŶ
at a distance L downstream the octupole field as a function
of the beam centroid position in accelerating structure

ΔX̂− iΔŶ¼KL½ðXþ iYÞ3þ3ðσ2x−σ2yþ2iσxyÞðXþ iYÞ�:
ð4Þ

We note that the position shifts of the centroid of the beam
at a distance L from the octupole field is dependent on both

TABLE I. CLIC beam parameters at the beginning of the main
linac [1].

Parameter [unit] value

Beam energy [GeV] 9
Beta function [m] 10
Normalized emittance, horizontal [nm] 600
Normalized emittance, vertical [nm] 10

TABLE II. Assumed parameters and errors.

Parameter [unit] value

BPM resolution [nm] 50
Active length of accelerating structure, l [m] 0.23
Integrated octupole strength, C3l [kTm=m3] 73.5
Distance to BPM, L [m] 3
Half-distance between the centers of two
accelerating structures, ΔL [m] 0.125
Error in position shift, σΔX̂ ,σΔŶ [nm] 71
Error in KL, σKL [rel.] 0.1%
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the beam centroid transverse position X and Y and the beam
size at the location of the octupole.

III. FINDING THE CENTER OF A
SINGLE STRUCTURE

In the previous section we saw that the beam deflection
due to the octupole field depends on the transverse position
inside the accelerating structure. By moving the girder
which the accelerating structures are mounted on, or by
moving the beam parallel to the beam axis using two
steering magnets or movable quadrupoles, we can control
the transverse beam position inside the octupole ðX; YÞ.
The geometry of the setup is shown in Fig. 1. We then
measure the beam position shifts ΔX̂ and ΔŶ using a beam
position monitor (BPM) downstream of the structure. From
now on we will assume that BPMs are used for measuring
the beam centroid position but screens or wire scanners also
work. In the following we assume that initially the beam
follows a trajectory that was determined by external means,
for example by aligning to the center of the quadrupoles.
We then seek to determine the horizontal offset ~X and
vertical offset ~Y with respect to this trajectory. Including the
offsets we write (2) as

ΔX̂ − iΔŶ ¼ KLh½ðx − ~XÞ þ iðy − ~YÞ�3i: ð5Þ

The right-hand side of (5) depends on five unknown
variables: the horizontal and vertical offsets ð ~X; ~YÞ and,
like (4), on the beam size σ2x, σ2y and correlation σxy. If we
expand, calculate all expectation values and collect known
and measurable parameters on the left-hand side, we obtain

ΔX̂ − iΔŶ − KLðX þ iYÞ3
¼ KLf3ð ~X þ i ~YÞðσ2y − σ2x − 2iσxyÞ − ð ~X þ i ~YÞ3

þ 3½ð ~X þ i ~YÞ2 − ðσ2y − σ2x − 2iσxyÞ�ðX þ iYÞ
− 3ð ~X þ i ~YÞðX þ iYÞ2g: ð6Þ

The expression in (6) can be cast in the form of a linear least
squares fit

z ¼ k1 þ k2ðX þ iYÞ þ k3ðX þ iYÞ2 ð7Þ

with the unknown quantities k1, k2, k3 given by

k1 ¼ KL½3ð ~X þ i ~YÞðσ2y − σ2x − 2iσxyÞ − ð ~X þ i ~YÞ3�
k2 ¼ 3KL½ð ~X þ i ~YÞ2 − ðσ2y − σ2x − 2iσxyÞ�
k3 ¼ −3KLð ~X þ i ~YÞ ð8Þ

on the right-hand side. Note that k3 directly contains the
sought offsets ~X and ~Y. Furthermore, additional kicks from,
e.g., quadrupole or dipole have an effect on k1 and k2 but
leave k3 unaffected. Note also that the beam sizes do not
enter in k3 which carries the information of the misalign-
ment and the increased emittance when running at low
energy will not affect it. The left-hand side contains the
measured position shifts ΔX̂ and ΔŶ as well as the beam
positions X and Y that we control with the steering
magnets. We have

z ¼ ΔX̂ − iΔŶ − KLðX þ iYÞ3: ð9Þ

In order to determine k⃗ ¼ ðk1; k2; k3Þ we scan the beam
transversely, i.e. make a series of measurements with
different transverse positions ðXi; YiÞ. Hence we can
express the fit as z⃗ ¼ Ak⃗ where z⃗ is a column vector
containing the measured position shifts, i.e. zi ¼ ΔX̂i −
iΔŶi − KLðXi þ iYiÞ3 and A is a matrix with the mono-
mials evaluated at each scan step, i.e., horizontal and
vertical beam centroid position of the beam in the structure.
If we perform a position scan of N steps we obtain

2
666666664

z1
z2

..

.

..

.

zN

3
777777775
¼

2
666666664

1 ðX1 þ iY1Þ ðX1 þ iY1Þ2
1 ðX2 þ iY2Þ ðX2 þ iY2Þ2

..

. ..
. ..

.

..

. ..
. ..

.

1 ðXN þ iYNÞ ðXN þ iYNÞ2

3
777777775

2
64
k1
k2
k3

3
75: ð10Þ

We can find the fit parameters ki of the least squares
solution using the pseudo inverse and write the solution as
k⃗ ¼ ðA†AÞ−1A†z⃗, where the dagger denotes the Hermitian

FIG. 1. Setup with a single accelerating structure with an octupole field. The beam travels from right to left and can be scanned
transversely and parallel to the beam axis by moving the girder or by using two upstream steering magnets. The beam position shifts can
be measured at a distance L downstream from the octupole with a beam position monitor (BPM).
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transpose. The offsets ~X and ~Y can be extracted from the
real and imaginary parts of fit parameter k3 as indicated in
the last equation of (8). To what accuracy this can be
achieved is the subject of the next section.

IV. TOLERANCES

In order to make the error analysis more tractable we
formulate the fit problem in (10) to address real and
imaginary components individually. Writing the vector z⃗
as z⃗ ¼ Reðz⃗Þ þ i Imðz⃗Þ and splitting both the matrix A ¼
Bþ iC and k⃗ ¼ Reðk⃗Þ þ i Imðk⃗Þ we rewrite (10) as

Reðz⃗Þþ i Imðz⃗Þ¼ ðBþ iCÞðReðk⃗Þþ iImðk⃗ÞÞ
¼BReðk⃗Þ−CImðk⃗Þþ iðBImðk⃗ÞþCReðk⃗ÞÞ

ð11Þ

or, in component form

2
6666666666664

Reðz1Þ
..
.

ReðzNÞ
Imðz1Þ

..

.

ImðzNÞ

3
7777777777775
¼

"
B −C
C B

#
2
6666666664

Reðk1Þ
Reðk2Þ
Reðk3Þ
Imðk1Þ
Imðk2Þ
Imðk3Þ

3
7777777775

ð12Þ

where N is the number of individual measurements. We
denote the vector on the left-hand side by Z⃗ and the matrix
and vector on the right-hand side by D and K⃗, respectively.
In order to calculate the error bars for the fit parameters

K⃗ we need to determine the error bars of the quantities Z⃗ on
the left-hand side of (12), which in turn depend on the
measured beam positions ΔX̂ and ΔŶ, the excitation KL
and the positions in the structure X, Y through (9).
Collectively we denote these parameters by x⃗ ¼
ðΔX̂;ΔŶ; X; Y; KLÞ. Separating real and imaginary part
we find

Z⃗ ¼

2
6666666666664

Reðz1Þ
..
.

ReðzNÞ
Imðz1Þ

..

.

ImðzNÞ

3
7777777777775
¼

2
6666666666664

ΔX̂1 −KLX3
1 þ 3KLX1Y2

1

..

.

ΔX̂N −KLX3
N þ 3KLXNY2

N

−ΔŶ1 þKLY3
1 − 3KLX2

1Y1

..

.

−ΔŶN þKLY3
N − 3KLX2

NYN

3
7777777777775

ð13Þ

If we make the reasonable assumption that the errors of the
parameters x⃗ are uncorrelated and given by the rms values

in Table II we can express the covariance matrix Cxx
as a diagonal matrix containing the squares of the rms
error bars of the x⃗ on the diagonal. We define σ⃗x⃗ ¼
ðσ2ΔX̂; σ2ΔŶ ; σ2X; σ2Y; σ2KLÞ and obtain

Cxx ¼ diagðσ⃗x⃗;…; σ⃗x⃗Þ ð14Þ

where Cxx is a 5N × 5N matrix. In order to find the
covariance matrix for Z⃗ we need to propagate Cxx with the
Jacobi matrix that relates the change in variables x⃗ to that in
Z⃗ for which we need the partial derivatives

jRðx⃗iÞ≡∂ReðziÞ
∂x⃗

����
x⃗i

¼
�
1 0 3KLðY2

i −X2
i Þ 6KLXiYi −X3

i þ3XiY2
i

�

jIðx⃗iÞ≡∂ImðziÞ
∂x⃗

����
x⃗i

¼
�
0 −1 −6KLXiYi 3KLðY2

i −X2
i Þ Y3

i −3X2
i Yi

�
ð15Þ

where the elements containing KL are small compared to 1
and −1. Therefore the errors are dominated by the errors in
ΔX̂ and ΔŶ. Then jRðx⃗iÞ and jIðx⃗iÞ populate the Jacobi
matrix according to

J ¼

2
6666666666666666666664

j⃗Rðx⃗1Þ 0 � � � 0

0 j⃗Rðx⃗2Þ ..
.

..

. . .
.

0

0 � � � 0 j⃗Rðx⃗NÞ
j⃗Iðx⃗1Þ 0 � � � 0

0 j⃗Iðx⃗2Þ ..
.

..

. . .
.

0

0 � � � 0 j⃗Iðx⃗NÞ

3
7777777777777777777775

: ð16Þ

The covariance matrices propagate in a similar way as the
beam matrices, but with the Jacobi matrix instead of the
transfer matrix [19]. Therefore, the covariance matrix of Z⃗,
which contains all correlations among the measurements
consistently, is given by

CZZ ¼ JCxxJT: ð17Þ

Finally we determine the fit parameters K⃗ according to [20]
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K⃗ ¼ ðDTC−1
ZZDÞ−1DTC−1

ZZZ⃗: ð18Þ

The errors in K⃗ are given by the diagonal elements of the
covariance matrix of K which leads us to [20]

CKK ¼ ðDTC−1
ZZDÞ−1: ð19Þ

From (8) we relate the error bar of the fit parameters k⃗ to
those of the sought alignment tolerances. We determine the
error bar σ ~X of ~X and σ ~Y of ~Y to be

σ ~X ¼ σReðk3Þ
3KL

and σ ~Y ¼ σImðk3Þ
3KL

: ð20Þ

In order to estimate the achievable error of this method we
insert numbers relevant for CLIC. We use the beam
parameters of the CLIC main beam at the beginning of
the main linac, listed in Table I. In Table II we show the
assumed relative uncertainties. The uncertainty in KL is
dominated by the uncertainty in the integrated octupole
strength C3l which in turn comes from rf jitter.
The CLIC accelerating structures have a minimum iris

diameter of roughly 4 mm and we assume that the beam can
be moved transversely �1 mm inside the accelerating
structure. We point out that the horizontal rms beam size
is 18 μm and vertical rms beam size is 4 μm only, as
derived from values in Table I.

We assume a parallel scan procedure of 40 steps, we
consider a scan path in the shape of a cross, i.e., first we
scan 20 steps horizontally while keeping the vertical
position fixed and then 20 steps vertically while keeping
the horizontal position fixed. Then we follow the procedure
described in (14)–(17) to determine the errors in Z⃗, i.e., the
right-hand side of (13). It turns out that the error bar in each
scan point is the same throughout the scan. This is not
surprising since most terms in (15) are small. The leading
elements are 1 and −1, which means that the errors in ΔX̂
and ΔŶ will dominate the error in Z⃗. This also implies that
we are the most sensitive to the BPM resolution and less so
to random errors in KL and position X, Y in the structure.
Once we have the errors in Z⃗ we can use (19)–(20) to

find the errors in the fitted offsets. We found them to be
1 μm for both the horizontal and vertical offset. These
results given by the analytical expressions were verified
with a Monte Carlo analysis [18]. We can see that this result
compares favorably with the tolerance for beam alignment
in the accelerating structures for CLIC which is 5 μm in
order to ensure high luminosity [1]. We also considered the
effect of errors in X and Y in the fit matrix A, i.e., right-hand
side of (10), due to uncertainty in the beam position inside
the accelerating structure. However, a Monte Carlo analysis
with random noise with rms equal to BPM resolution added
showed that this effect is negligible.
So far we have only investigated the effect on the

alignment resolution due to random errors. Of course we
are also sensitive to systematic errors in KL. The parameter
KL depends on the integrated octupole strength, which in
turn depends on the rf power fed into the structure. This
means rf power measurements and model calibration might
induce systematic errors. We did a numerical analysis and
found that there is an almost linear dependence on the error
in KL and the error in fitted offsets [18], see Fig. 2.

V. TWO CONSECUTIVE OCTUPOLES

In the previous section we showed how to determine the
offsets for a single structure. However, in CLIC the
accelerating structures are mounted together two and two
and receive rf power from a single source [1]. Here we
show how to disentangle the offsets of two accelerating
structures simultaneously with the geometry shown in
Fig. 3. If the distance between the two elements is small

Relative error in KL
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FIG. 2. Relative error in fitted offset for different systematic
errors in KL.

FIG. 3. Aligning the beam in two accelerating structures both with octupole fields.
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we can ignore higher order terms and consider only the sum
effect of two independent octupole kicks. In other words, if
the second octupole is close to the first, the kick from the
second octupole is only weakly affected by the kick from
the first.
In order to justify the approximation we calculate the

additional kick due to the small horizontal position shift δx
in the second octupole field which is given by

δx ¼ −2KΔL ~X3
A ð21Þ

where 2ΔL is the distance between the two structures and
we assume that the incoming beam is on axis and the kick is
due to the misalignment ~XA. The integrated octupole
strengths of the two structures are assumed to be the same
since they receive rf power from the same source, we
denote KA ¼ KB ¼ K. Then the kick from both octupole
fields becomes

Δx0 ¼ Kð− ~XAÞ3 þ Kð−2KΔL ~X3
A − ~XBÞ3

≈ −Kð ~X3
A þ ~X3

BÞ − 6K2ΔL ~X2
B
~X3
A ð22Þ

where the first term corresponds to the approximation we
will use and the second term describes the perturbation in
the angle due to the small position shift in the second
octupole. On a downstream BPM we see beam position to
move by this angle leveraged by the distance L. In order to
estimate the magnitude of the respective terms we assume
~XA ¼ ~XB ¼ ~X and calculate the ratio r of the first and
second order with the result

r ¼ 3KΔL ~X2: ð23Þ

We useΔL ¼ 0.125 m and a large offset ~X ¼ 0.5 mm to be
conservative, which together with values from the previous
section gives r to be less than 3 × 10−4.
From (6) we can then write a general expression for

position shifts due to two independent, consecutive octu-
pole kicks as

ΔX̂ − iΔŶ − KðLþ ΔLÞðXA þ iYAÞ3
− KðL − ΔLÞðXB þ iYBÞ3
¼ KðLþ ΔLÞf3ð ~XA þ i ~YAÞc − ð ~XA þ i ~YAÞ3

þ 3½ð ~XA þ i ~YAÞ2 − c�ðXA þ iYAÞ
− 3ð ~XA þ i ~YAÞðXA þ iYAÞ2g
þ KðL − ΔLÞf3ð ~XB þ i ~YBÞc − ð ~XB þ i ~YBÞ3
þ 3½ð ~XB þ i ~YBÞ2 − c�ðXB þ iYBÞ
− 3ð ~XB þ i ~YBÞðXB þ iYBÞ2g ð24Þ

where we have used subscript A for the first accelerating
structure and subscript B for the second. We introduce

c ¼ σ2y − σ2x − 2iσxy, which for now we assume to be
known and to be the same in the two octupoles which is
reasonable as long as ΔL=β is small where β is the beta
function at the position of the accelerating structure. The
transverse position inside the first accelerating structure is
denoted ðXA; YAÞ and the offsets in the first accelerating
structure is denoted ð ~XA; ~YAÞ. Similarly for the second
structure with subscript B.
We deploy the same procedure as before and scan the

beam in parallel to the beam axis, see Fig. 3. In that case we
have that XA ¼ XB ¼ X and YA ¼ YB ¼ Y. For a more
compact notation we write the offsets in complex form
~ZA ¼ ~XA þ i ~YA and ~ZB ¼ ~XB þ i ~YB, then (24) becomes

ΔX̂− iΔŶ−2KLðXþ iYÞ3

¼KL

�
3

�
1þΔL

L

�
~ZAcþ3

�
1−

ΔL
L

�
~ZBc

−
�
1þΔL

L

�
~Z3
A−

�
1−

ΔL
L

�
~Z3
B

þ3

��
1þΔL

L

�
~Z2
Aþ

�
1−

ΔL
L

�
~Z2
B−2c

�
ðXþ iYÞ

−3

��
1þΔL

L

�
~ZAþ

�
1−

ΔL
L

�
~ZB

�
ðXþ iYÞ2

�
ð25Þ

which again is a fit in the form of (7). From fit parameters
k2 and k3 we get

k2 ¼ 3KL

��
1þ ΔL

L

�
~Z2
A þ

�
1 −

ΔL
L

�
~Z2
B − 2c

�

k3 ¼ −3KL
��

1þ ΔL
L

�
~ZA þ

�
1 −

ΔL
L

�
~ZB

�
: ð26Þ

We denote the sum and difference between the two offsets
as ~Z ¼ ~ZA þ ~ZB and Δ ~Z ¼ ~ZB − ~ZA. Rewriting (26) we
obtain

~Z2 þ ðΔ ~ZÞ2 − 2ΔL
L

~ZΔ ~Z ¼ 2k2
3KL

þ 4c

~Z −
ΔL
L

Δ ~Z ¼ −k3
3KL

ð27Þ

and inserting the second equation into the first gives

Δ ~Z¼�
��

1−
�
ΔL
L

�
2
��

2k2
3KL

−
�

k3
3KL

�
2

−2c

��1
2 ð28Þ

which shows that we can determine the magnitude of the
difference of the offsets but not the sign. We define Δ ~Z0 to
denote the magnitude of the difference of the offsets. Then
from (27)–(28) we conclude
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~Z¼ −k3
3KL

�ΔL
L

Δ ~Z0

Δ ~Z0 ¼
��

1−
�
ΔL
L

�
2
�
−1
�
2k2
3KL

−
�

k3
3KL

�
2

þ4c

��1
2

: ð29Þ

We have divided the misalignment into two contributions,
global ~Z and relative Δ ~Z0. The term Δ ~Z0 is the misalign-
ment of the two structures relative to each other, i.e., a
measure of the angle between the line through the centers of
the two structures and the reference orbit. ~Z is a measure of
the distance between the line through the centers of the two
structures and the reference orbit.
The procedure of alignment consists of first verifying the

relative alignment of the structures by confirming that Δ ~Z0

is small. If Δ ~Z0 is large the relative alignment of the
structures has to be improved by moving the support of the
structures or by moving the individual structures. Once
the relative alignment is ensured we can adjust the beam
orbit to minimize the global offset ~Z. We note that if
Δ ~Z0 ¼ 0 we have ~ZA ¼ ~ZB ¼ ~Z=2.
To determine the tolerance we follow the same procedure

as before to determine the errors in the real and imaginary
parts of the fit parameters k2 and k3. If we use the same scan
procedure as in Sec. IV we get the same errors in the fit
parameters. Then we compute the Jacobi matrix in order to
propagate these errors to those for real and imaginary parts
of ~Z and Δ ~Z0. Since Δ ~Z0 contains a square root this means
that the error will grow as Δ ~Z0 decreases. Thus there is a
point when the error in the difference in offsets σΔ ~Z0

becomes as large as the difference in offsets itself Δ ~Z0.
We find this to be 26 μm and we interpret this to be our
limit in precision for the relative alignment. We express the
precision in terms of angle and we note that 26 μm over the
distance of 2ΔL corresponds to an angle of 0.1 mrad.
In ~Z the term Δ ~Z0 is scaled with ΔL

L which reduces the
error. We find the error in ~Z to be 1.5 μm, to be compared to
1 μm in the case of a single octupole. Thus we conclude
that the relative alignment of the two structures can be
determined with a tolerance on the order of 26 μm and once
this is done the global alignment can be determined with a
tolerance on the order of 1.5 μm. All the analytical results
of the error propagation were verified with a multiparticle
Monte Carlo code. We note that the misalignment in this
case depends on the beam sizes through the parameter c
and running at low energy with increased emittance will
affect our method. To remedy this we can either measure
the beam sizes on nearby screens, if those are available, or
sacrifice the information about the internal misalignment
Δ ~Z and only determine the average misalignment of the
structure ~Z by interpreting the detected kick as coming
from single octupolar perturbation halfway between the
structures.

Apart from scanning parallel to the beam axis we tried to
scan the angle of the beam. With the two upstream steering
magnets we change the angle of the incoming beam while
keeping the position halfway in between the two structures
fixed. This gave similar results as (29) but with ~Z and Δ ~Z
interchanged, thus in this case, only the magnitude of the
sum of the offsets could be determined. Then one would do
the opposite as in the case of a parallel scan; first minimize
the global offset ~Z and then determine the relative align-
ment Δ ~Z including the sign. However, aperture restrictions
near the BPM (beam pipe radius of the CLIC main beam is
4 mm [1]) limit how much the beam angle can be changed
resulting in small transverse displacements of the beam
inside the structures. This leads to considerably larger
errors in the fit parameters k2 and k3 compared to a parallel
scan. Even worse so, Δ ~Z scales unfavorably with L=ΔL.
All together this gave tolerances of a factor 100 worse
compared to a parallel scan.
We also attempted a scan path that is a linear combi-

nation of parallel and angle scan. There is an optimum path
where we can determine both ~Z and Δ ~Z including their
signs. But again, the errors increased compared to a parallel
scan because of limited scan range due to aperture con-
straints. Summarizing, parallel scan is the best we can do
since then we utilize maximum transverse displacement of
the beam inside the acceleration structure. In another setup
with less restrictions in beam displacement other scan paths
might be worth to consider.

VI. CONCLUSIONS

We have demonstrated a method to utilize the octupole
component of the rf fields in accelerating structures for
beam-based alignment. By moving the girders with the
accelerating structures or by moving the beam with two
steering magnets or quadrupole movers while switching the
rf power on and off we can measure the beam position shifts
for different transverse positions in the accelerating struc-
ture. This eliminates many systematic errors since we
measure position shifts and not absolute positions, and
furthermore since we can measure the shifts from con-
secutive shots without moving the beam. Another advan-
tage of this method is that it requires no additional hardware
which could be a big bonus considering the large number of
accelerating structures in CLIC.
We propose to perform the alignment campaign with

only one drive beam sector powered at a time thus ensuring
that the alignment is done at moderate beam energy. Then
the kick, which scales inversely with beam energy, has a
sufficient magnitude to maintain accuracy of the procedure.
We expect that balancing stability requirements for running
the linac at low energy with requirements for sufficient
resolution in later sectors, will require careful alignment
and optimization of the upstream sectors. Running a low
energy will certainly increase the emittances and beam
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sizes, but our method controls for the beam size, which
affects k1 and k2, but not k3 which carries the information
about the misalignment for a single octupole. For the two-
structure setup we discussed methods to handle this in the
previous section.
We showed the method for a single structure and two

consecutive structures. For the case of a single structure it is
straightforward to determine the offset froma least squares fit
of themeasured position shifts.We assume a scan pathwhere
the beam is moved in parallel to the beam axis with a
transverse displacement of�1 mm. From error propagation
wedetermine the achievable tolerances and find them to be of
the order of 1 μm for the CLICmain beam parameters. In the
case of two consecutive accelerating structures it is possible
to determine the magnitude of the relative alignment but not
the sign. The alignment procedure consists of first minimiz-
ing the relative misalignment and then the global misalign-
ment. The achievable tolerances were found to be 1.5 μm for
the global misalignment and about 20 times worse for the
relative misalignment.
As pointed out earlier, our method is complementary to

alignment using wakefield monitors and may even serve as
a backup in case of hardware failure of the latter. Our
method may also be used to align other proposed X-band
linacs that are based on CLIC technology and operate at
lower energy. Examples are linear accelerators for free-
electron lasers, industrial, and medical applications [21].
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