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In this paper, we discuss the electromagnetic interaction between a point charge travelling inside a
waveguide of elliptical cross section, and the waveguide itself. By using a convenient expansion of the
Mathieu functions, useful in particular for treating a variety of problems in applied mathematics and
physics with elliptic geometry, we first obtain the longitudinal electromagnetic field of a point charge
(Green’s function) in free space in terms of elliptical coordinates. This expression allows, then, to calculate
the scattered field due to the boundary conditions in our geometry. By summing the contribution of the
direct or primary field and the indirect field scattered by the boundary, after a careful choice of some
expansion expressions, we derive a novel formula of the longitudinal electric field, in any transverse
position of the elliptical cross section, generated by the charge moving along the longitudinal axis of the
waveguide. The obtained expression is represented in a closed form, it can be differentiated and integrated,
it can be used to fully describe the radiation process of a particle beam travelling inside a waveguide of
elliptical cross section, and it is valid for any elliptic geometry. The equations are used to evaluate the
coupling impedance due to indirect space charge in case of elliptical geometry. In addition, they are useful
as preliminary studies for the determination of the coupling impedance in different cases involving elliptic
vacuum chambers, as, for example, the effect of the finite conductivity of the beam pipe wall or the
geometrical variation of the vacuum chamber due to elliptic step transitions existing in some accelerators.
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I. INTRODUCTION

A particle accelerator, from the electromagnetic point of
view, can be thought as composed of several devices (for
example rf cavities, magnets, beam diagnostics) connected
by a vacuum chamber. A charged particle beam, travelling
inside the accelerator and interacting with the surrounding
environment, generates unwanted self-induced electromag-
netic fields, which, under unfavorable conditions, perturb
the beam motion, reduce the accelerator performances and,

in some cases, lead to instabilities. The collective effects of
self-induced electromagnetic fields on the particle beam are
generally studied by introducing the concepts of wakefield
and coupling impedance [1]. It is then of paramount
importance to have reliable tools that allow one to evaluate
these self-induced fields. The intent of this paper is to
derive an analytical expression able to describe the electro-
magnetic interaction between a charge travelling with
arbitrary velocity inside a perfectly conducting beam pipe
of elliptical cross section, and the pipe itself. These are
called space charge fields. The analysis of this problem is
primarily of interest for proton or ion machines, where
space charge is important, and where it is not unusual to
deal with elliptical geometries of the beam vacuum
chamber [2–4]. In electron machines these effects are
usually negligible. However, the expressions that we derive
can also be of interest for them since the study can be
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extended to include the effects of the beam pipe finite
conductivity [5,6], and to serve as a Green function for the
problem of the impedance due to the geometrical variation of
the vacuum chamber in an elliptic step transitions. In order to
evaluate these electromagnetic fields, we introduce a set of
special functions, useful for studying problems in applied
mathematics and physics with elliptic geometries, called
Mathieu functions. Mathieu functions were introduced in
the literature in 1868 [7], when the vibrational modes of a
membrane with an elliptic boundary were derived for the
first time. In this paper we consider, as fundamental
reference works on Mathieu functions, the books by
McLachlan [8]. The computation of Mathieu functions is
far from trivial [9], making the analysis of these functions
more difficult than for Bessel functions. Nevertheless, an
available source of software for the computation of Mathieu
functions, that we have used for the field computation
presented in this paper, is described in [10].
The paper is organized as follows: in Sec. II we present a

short theoretical introduction on elliptical coordinates and
Mathieu functions, the wave equation in elliptical coor-
dinates generated by a charged particle beam and its general
solutions, together with some notations and normalizations
adopted in this paper. In Sec. III we derive the primary field,
that is the field directly generated by a point charge in the
free space, and the scattered field, that is the field
reflected by the metallic walls and resulting from the
boundary conditions of the vacuum chamber. Since these
fields, which we manage to express with separate vari-
ables of the elliptical coordinates, are given in terms of
infinite summations, an optimization of the numerical
convergence of these series has also been performed. In
Sec. IV we derive the expression, for an arbitrary trans-
verse position, of the longitudinal electric field produced
by a point charge travelling on the axis of the elliptical
beam pipe, and we also show some numerical computa-
tion examples applied to two accelerators of the CERN
complex, the Proton Synchrotron and the Super Proton
Synchrotron. In Secs. V and VI we apply the expression
of the scattered field to obtain the longitudinal and
transverse quadrupolar indirect space charge coupling
impedance for any elliptic geometry. Finally, Sec. VII is
dedicated to concluding remarks.

II. WAVE EQUATION IN ELLIPTICAL
COORDINATES

Unlike in the classical approach of propagation of
electromagnetic fields in elliptical waveguides [11,12], in
this paper we take, as field source, a charged particle beam
moving with velocity v ¼ βc, with c the speed of light,
along the longitudinal axis (z-axis) of a perfectly con-
ducting elliptical vacuum chamber. Under this condition, if
we consider a transverse magnetic (TM) mode propagating
along z, the wave equation is given by [13]

∇2
t E0

z þ ðk20 − k2zÞE0
z ¼ 0; ð1Þ

where∇2
t is the transverse bi-dimensional Laplacian, E0

z the
longitudinal component of the electric field, k0 the wave
number in free space equal to ω=c, and kz the propagation
constant, imposed by the beam velocity and equal to ω=cβ.
The above equation is valid for a waveguide with arbitrary
cross-section. The longitudinal dependence of the field
with z is of the kind e−jkzz. In the following we omit this
propagation term to simplify notation.
The main difference of Eq. (1) from the common

approach of mode propagation in an elliptic waveguide
[11,12], is that here kz is not an unknown of our problem.
The transverse waves generated by the beam are in cut off,
namely, by defining k2t ¼ k20 − k2z , we observe that this
difference is negative, and therefore kt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 − k2z

p
is an

imaginary quantity.
If we consider an elliptical cross-section, it is convenient

to describe the geometry using confocal elliptical coordi-
nates. In this coordinate system, shown in Fig. 1, we define
the angular coordinate φ, that describes a set of hyperbolas
having the same foci, and the radial coordinate μ which
gives a set of confocal ellipses. The elliptic variable φ has a
domain 0 ≤ φ ≤ 2π, and plays a similar role of an angular
variable in polar coordinates. The variable μ, in the domain
0 ≤ μ < ∞, behaves like a radial variable.
The relation between elliptical and Cartesian coordinates

is given by [14]

�
x ¼ F cosh μ cosφ

y ¼ F sinh μ sinφ;
ð2Þ

where F is the focal distance of the ellipse, related to the
semimajor and semiminor axes a and b by

FIG. 1. Elliptic coordinates. The φ coordinate describes con-
focal hyperbolas that are symmetrical about the x-axis. The μ
coordinate describes confocal ellipses centered on the origin of
the coordinate system.
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F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − b2

p
: ð3Þ

The line joining the foci corresponds to the case μ ¼ 0
and 0 ≤ φ ≤ π, and the origin of our coordinate system is
located in μ ¼ 0, φ ¼ π=2. In our notation, the elliptical
boundary of the beam pipe can be written in terms of the
eccentricity e of the ellipse by

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − b2

p

a
¼ 1

cosh μ0
: ð4Þ

The polar coordinates can be considered a special case
of the elliptic coordinates in the limit F → 0, when the foci
collapse into the origin.
The bi-dimensional Laplacian of Eq. (1) in this coor-

dinate system can be written as [15]:

∇2
t ¼

2

F2ðcosh 2μ − cos 2φÞ
� ∂2

∂μ2 þ
∂2

∂φ2

�
: ð5Þ

If we substitute the above Laplacian definition in Eq. (1),
we obtain the wave equation in elliptical coordinates:

2

F2ðcosh 2μ − cos 2φÞ
� ∂2

∂μ2 þ
∂2

∂φ2

�
E0
z þ k2t E0

z ¼ 0; ð6Þ

where k2t is negative. It is worth noting that Eq. (6) cannot
be written as a standard equation of propagation of
electromagnetic modes in an elliptical waveguide, as
(18.50) in [8]. However, if we define

q ¼ −
k2t F2

4
> 0; ð7Þ

a formal solution of Eq. (6) can still be obtained by using
the same method of variable separation. This method,
in elliptical coordinates, gives two ordinary differential
equations, involving a separation constant a:

d2V
dφ2

þ ðaþ 2q cos 2φÞV ¼ 0 ð8Þ

d2U
dμ2

− ðaþ 2q cosh 2μÞU ¼ 0: ð9Þ

Equations (8) and (9) are known, respectively, as
ordinary and modified Mathieu equations of the first kind
of integral order with changed sign in q (see, e.g., 2.18(1),
and 2.31(1) in [8]). In the limit F → 0, when the foci of the
elliptic coordinates collapse into the origin, the angular and
radial Mathieu equations become harmonic and Bessel
equations, respectively. It exists a countably infinite set of
characteristic values aðqÞ which yield even periodic sol-
utions of Eq. (8). These solutions can be expressed with

four categories of periodic ordinary Mathieu functions as
follows [8]:

ce2nðφ;−qÞ ¼ ð−1Þn
X∞
r¼0

ð−1ÞrAð2nÞ
2r cosð2rφÞ

ce2nþ1ðφ;−qÞ ¼ ð−1Þn
X∞
r¼0

ð−1ÞrAð2nþ1Þ
2rþ1 cos½ð2rþ 1Þφ�

se2nþ1ðφ;−qÞ ¼ ð−1Þn
X∞
r¼0

ð−1ÞrBð2nþ1Þ
2rþ1 sin½ð2rþ 1Þφ�

se2nþ2ðφ;−qÞ ¼ ð−1Þn
X∞
r¼0

ð−1ÞrBð2nþ2Þ
2rþ2 sin½ð2rþ 2Þφ�;

ð10Þ

with n defining the order of the Mathieu functions.
The expansion coefficients in the above series, A and B,
which are functions of q, are defined in such a way that
the angular functions cen and sen are orthogonal [8].
Furthermore, the Mathieu functions are normalized accord-
ing to the following equation:

Z
2π

0

cenðz;−qÞcepðz;−qÞdz ¼
�
0 n ≠ p

π n ¼ p
: ð11Þ

A similar expression is valid for sen.
The expansion coefficients in Eq. (10) can be obtained

by substituting the above series in the differential equa-
tion (8), leading to an infinite homogeneous system of

linear equations. For example, for the coefficients Að2nÞ
2m , it is

possible to obtain the three-term recursion relations

aAð2nÞ
0 − qAð2nÞ

2 ¼ 0

½a − ð2mÞ2�Að2nÞ
2m − q

�
Að2nÞ
2m−2 þ Að2nÞ

2mþ2

�
¼ 0 ðm ≥ 2Þ:

ð12Þ

For a fixed q, this becomes a tri-diagonal matrix equation
representing an eigenvalue problem in A with the coef-

ficients Að2nÞ
2m , which are the eigenvector components. Since

the terms Að2nÞ
2m are negligibly small as m becomes very

large, the matrix can be truncated and a finite eigenvalue
problem can then be solved. Similar expressions can also be
obtained for the other coefficients in Eq. (10).
Solutions of Eq. (9) can be obtained from Eq. (8) by

setting the change of variable φ ¼ jμ, with j the imagi-
nary unit. The solutions are called radial modified
Mathieu functions of the first kind, and can be defined
as follows [8]:
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Ce2nðμ;−qÞ ¼ ð−1Þn
X∞
r¼0

ð−1ÞrAð2nÞ
2r coshð2rμÞ

Ce2nþ1ðμ;−qÞ ¼ ð−1Þn
X∞
r¼0

ð−1ÞrAð2nþ1Þ
2rþ1 cosh½ð2rþ 1Þμ�

Se2nþ1ðμ;−qÞ ¼ ð−1Þn
X∞
r¼0

ð−1ÞrBð2nþ1Þ
2rþ1 sinh½ð2rþ 1Þμ�

Se2nþ2ðμ;−qÞ ¼ ð−1Þn
X∞
r¼0

ð−1ÞrBð2nþ2Þ
2rþ2 sinh½ð2rþ 2Þμ�:

ð13Þ

Finally, the solution of Eq. (6) is given by a combination
of the above Mathieu functions of even or odd order [11]:

E0
zðμ;φÞ ¼

X∞
r¼0

�
arcerðφ;−qÞCerðμ;−qÞ

brserþ1ðφ;−qÞSerþ1ðμ;−qÞ

�
: ð14Þ

The solution of the wave equation, in order to satisfy the
boundary conditions, has to be null on the contour of the
ellipse: E0

zðμ0;φÞ ¼ 0, with μ0 defining the elliptical
boundary given by Eq. (4).
In addition to the above equations, it is convenient to

introduce here also the radial modified Mathieu functions
of second kind Fek2nðμ;−qÞ [8]. These functions play a
role in elliptic coordinates similar to the modified Bessel
functions of the second kind Kn for cylindrical coordinates.
Indeed, as the pair of Bessel functions I0 and K0, with I0
the zero order modified Bessel function of the first kind,
are used to express the electromagnetic field generated
by a charged particle in cylindrical symmetry [16], the pair
Ce2n and Fek2n will be used here for our case in elliptic
coordinates. The functions Fek2nðμ;−qÞ are defined in
terms of series of the Bessel functions Kn as in 8.20 of [8]:

Fek2nðμ;−qÞ ¼ ð−1Þn ce2nð
π
2
; qÞ

πAð2nÞ
0

X∞
r¼0

Að2nÞ
2r K2rð2

ffiffiffi
q

p
sinhμÞ

ð15Þ

Fek2nþ1ðμ;−qÞ ¼ ð−1Þn se2nþ1ðπ2 ; qÞ
π

ffiffiffi
q

p
Bð2nþ1Þ
1

cothμ

×
X∞
r¼0

ð2rþ 1ÞBð2nþ1Þ
2rþ1 K2rþ1ð2

ffiffiffi
q

p
sinhμÞ

ð16Þ

with the condition j sinh μj > 1, necessary for absolute and
uniform convergence of the expansions [8]. Similar expres-
sions with different coefficients can also be written by using
cosh μ as argument of the Bessel functions instead of
sinh μ. In addition to the above expressions, it is possible to
demonstrate that the functions Fek2nðμ;−qÞ can be also

expressed in terms of product series of Bessel functions
InðxÞKnðxÞ. For example, we can write [8]:

Fek2nðμ;−qÞ ¼
p0
2n

πAð2nÞ
0

X∞
r¼0

Að2nÞ
2r Irðν1ÞKrðν2Þ ð17Þ

with

p0
2n ¼ ð−1Þn ce2nð0; qÞce2nð

π
2
; qÞ

Að2nÞ
0

; ð18Þ

and ν1 ¼ ffiffiffi
q

p
e−μ and ν2 ¼ ffiffiffi

q
p

eμ. The product series (17)
converges more rapidly than those with arguments
2

ffiffiffi
q

p
sinh μ, 2

ffiffiffi
q

p
cosh μ, and it converges uniformly in

any finite region of the μ-plane [8]. By virtue of this, the
product series is preferable for calculating the values of the
functions Fek2nðμ;−qÞ.

III. THE RADIATION PROBLEM
IN AN ELLIPTICAL WAVEGUIDE

In this section, we derive an analytical expression of the
longitudinal electric field generated by a Dirac δ-function
beam distribution with chargeQ travelling in free space. Of
course, this is a well known and solved problem, but, in
order to match the elliptical geometry that we are consid-
ering for the beam pipe, we want to express the field in
elliptical coordinates and with separate functions of the
variables φ and μ. Let us first consider the following
wave equation of the electric field E0

z for a TM mode
generated by the charge moving along the axis of the pipe
cross-section:

∇2
t E0

z þ k2t E0
z ¼ −GδðxÞδðyÞ; ð19Þ

where δ is the Dirac delta function and G is a constant
that depends on the beam parameters and can be calculated
as [13]

G ¼ jZ0

Qk0
2πβ2γ2

; ð20Þ

where Z0 is the characteristic impedance in free space and γ
is the Lorentz factor.
As we have already discussed at the beginning of Sec. II,

the transverse wave number kt is an imaginary quantity and
it can be written here as

kt ¼ j
k0
βγ

: ð21Þ

The electric field E0
z can be represented as the super-

position of a field generated by the particle beam in free
space and a field that is scattered by the boundary of the
waveguide and that acts back on the beam itself. Therefore,
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we can divide the solution of the wave equation into two
scalar solutions:

E0
z ¼ Es

z þ Ei
z: ð22Þ

The first scalar solution Es
z represents the direct (or

primary) component of the field. It has to satisfy the
inhomogeneous wave equation in free space

∇2
t Es

z −
k20
β2γ2

Es
z ¼ −GδðxÞδðyÞ; ð23Þ

and it has to satisfy the conditions of radiation at infinity.
At the origin of the elliptical coordinates the direct field
diverges.
The second scalar solution in Eq. (22), Ei

z, is called the
indirect field, and it is the field scattered from the boundary,
which, in our case, is elliptic. The indirect field has to
satisfy the homogeneous wave equation

∇2
t Ei

z −
k20
β2γ2

Ei
z ¼ 0 ð24Þ

and it has a finite value at the origin of the elliptical
coordinates.
In the following subsections, we are going to calculate

separately the two solutions of the wave equations (23) and
(24) in elliptical geometry, using the condition that the sum
of the direct and indirect field must satisfy the boundary
conditions on the contour of the beam pipe.

A. Direct field or Green’s function in free space

An expression of the direct field in free space generated
by a Dirac δ distribution in cylindrical geometry, that is a
solution of Eq. (23), is given by [13]

Es
z ¼ GK0

�
k0r
βγ

�
; ð25Þ

where r is the radial coordinate and K0 is the zero order
modified Bessel function of second kind. This expression
allows us to calculate the Green’s function at any position
in free space. We want to derive an equivalent expression
in elliptical coordinates. To do that, we first substitute the
radial polar coordinate r with Eq. (2), and then obtain the
argument of the Bessel function:

K0

�
k0F
βγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2μþ cos2φ

q �

¼ K0

�
k0F
2βγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2μ þ e−2μ − 2 cosð2φþ πÞ

q �
: ð26Þ

Then, by using the Gegenbauer’s addition theorem [17], it
is possible to expand themodified Bessel functionK0 as [18]:

K0

�
k0F
2βγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2μ þ e−2μ − 2 cosð2φþ πÞ

q �

¼
X∞
n¼0

ð−1ÞnϵnInðz1ÞKnðz2Þ cosð2nφÞ; ð27Þ

where ϵn ¼ 2
1þδn;0

, with δn;0 the Kronecker delta and

z1 ¼
k0F
2βγ

e−μ; z2 ¼
k0F
2βγ

eμ: ð28Þ

It is worth noting that, by the use of Eq. (27), we have
now provided an expansion of Es

z in separate functions of μ
and φ. However, the equation needs to be further manip-
ulated in order to express the electric field in terms of
Mathieu functions, which represent a natural expression of
the fields in elliptical geometry.
Following the procedure described in [19], applying the

method of Ritz-Galerkin [20] and the orthogonality proper-
ties of Mathieu’s functions, it is possible to expand the
cosine function in Eq. (27) as

ϵn cosð2nφÞ ¼ 2ð−1Þn
X∞
l¼0

ð−1ÞlAð2lÞ
2n ce2lðφ;−qÞ

¼ 2ð−1Þn
X∞
l¼0

Að2lÞ
2n ce2l

�
π

2
− φ; q

�
; ð29Þ

with an arbitrary value of q. By changing q, both the

coefficients Að2lÞ
2n and the periodic ordinary Mathieu func-

tions change accordingly, and the equation remains sat-
isfied. If we now introduce Eq. (29) in Eq. (27), the electric
field is given by:

Es
z ¼ 2G

X∞
l¼0

ce2l

�
π

2
− φ; q

�X∞
n¼0

Að2lÞ
2n Inðz1ÞKnðz2Þ: ð30Þ

Equation (30) is an alternative representation of Eq. (25),
and, written in this form, q is still arbitrary. If q is defined as

q ¼
�
k0F
2βγ

�
2

; ð31Þ

the inner sum in Eq. (30) is proportional to the radial
modified Mathieu functions of second kind Fek2lðμ;−qÞ
of Eq. (17). We can therefore express the Green’s function
in compact form as:

Es
z ¼ 2πG

X∞
l¼0

Að2lÞ
0

p0
2l

ce2l

�
π

2
− φ; q

�
Fek2lðμ;−qÞ: ð32Þ

Equation (32) is our result for the direct electric field as
solution of Eq. (23). It is expressed in terms of a product of
Mathieu functions with separate elliptical coordinates φ
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and μ. Since we have derived the expression directly from
the Green’s function in free space, it satisfies all the
properties of the Green’s function. Written in this form,
it is possible to verify that it is rapidly convergent because

the coefficients Að2lÞ
0 go rapidly to zero. Since the electric

field must exhibit the same configuration independently
from the coordinate system that has been adopted, we can
compare Eq. (32), expanded in elliptical coordinates, with
Eq. (25), written in terms of cylindrical coordinates.
Figures 2 and 3 show the numerical comparison between

the two expressions of the electric field at φ¼0 ðr¼x≥FÞ
and φ ¼ π=2 (r ¼ y > 0) as a function of the distance from
the origin. The relations between r (x or y) and μ are given
by Eq. (2). For the numerical computation, we considered
a focal distance F ¼ 1, but any value of F can be used.
In both cases, we summed 120 terms, for which the
calculation is almost immediate on an ordinary desktop
PC. These two examples show that the two curves agree
very well.

B. Indirect field (scattered field)

The indirect field has to satisfy the homogeneous wave
equation (24). Since we are dealing with elliptical geom-
etry, in order to simplify the application of the boundary
conditions, it is better to represent the component of the

indirect electric field Ei
z directly as expansion of Mathieu

radial and angular functions, as in Eq. (14), that is

Ei
z ¼ 2πG

X∞
l¼0

M2lð−1Þlce2lðφ;−qÞCe2lðμ;−qÞ

¼ 2πG
X∞
l¼0

M2lce2l

�
π

2
− φ; q

�
Ce2lðμ;−qÞ; ð33Þ

with M2l the unknown amplitude of the field. The constant
2πG and the term ð−1Þl have been introduced here to
simplify the final expression of the total electric field.
It is important to underline the similarity of Eq. (33) with
Eq. (32). The total field E0

z of Eq. (22), representing the
electric field produced by a charged beam in an elliptical
vacuum chamber, is, therefore, given by the sum of the
direct and indirect field:

Es
z þ Ei

z ¼ 2πG
X∞
l¼0

Að2lÞ
0

p0
2l

ce2l

�
π

2
− φ; q

�
Fek2lðμ;−qÞ

þ 2πG
X∞
l¼0

M2lce2l

�
π

2
− φ; q

�
Ce2lðμ;−qÞ:

ð34Þ

In order to satisfy the boundary conditions, we have to
impose, in the above equation, a zero value electric field E0

z
on the elliptic surface μ0, expressed by Eq. (4), for any
value of φ. This gives a condition for the unknown
amplitudes M2l, which must be such that:

2πG

	X∞
l¼0

Að2lÞ
0

p0
2l

ce2l

�
π

2
− φ; q

�
Fek2lðμ0;−qÞ

þ
X∞
l¼0

M2l ce2l

�
π

2
− φ; q

�
Ce2lðμ0;−qÞ



¼ 0: ð35Þ

The above relation has to be satisfied independently
for each term of the summation. Therefore, the unknown
amplitude coefficients of the indirect field can be calcu-
lated as:

M2l ¼ −
Að2lÞ
0

p0
2l

Fek2lðμ0;−qÞ
Ce2lðμ0;−qÞ

: ð36Þ

By considering the previous condition on the amplitudes
M2l, we can now fully describe the indirect (scattered) field
in terms of a combination of periodic ordinary and radial
modified Mathieu functions of first kind:

Ei
z ¼ −2πG

X∞
l¼0

Að2lÞ
0

p0
2l

Fek2lðμ0;−qÞ
Ce2lðμ0;−qÞ

ce2l

�
π

2
− φ; q

�

× Ce2lðμ;−qÞ: ð37Þ
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FIG. 2. Comparison between the Green’s function in free space
computed with Eq. (25) (blue line) and Eq. (32) (red dashed line)
with 120 summation terms, as a function of the radial coordinate
and φ ¼ 0, for a focal distance F ¼ 1.
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FIG. 3. Comparison between the Green’s function in free space
computed with Eq. (25) (blue line) and Eq. (32) (red dashed line)
with 120 summation terms, as a function of the radial coordinate
and φ ¼ π=2, for a focal distance F ¼ 1.
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IV. TOTAL FIELD IN ELLIPTICAL
COORDINATES

The total field E0
z excited by a Dirac δ beam distribution

in a beam pipe of elliptic cross section is finally expressed
in terms of product series of periodic ordinary Mathieu
functions ce2l and radial modified Mathieu functions Fek2l
and Ce2l. Combining Eqs. (32) and (37), the expansion of
the total field is given by

E0
z ¼ 2πG

X∞
l¼0

Að2lÞ
0

p0
2l

ce2l

�
π

2
− φ; q

�	
Fek2lðμ;−qÞ

−
Fek2lðμ0;−qÞ
Ce2lðμ0;−qÞ

Ce2lðμ;−qÞ


; ð38Þ

that satisfies the boundary conditions on the contour
of the ellipse representing the beam vacuum chamber.
Equation (38) is our final result, expressed in a compact
form, to calculate the longitudinal electric field, at any
frequency and transverse position, produced by a point
charge in an elliptic vacuum chamber of any dimension
and aspect ratio. An equivalent expression could also be
obtained by using an expansion of the eigenmodes in the
elliptic waveguide. In Appendix A we show the procedure
that should be used, and we explain the reasons why we did
not follow that method.
It is important to observe that Eq. (38) is formally very

similar to the well-known longitudinal electric field gen-
erated by a point charge travelling on the axis of a perfectly
conducting beam pipe of radius r0 [13]:

E0
z ¼ G

	
K0

�
k0r
βγ

�
−
K0ðk0r0βγ Þ
I0ðk0r0βγ Þ

I0

�
k0r
βγ

�

; ð39Þ

with the pair of modified Bessel functions of first and
second order I0 − K0 replacing the pair of modified Mathieu
functions of first and second order Ce2l − Fek2l. The
equation can therefore be used to fully describe and rapidly
compute the longitudinal electric field produced by a charge
moving along the z-axis of a beam vacuum chamber having
elliptical cross sections.
For completeness, we show in Appendix B that Eq. (39)

can be derived from Eq. (38) in the limit of q → 0 (or
k0 → 0). An alternative way of deriving the low frequency
limit of Eq. (39) and Eq. (38), based on field decomposition
in terms of eigenfunctions and eigenvalues of a 2D
boundary problem, is discussed in [21].
Using an expression containing the radial modified

Mathieu functions of second kind Fek2l presents several
advantages. The field is expressed in a compact analytical
form that can be used as a first step to obtain more
complicated fields in elliptic geometry, as, for example,
including finite resistivity of the beam vacuum chamber. In
addition, formal expressions for the derivative and the

integral of the electric field can be easily written. Moreover,
it is worth noting that the summation in Eq. (38) converges
very rapidly.
A different expression of the electric field in an elliptical

vacuum chamber, with and without losses, has already been
derived in [22]. Nevertheless, a different approach consid-
ering a Gaussian beam distribution (not a point charge) has
been used, leading to a more complicated formulation of
the field.
In order to validate Eq. (38), we have compared our

results with those obtained from the electromagnetic code
CST Particle Studio [23]. With CST, we can define an
elliptic vacuum chamber with perfectly conducting pipe,
and compute the electromagnetic interaction between a
Gaussian beam of a fixed charge and energy, travelling
along the longitudinal axis of the pipe, and its surrounding
environment. The CST frequency monitor allows to com-
pute the electric or magnetic field along any user defined
curve or inside a volume, at a given frequency. By the use
this monitor, we computed the longitudinal electric field
along an arbitrary ellipse inside the geometry. The field
computed by CST is given by the sum of the direct and the
indirect field, and therefore it is not possible to separate
the two contributions. In addition to that, the use of CST
for this type of computation is not very suited in case of
nonrelativistic energies (β < 1), since the computation can
result very time consuming and the low value of the
resulting electric field can, in some cases, be altered by
numerical noise.
In Fig. 4, a comparison between the field per unit of

charge computed with Eq. (38) and by CST, at a frequency
of 100 MHz and μ ¼ 0.1, is shown as a function of φ. In
this example, we considered the CERN Proton Synchrotron
(PS) machine, that is designed with an elliptic beam pipe
[2] with a ¼ 7.3 cm and b ¼ 3.5 cm, and β ¼ 0.91. The
two results are in very good agreement, and the formula
converges to the simulation result with 40 summation
terms, taking just a few seconds of calculation. By testing

FIG. 4. Comparison between the longitudinal electric field per
unit of charge computed with Eq. (38) (blue line) and by CST (red
dashed line) with 40 summation terms, calculated in μ ¼ 0.1 at
100 MHz as a function of φ.
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different geometries and beam characteristics, we observed
an excellent agreement between the analytical formula and
the simulation results in a variety of cases.
In Fig. 5, an example of the total longitudinal electric

field per unit of charge, calculated as a function of the
coordinate φ for μ ¼ 0.1 at a frequency of 100 MHz, is
shown for the CERN Super Proton Synchrotron (SPS).
The SPS is designed with an elliptic beam pipe having
a ¼ 7.8 cm and b ¼ 2.1 cm [24] and an injection energy
γ ¼ 27. We can observe that the amplitude of the longi-
tudinal electric field in the SPS is much lower when
compared to that of the PS, as a consequence of the
increased beam rigidity.

V. THE LONGITUDINAL INDIRECT SPACE
CHARGE IMPEDANCE AND THE FORM FACTOR

The indirect field given by Eq. (37) can also be seen as
the field produced by the image currents moving inside the
pipe wall. In this way, Eq. (37) is useful to evaluate
the so-called longitudinal indirect space charge coupling
impedance, which, for low energies, can represent a very
important contribution to the total impedance of a machine
[2]. Its value per unit of length can be written as [13]

dZ==

dz
¼ −

Ei
zðμ ¼ 0;φ ¼ π

2
Þ

Q
: ð40Þ

This impedance is purely imaginary and it can be used to
evaluate the effect of indirect space charge for any elliptical
geometry. In Fig. 6 we have compared Eq. (40), as a
function of frequency, with the results given by the code
IW2D [18], which has been developed to obtain the wall
impedance (taking into account also the conductivity of the
pipe wall) for circular and flat (parallel plates) geometries.
For IW2D we have used a very low resistivity, while, for
Eq. (38), we have considered two cases. In the first case, we
assumed a less than 2% difference between the two axes
of the ellipse (for approximating the round case, left side).
In the second case, we assumed the ellipse major axis ten
times larger than the minor one (for approximating the case
of parallel plates, right side). In both cases we considered
120 summation terms, and we used b ¼ 3.5 cm and
β ¼ 0.9, which are of interest for the PS machine. As
we can see from the two figures, the agreement between the
two methods is very good.
Equation (40) has also been used to evaluate the

ratio between the longitudinal impedance as a function
of qr ¼ ða − bÞ=ðaþ bÞ, and the impedance of the corre-
sponding circular pipe (qr → 0). In Fig. 7 we show this
form factor for different frequencies at the PS and the SPS
injection energies. The black vertical lines correspond to
the machines beam pipe geometries (for PS qr ¼ 0.35, for
SPS qr ¼ 0.58). It is important to observe that the form
factor depends on both the beam energy and the frequency.
If, from Eq. (39), we take into account only the indirect
space charge contribution, the longitudinal impedance at
low frequency for a circular pipe can be written as [13]

dZ==

dz
¼ −

G
Q

	
log

�
k0r0
βγ

�
þ γe



; ð41Þ

with γe the Eulers constant.

FIG. 5. Longitudinal electric field per unit of charge in the
elliptic beam pipe of the SPS accelerator at the injection energy,
calculated in μ0 ¼ 0.1 at 100 MHz as a function of φ.

FIG. 6. Longitudinal indirect space charge per unit of length for b ¼ 3.5 cm and β ¼ 0.9 as a function of frequency. Comparison
between IW2D and Eq. (38) for circular pipe (left) and parallel plates (right).
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It is also possible to compare Eq. (40), in case of low
frequency, with the results presented in [4]. In order to
extend Eq. (41) to the elliptical case, we can substitute
the pipe radius r0 with the longitudinal equivalent radius
defined in [4] as:

req ¼ b
4

ffiffiffiffiffi
qr

p
ðqr − 1Þϑ22ð0; qrÞ

; ð42Þ

with ϑ2 the Jacobi theta function. In Fig. 8, a comparison
between the impedance given by Eq. (40) with that of
Eq. (41) by using the equivalent radius (42) at low
frequency (100 kHz) for the PS injection energy at different
qr, is shown. As we can see, the agreement is very good.

VI. THE TRANSVERSE INDIRECT SPACE
CHARGE QUADRUPOLAR IMPEDANCE

From the indirect longitudinal electric field of Eq. (37),
it is possible to obtain also the transverse indirect space
charge quadrupolar coupling impedance in elliptic geom-
etry. In our notation, dipolar and quadrupolar impedances

have the following definitions: the dipolar impedance is
computed displacing the source particle and considering
the wakefield effect on the test particle in the center. The
quadrupolar impedance is computed displacing the test
particle keeping the source particle in the center. In both
cases, the dipolar or quadrupolar wakefield effect is linear
with the source or test particle displacement [25]. Let us
consider, as example, the vertical plane. The vertical
impedance is defined as

Z⊥;y ¼
j

QΔy

Z
∞

−∞
ðEi

y þ vBi
xÞdz; ð43Þ

where v is the beam velocity.
The indirect fields in the above equation are generated

by a point charge moving on the axis of the beam pipe,
and they are evaluated in ðφ ¼ π=2; μ ¼ ΔμÞ, that is in
ðx ¼ 0; y ¼ Δy ¼ F sinhΔμÞ with Δμ ≪ μ0 [25]. From
the Faraday law in the frequency domain, by considering
the longitudinal dependence of the electric field with z, as
stated at the beginning of Sec. II, we have

Bi
x ¼

j
ω

�∂Ei
z

∂y þ jkzEi
y

�
; ð44Þ

that, substituted in Eq. (43), gives

Z⊥;y ¼ −
1

QΔykz

Z
∞

−∞

∂Ei
z

∂y dz; ð45Þ

from which we obtain the transverse indirect space charge
quadrupolar impedance per unit of length

dZ⊥;y

dz
¼ −

1

QΔykz
∂Ei

z

∂y : ð46Þ

An analogous expression can be found also for hori-
zontal plane. Since we are using the elliptic coordinates, we
have

FIG. 7. Longitudinal form factor as a function of qr ¼ ða − bÞ=ðaþ bÞ for the PS (left) and the SPS (right) injection energies at
different frequencies. The vertical black lines correspond to the machines beam pipe geometries.

FIG. 8. Longitudinal indirect space charge impedance as a
function of qr ¼ ða − bÞ=ðaþ bÞ for the PS accelerator for a
frequency of 100 kHz. Comparison between Eq. (40) and
Eq. (41) by using the equivalent radius defined in Eq. (42).
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∂Ei
z

∂y ¼ ∂Ei
z

∂μ
∂μ
∂y þ

∂Ei
z

∂φ
∂φ
∂y : ð47Þ

The derivatives have to be done with constant x, so that,
from Eq. (2), we have

∂μ
∂y ¼ cosh μ sinφ

Fðsinh2μþ sin2φÞ ð48Þ

∂φ
∂y ¼ sinh μ cosφ

Fðsinh2μþ sin2φÞ : ð49Þ

Since in φ ¼ π=2 the second of the above equations is
zero, we remain only with the derivative in μ. By using for
the field Eq. (37), we finally obtain

dZ⊥;y

dz
¼ 2πG

Qkz

1

F2 sinhΔμ coshΔμ

·

	X∞
l¼0

Að2lÞ
0

p0
2l

ce2lð0; qÞ
Fek2lðμ0;−qÞ
Ce2lðμ0;−qÞ

×
dCe2lðμ;−qÞ

dμ

����
μ¼Δμ



: ð50Þ

For the horizontal plane the field has to be evaluated in
ðφ ¼ π

2
− Δφ; μ ¼ 0Þ with Δφ ≪ 1, and, by following the

same procedure, we obtain

dZ⊥;x

dz
¼ 2πG

Qkz

1

F2 sinΔφ cosΔφ

·

	X∞
l¼0

Að2lÞ
0

p0
2l

Ce2lð0;−qÞ
Fek2lðμ0;−qÞ
Ce2lðμ0;−qÞ

×
dce2lðπ2 − φ; qÞ

dφ

����
φ¼π

2
−Δφ



: ð51Þ

As in the longitudinal case, the transverse quadrupolar
impedance is purely imaginary. In Fig. 9 we have compared
Eq. (50), as a function of frequency, with the results given by
IW2D under the same assumptions as in the longitudinal
plane of Fig. 6. We have also represented the impedance at
different values of qr. When qr > 0.8, we retrieve the flat
chamber case. We also observe that the PS quadrupolar
impedance due to space charge, for which qr ¼ 0.35, can be
much higher and not negligible with respect to the circular
case. Also in this case, we find that the agreement between
our method and IW2D is very good. It is important to
highlight that at high frequency, the quadrupolar impedance
of a circular pipe is different from zero. Only when β → 1
this contribution disappears. In the same figure, we have also
represented the quadrupolar transverse impedance obtained
by using the Laslett coefficients for an elliptic pipe. The
expression, valid only at low frequencies, gives a constant
imaginary impedance that can be written as [26]

dZ⊥;y

dz
¼ jZ0

πγ2βb2
ϵ1;γ ð52Þ

where

ϵ1;γ ¼
b2

12F2

	
ð1þ k02Þ

�
2KðkÞ
π

�
2

− 2



ð53Þ

with KðkÞ the complete elliptic integral of the first kind,
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k02

p
, and k0 the complementary modulus given by

k0 ¼
�
1þ 2

P∞
s¼1ð−1Þsqs

2

r

1þ 2
P∞

s¼1 q
s2
r

�2

: ð54Þ

Equation (53) is not suited to evaluate the impedance
when the pipe geometry tends to be flat. Indeed, when
qr → 1, k → 0 and then k≃ 1. Both KðkÞ and F tend to
infinity and the evaluation of the equation needs particular
care. This happens already when qr ≥ 0.8. However, the
agreement with Eq. (50) at low frequency is very good.

VII. CONCLUSIONS

In this paper, we have obtained a novel formula that
describes the radiation process of a particle beam traveling
along the longitudinal axis of a beam vacuum chamber of
elliptical cross section. By using a convenient expansion of
the Mathieu functions, we first obtained the longitudinal
Green function in free space with elliptical coordinates,
and then derived the indirect field due to the boundary
elliptic geometry. The combination of the two fields,
representing the total field, is expressed in terms of product
series of periodic ordinary Mathieu functions ce2n and
radial modified Mathieu functions Fek2n and Ce2n, and the
final expression allows for an immediate computation of
the longitudinal electromagnetic field inside the vacuum
chamber when traversed by a particle beam. The equation,
which can be evaluated for any elliptical geometry, for a test

FIG. 9. Transverse indirect space charge per unit of length for
b ¼ 0.35 cm and β ¼ 0.9 as a function of frequency for different
qr ¼ ða − bÞ=ðaþ bÞ compared with the circular and flat beam
pipe given by IW2D, and with theory which uses the Laslett
coefficients at low frequency.

S. PERSICHELLI et al. PHYS. REV. ACCEL. BEAMS 20, 101004 (2017)

101004-10



particle at any transverse position, and for any velocity of
the charge, is written in closed form, thus allowing to be
differentiated or integrated for further studies of electro-
magnetic interaction of a particle beam in an elliptic
geometry. Theoretical results are in excellent agreement
with those obtained with numerical simulations performed
with CST Particle Studio in a variety of cases. This formula
has been applied successfully to different realistic geom-
etries of vacuum chambers installed in the CERN accel-
erator complex. By using the field in terms of Mathieu
functions, we have also obtained the indirect space charge
longitudinal and transverse quadrupolar coupling imped-
ances for any elliptic geometry and frequency, and we
have compared them with other existing analytical models,
valid only at low frequency, and with the code IW2D for a
circular pipe and parallel plates. The expression of the
Green’s function is useful since, from the knowledge of the
fields in elliptical coordinates, the theory can be further
developed to give, for example, the impedance due to the
finite resistivity of an elliptic beam pipe wall, or to serve as
a basis for an analytical model for the computation of the
electric field generated by a point charge passing through a
step transition between to confocal elliptical waveguides.
The above problems are under investigation.
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APPENDIX A: EIGENMODES EXPANSION IN
ELLIPTIC WAVEGUIDE

If we consider the eigenmodes in the elliptic waveguide,
they satisfy the modal wave equation

∇2
t E

r;s
z þ k2r;sE

r;s
z ¼ 0; ðA1Þ

with k2r;s the corresponding eigenvalues. These eigenmo-
des, which satisfy the homogeneous boundary conditions,
allow to write the Green’s function as

E0
z ¼

X∞
r;s¼0

Cr;sE
r;s
z ; ðA2Þ

with Cr;s the unknown coefficients. By introducing this
equation in Eq. (19), and by using the orthonormal proper-
ties of the eigenmodes, it is possible to obtain, for the
coefficients Cr;s, the expression

Cr;s ¼ −
G

ðk2t − k2p;tÞ
Ep;t
z ð0Þ: ðA3Þ

It is important to observe that, since k2t is negative, we will
never obtain the resonance condition. Finally, the Green’s
function can be expressed as:

E0
z ¼ −

X∞
r;s¼0

G
ðk2t − k2r;sÞ

Er;s
z ð0ÞEr;s

z : ðA4Þ

However, in the problem discussed in this paper, this
expansion would result more cumbersome because of
the additional complexity of finding the eigenvalues of
the Mathieu functions. Nevertheless, it is important to
underline that this type of expansion can be extremely
useful when it is necessary to use the orthogonality
properties in order to solve some particular problems, as,
for example, that of a step transition [27].

APPENDIX B: GREEN FUNCTION IN ELLIPTIC
COORDINATES IN THE LIMIT F → 0

If we consider the elliptic pipe with b → a ¼ r0, that
is F → 0, from Eq. (31) we also have that q → 0. The

coefficients Að2lÞ
0 , when q ¼ 0, are all zero [8] except

Að0Þ
0 ¼ 1=

ffiffiffi
2

p
, so that in Eq. (38) the summation over l

disappears, and the field becomes

Ei
z ¼ 2πG

Að0Þ
0

p0
0

ce0

�
π

2
− φ; 0

�

×

�
Fek0ðμ; 0Þ −

Fek0ðμ0; 0Þ
Ce0ðμ0; 0Þ

Ce0ðμ; 0Þ
�
: ðB1Þ

The ordinary Mathieu function of first kind ce0ðφ; 0Þ has to
be equal to Að0Þ

0 . Moreover, by using Eq. (15), we can write

Fek0ðμ; 0Þ ¼
p0
0

πAð0Þ
0

X∞
r¼0

Að0Þ
2r Irðν1ÞKrðν2Þ: ðB2Þ

Since also Að0Þ
2r are all zero except the one with r ¼ 0, the

summation over r disappears, and we obtain

Fek0ðμ; 0Þ ¼
p0
0

πAð0Þ
0

I0ðν1ÞK0ðν2Þ: ðB3Þ

Being

ν1 ¼
ffiffiffi
q

p
e−μ → 0; ν2 ¼

ffiffiffi
q

p
eμ →

k0r
βγ

; ðB4Þ

we obtain
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Fek0ðμ; 0Þ ¼
p0
0

πAð0Þ
0

K0

�
k0r
βγ

�
: ðB5Þ

Analogously, we can write

Fek0ðμ0; 0Þ ¼
p0
0

πAð0Þ
0

K0

�
k0r0
βγ

�
: ðB6Þ

Finally, we can express the radial modified Mathieu
functions of the first kind in terms of product series of
Bessel functions [8], as

Ce0ðμ; 0Þ ¼
p0
0

Að0Þ
0

X∞
r¼0

ð−1ÞrAð0Þ
2r Irðν1ÞIrðν2Þ

¼ p0
0

Að0Þ
0

Að0Þ
0 I0ðν1ÞI0ðν2Þ

¼ p0
0I0

�
k0r0
βγ

�
; ðB7Þ

and

Ce0ðμ; 0Þ ¼ p0
0I0

�
k0r
βγ

�
: ðB8Þ

If we substitute Eqs. (B5)–(B8) in Eq. (38), we obtain the
longitudinal electric field generated by a point charge
travelling on the axis of a perfectly conducting circular
beam pipe of radius r0, as given by Eq. (39).
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