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The recently proposed superconducting quadrupole resonator for Landau damping in accelerators is
subjected to a detailed design study. The optimization process of two different cavity types is presented
following the requirements of the High Luminosity Large Hadron Collider (HL-LHC) with the main focus
on quadrupolar strength, surface peak fields, and impedance. The lower order and higher order mode (LOM
and HOM) spectrum of the optimized cavities is investigated and different approaches for their damping are
proposed. On the basis of an example the first two higher order multipole errors are calculated. Likewise on
this example the required rf power and optimal external quality factor for the input coupler is derived.
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I. INTRODUCTION

The betatron frequency spread in circular accelerators
yield a natural effect of suppressing transverse collective
instabilities, the so-called Landau damping [1,2]. The
incoherent frequency or tune spread is caused by non-
linearities in the machine. To ensure this mechanism
dedicated nonlinear elements, typically octupole magnets,
also known as Landau octupoles (LO) are installed in the
accelerator [3,4]. However, adiabatic damping and
increased beam rigidity reduce their efficiency at higher
energies. The Large Hadron Collider (LHC) uses a total
of 168 superconducting LOs with a total length of 56 m,
which may operate close to their limits after the high
luminosity upgrade [5]. Future accelerators may call for
more efficient devices in order to satisfy the beam require-
ments at higher energies.
Recently in [6,7], a superconducting rf quadrupole

resonator was proposed as an alternative to the LOs. Its
performance is affected likewise by beam rigidity but not
adiabatic damping in contrast to magnets, a rf quadrupole
resonator introduces a longitudinal instead of a transverse
betatron tune spread. In LHC, this is favored by the
longitudinal blow-up of the beam. In [8], the stabilization
mechanism of a quadrupole resonator has been proven
experimentally by usingQ00. Like the quadrupole resonator,
Q00 introduces a longitudinal betatron tune spread in the
synchrotron causing Landau damping to stabilize trans-
verse instabilities.
The variation of the betatron frequency due to quad-

rupolar focusing (so-called detuning) can be split into a

coherent shift and an incoherent spread where the latter is
deciding for Landau damping. Both, the coherent and
incoherent parts are proportional to the integrated quad-
rupolar strength b2 which again is correlated to the
transverse kick Δpi⊥ that a particle i experiences while
traversing the cavity along the longitudinal z-axis. In the
thin-lens approximation this transverse kick for an ultra-
relativistic particle with the charge q is given by:

Δpi⊥ ¼ qb2ðyiey − xiexÞ cos
�
ωzi
βc0

þ ϕ0

�
; ð1Þ

with ω as the angular frequency of the quadrupole mode,
β as the ratio between the particle velocity and the speed
of light, the speed of light c0 and the rf phase offset ϕ0.
Here, the z-axis coincides with the longitudinal axis of
the cavity such that the coordinates xi and yi represent
the transverse displacement of the particle from the ideal
trajectory, a convention which is used throughout in this
paper. The transit time factor is implicitly included in (1)
via b2. Figure 1 shows the principle of two different
quadrupole resonators using a transverse magnetic (TM)
or transverse electric (TE) mode, respectively.

(a) (b)

FIG. 1. Cross section of quadrupolar field profiles providing
the transverse kick to the particle according to (1). The force
directions corresponds to a negative charge q. (a) Pillbox with
TM-type mode. (b) Four-Vane-Cavity with TE-type mode.
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In [6], it has been demonstrated that a rf quadrupole
resonator can result in a significantly more compact
solution than a comparable set of octupole magnets
providing the same tune spread. In this paper we present
the first detailed design and optimization studies of a rf
quadrupole resonator for Landau damping. Although
obtained on the basis of the HL-LHC, many results
presented here are generic and can be applied or adapted
to other machines. As for an accelerating cavity, the
choice of the geometry determines nearly all basic param-
eters, such as quadrupolar strength b2, peak electric and
magnetic field (Epk and Bpk), the longitudinal and
transverse impedance as well as multipacting barriers.
The latter may limit the maximum achievable b2 if the
geometry provides so-called hard barriers or increase the
conditioning time in case of soft barriers. Usually, multi-
pacting is investigated for each cavity individually and, in
general, cannot be predicted analytically. In consideration
of the numerous cavities presented in this paper, we will not
treat this part of the cavity design.
Due to the wide experience in the accelerator commu-

nity, the author wants to focus first on elliptical cavities
(Sec. III). The results serve as reference for a more compact
geometry presented in Sec. IV whose shape was motivated
by the classical RFQ four vane geometry used in proton
linacs. Likewise in Secs. III and IV, the lower and higher
order mode spectrum for each cavity type is discussed and
possible damping approaches are proposed. In Sec. V the
required input power for a cavity is derived in order to
compensate the beam loading. Along the cavity design we
propose different approaches of optimization based on the
figures of merit such as b2=Bpk introduced in the following
section.

II. CAVITY DESIGN PARAMETER

The parameters used to optimize the SC cavity can be
differentiated into two categories. First, parameters that
are derived from eigenmode simulations such as the
quadrupolar strength b2 and second, parameters derived
from wakefield simulations such as the transverse and
longitudinal impedance. The latter is considerably more
time-consuming than eigenmode calculations, hence,
it is desirable to minimize the number of wakefield
simulations. We propose, first, to optimize the designs
independently of the impedance but with varying
aperture which has the main influence on the impedance
and, second, to calculate the impedance as a subsequent
step for each preoptimized design. In the following,
we discuss all the design parameters involved in the
optimization.

A. Integrated quadrupolar strength

The integrated quadrupolar strength b2 is the prime
figure of merit and should be as high as possible in order to

minimize the total number of cavities providing a certain
betatron frequency spread. It is understood as the maximum
transverse momentum a quadrupolar mode is able to
provide to a probe charge during its passage. In contrast
to magnets the transverse force in a cavity is rf modulated.
In order to give a quantity for beam dynamic simulation
comparable to the focusing strength of magnets we
integrate the force or the field over z. In the following,
we denote the quantity simply as quadrupolar strength b2
keeping in mind the longitudinal integration. Generally, the
electromagnetic field yielding a transverse Lorentz Force
F⊥ can be decomposed into multipoles [9,10]. Using
cylindrical coordinates, the ρ-component of the transverse
impulse can be decomposed as follows:

Δp⊥ · eρ ¼
1

c0

Z
L

0

F⊥ · eρdz

¼ q
X∞
n¼1

ρn−1½an sinðnφÞ þ bn cosðnφÞ�;

We define φ ¼ 0 as the azimuthal position where the
transverse momentum provided by the quadrupole mode
is maximal, hence, it corresponds to either the x- or y-axis
in (1). Following this convention, the coefficients an can be
assumed zero. An ideal quadrupole resonator gives only a
nonzero value for the term b2, however, geometries which
are not axial symmetric, typically, exhibit higher order
terms as discussed in Sec. IV E. The coefficients bn can
be calculated via the radial Lorentz force Fρ taking into
account the transit time of the particle:

bn ¼
1

qc0

1

π

Z
π

−π

cosðnφÞ
ρn−1

Z
L

0

Fρ exp

�
j
ωz
βc0

�
dzdφ ð2aÞ

or by utilization of the Panofsky-Wenzel theorem [11] via
the z-component of the electric field Ez instead of Fρ:

bn ¼
jn
ω

1

π

Z
π

−π

cosðnφÞ
ρn

Z
L

0

Ez exp

�
j
ωz
βc0

�
dzdφ: ð2bÞ

Applied on numerically obtained eigenmode solutions,
the first option has shown to be more precise for higher
order terms while the second option is easier and faster
to evaluate. In Table I, quadrupolar strengths are shown
providing an equivalent stabilization effect as the LOs in
HL-LHC at a specific chromaticity [12]. The values are
based on macro particle tracking simulation comprising
6 × 105 turns. Though only for a specific case of instability,
we use these values as a reference for the cavity design
throughout in this paper.
The maximum coherent tune shift the quadrupole res-

onator is able to stabilize by Landau damping is dependent
on the frequency as the curvature of the cosine wave
along the bunch introduce the nonlinearity. Practically, the
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frequency is limited to harmonics of the main rf system.
In case of LHC we can use either 400, 800, or 1200 MHz
with respect to cavity size and difficulty of fabrication.
According to the results shown in Table I a frequency of
800 MHz is favored which is consistent with frequency
considerations presented in [6].
As for accelerating cavities, the strength is limited by

either the peak magnetic or electric surface field. Therefore,
it is reasonable to relate the integrated quadrupolar strength
always to these quantities according to: b2=Bpk and b2=Epk.
Finally, the relation between the quadrupolar strength

and the longitudinal or transverse (kick) voltage, respec-
tively, are considered. In cylindrical coordinates, the
longitudinal voltage V∥ is defined as:

V∥ðρ;φÞ ¼
Z

L

0

Ezðρ;φ; zÞ exp
�
j
ωz
βc0

�
dz: ð3Þ

In the first order, the azimuthal dependency of the quad-
rupolar Ez-component can be described by a cosð2φÞ term1

which simplifies (2b) to:

b2 ¼ j
2

ω

1

ρ20
V∥ðρ0; 0Þ ð4Þ

with V∥ proportional to ρ2 [13]. The longitudinal voltage
evaluated at φ ¼ 0 yield its magnitude in the azimuthal
direction. Using the Panofsky-Wenzel theorem [11], we
obtain an expression for the transverse voltage:

V⊥ ¼ −jc0=ω∇ρ;φV∥; ð5Þ

which can be understood as either a radial or azimuthal kick
voltage and is proportional to ρ. We further obtain the
relation between the quadrupolar strength and the maxi-
mum transverse kick voltage by partial differentiation of (4)
and substitution with (5):

b2 ¼ −
1

c0

1

ρ0
V⊥ðρ0; 0Þ: ð6Þ

The latter relation underlines the physical meaning of b2 as
the maximum transverse momentum the quadrupole mode
is able to provide to a particle. Equations (4) and (6) can be

used to calculate the required rf power for the cavity based
on the quadrupolar strength b2 (Sec. V).

B. Field limitation and losses

The ratio between the surface peak fields Bpk=Epk is
another important aspect for designing superconducting
cavities. The effect of high electric and high magnetic
surface field is very different. While the first usually
causes field emission, the latter may locally heat up the
material above the critical temperature and induce the
cavity to quench. It is desirable to balance the peak fields
according to technological limits, hence, not to be
limited by only one field type. We have chosen the
superconducting TESLA cavity [14] as a reference with
Bpk=Epk ¼ 2.13 mT=ðMV=mÞ which is close to assump-
tions made in [15] for the rf-dipole crabbing cavity.
To minimize the losses in accelerating cavities typically

the product of the geometry factor G and the (R=Q) value
is considered to be maximized [16]. This is equivalent to
the product of shunt impedance and surface resistance.
A similar definition is applied in [15] for deflecting type
cavities by using the transverse voltage V⊥ and ðR=QÞ⊥ of
a dipole mode. Analogously, we may introduce the quantity
G · b22=ðωUÞ to describe the cavity losses in a quadrupole
resonator with the stored energy U. However, due to the
low rf power needed for this cavity (Sec. V), we are less
concerned with the overall surface loss, but rather more
with peak fields.

C. Impedance and HOM damping

The limited impedance budget guaranteeing a stable
beam operation in the accelerator asks for a minimized
narrow and broadband impedance of all additional elements
in a synchrotron such as aperture transitions, gate valves,
beam collimators, et cetera. We use the definition from [17]
to quantify the effective longitudinal and transverse imped-
ance of the quadrupole resonator denoted as ðZ∥=nÞeff
and ðZ⊥Þeff :

ðZ∥=nÞeff ¼
R∞
0 Z∥ðωÞ ω0

ω h1ðωÞdωR
∞
0 h1ðωÞdω

; ð7Þ

ðZ⊥Þeff ¼
R∞
0 Z⊥ðωÞh0ðωÞdωR∞

0 h0ðωÞdω
; ð8Þ

with ω0 as the angular revolution frequency around the
circular accelerator and the bunch spectrum h1 given by
hn ¼ ðωσz=c0Þ2n exp½−ðωσz=c0Þ2�=Γðnþ 0.5Þ where σz
corresponds to the RMS bunch length. A Gaussian dis-
tribution is assumed here.2 The longitudinal and transverse

TABLE I. Required b2 yielding the same stabilization as
provided by LOs for HL-LHC at a chromaticity Q0

x;y ¼ 10 [12].

Frequency [MHz] b2 [Tm=m]

400 0.35
800 0.27
1200 0.40

1The cosð2φÞ dependency is also very accurate for the four-
vane cavity as simulations have shown.

2LHC operates with a revolution frequency of f0¼11.254 kHz.
All impedance results presented in this paper are calculated for a
bunch length with RMS sigma of σz ¼ 80 mm.

DESIGN OF AN RF QUADRUPOLE FOR LANDAU … PHYS. REV. ACCEL. BEAMS 20, 082001 (2017)

082001-3



impedances Z∥ and Z⊥ can be derived from wakefield
simulations using e.g. ABCI [18], ECHO(2D)[19] or CST

PARTICLE STUDIO
® (CST PS) [20]. The total effective

impedance of the required quadrupole resonators for
LHC should be far below the limits shown in Table II.
The impedance is dominated by the aperture and tapering
of the beam pipe. In general, the smaller the aperture the
higher the longitudinal and transverse impedance.
Furthermore, the choice of aperture or beam pipe radius

should take into account the extraction of lower order and
higher order modes (LOM and HOM). Trapped modes
with high (R=Q) values may require additional couplers or
waveguides close to the cavity whereas propagating modes
may be damped even outside of the cryomodule by lossy
material in the beam pipe. We will consider different
options for each cavity type.

D. Mechanical restrictions

Finally, a few mechanical limitations should be men-
tioned, they originated from the manufacturing procedures
and space limitation: (i) The minimal aperture is 20 mm.
(ii) Due to the process of bending of niobium sheet when
forming a cavity, the minimal curvature radius of a cavity
wall is 10 mm. (iii) The maximum length of the entire
system including the cryomodule(s) is 10 m (LHC layout
constraint).

III. ELLIPTICAL CAVITY

As it is widely used in the SRF community, the standard
non-reentrant elliptic cavity provides a good reference for
other cavity types which are typically more complicated to
fabricate. The cavity profile is defined by two conjugated
elliptic arcs connected with a straight part [Fig. 2(a)].
Corresponding to their location, the first ellipse defines the
contour of the equator whereas the second one describes the
iris contour. Hence, we denote appropriate parameters with
the subscripts “eq” and “ir”. In the frame of the optimi-
zations, we observed a correlation between the optimal
transition angle α (common tangential angle of both
ellipses and the straight part) and the quadrupolar strength
b2 that motivated the extension of the investigations
towards reentrant profiles [Fig. 2(b)]. Indeed, depending
on the iris radius rir, either a non-reentrant (α < 90 deg) or
a reentrant (α > 90 deg) elliptical cavity provides the
higher transverse kick, both assumed to be optimized with
respect to the quadrupolar strength.

In analogy to the analytic eigenmode solutions of a
cylindrical pillbox, it is obvious to choose either the
TM210 or the TE211 mode, both, resulting in the quad-
rupolar field distributions as qualitatively shown in Fig. 1.
However, the latter one achieves approximately 40% less
quadrupolar strength for the same amount of stored energy
in the cavity due to its longitudinal dependency. Therefore
we focus our considerations on the TM210 (Fig. 3). Before
we discuss the results of the final cavities and conclude for
the HL-LHC, we present an efficient optimization process
which can be applied to any other cavity design that is
axially symmetric.

A. Optimization

The prime objective that defines the “best” cavity shape
is given by the maximum possible quadrupolar strength
b2 with respect to the limiting surface peak fields (either
Bpk or Epk). Moreover, the optimization includes a further
condition given by a fixed frequency. Typically, the

TABLE II. Impedance budget for LHC [17].

Parameter Value

ðZ∥=nÞeff 93 mΩ
ðZ⊥Þeff 20 MΩ

(a) (b)

FIG. 2. Profile of elliptical half cells with equator radius req,
iris radius rir and length lhc. The dotted lines subscribe the
corresponding ellipses as well as the connecting straight with
the concerted tangential angle α. (a) Non-reentrant cavity with
α < 90 deg and (b) reentrant cavity with α > 90 deg.

FIG. 3. Normalized fields distribution of the TM210 mode on
the surface of an elliptical cavity section.
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frequency can be adjusted via the equator radius req. As an
example, Fig. 4 shows the properties of various elliptical
cavities which differ in length hhc and equator ellipse, all
adjusted to a frequency of 800 MHz. The results show a
limitation by the magnetic field (Bpk=Epk > 2.13) which
turned out to be the case throughout for all considered
elliptical cavities operating in TM210 mode. The maximum
in Fig. 4 appears approximately at a cavity length of half the
wave length λ. In many cases (especially for the non-
reentrant cavities with apertures rir > 70 mm), a significant
field contribution appears still at λ=2 resulting in a larger
optimal cavity length.
Like the equator radius req due to the fixed frequency, we

can exclude the iris radius as well from the optimization
because the quadrupolar strength together with the longi-
tudinal and transverse impedance monotonously increase
with decreasing cavity aperture. Instead, we optimize
several designs with varying iris radius and subsequently
investigate their impedance with respect to the maximum
achievable quadrupolar strength per cavity.
The remaining free parameter for the optimization

beside the cavity length described by lhc are the half axes

of the iris and equator ellipses (air , bir, aeq, and aeq). Note,
the tangential angle α depends on the other parameters
shown in Fig. 2. We have chosen SLANS2 [21] as
eigenmode solver which calculates multipole modes in
axially symmetric rf cavities using the continuous
Galerkin method applied on quadrangle bi-quadratic
elements. Several tests depicted a similar or higher field
accuracy than achieved by CST [20] or HFSS [22] with
comparable element size. However, the calculation is
significantly faster as the eigenmode problem is reduced
to a two-dimensional problem in the ðρ; zÞ-plane.
Furthermore, the evaluation of the quadrupolar strength
simplifies to an integral in z-direction, only, as the integralR
dφ result in the factor π.
A wrapper around SLANS2 has been developed in

PYTHON in order to automatize the process of finding
the “best” shape to a large extend (Fig. 5). It consist of an
optimizer that creates and distributes elliptical designs
over a number of parallel running tuners used for the
frequency adjustment. The optimizer uses a constrained
BFGS algorithm3 to minimize an arbitrary chosen quality
function uðxÞ with the special feature that the entries of
the Jacobian ∂u=∂xi (with xi as free design variables) are
calculated in parallel. Using a five-point differentiation
in each variable the parallelization reduces the evaluation
by a factor of 10 on an Intel i7 processor of the third
generation. Depending on the cavity size, an optimization
of five parameter was finished within between half a day
and three days. In principle, it is possible to extend the
scheme on more than five parameters, however, one may
consider a simpler differentiation rule or a processor with
more cores.

B. Optimal design parameters

The optimizations have been carried out with varying iris
radii rir between 25–60 mm for the reentrant cavities and

(a)

(b)

FIG. 4. Quadrupolar strength b2 with respect to the surface
peak field Bpk (a) and the ratio Bpk=Epk (b) of an 800 MHz
non-reentrant elliptical cavity. The iris ellipse is fixed to air ¼
bir ¼ 10 mm while the equator ellipse varies under the condition
aeq ¼ beq resulting in a circular profile. Besides, different cavity
lengths lhc are compared to each other showing the maximum in
(a) close to λ=2.

FIG. 5. Sketch of the cavity optimization. The optimizer
minimizes the quality function uðxÞ ¼ Bpk=b2 where x is a
vector of free design variables such as air , bir , aeq, aeq and lhc.

3Broyden Fletcher Goldfarb Shanno algorithm, a group of
hill-climbing optimization techniques.
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between 50–175 mm for the non-reentrant cavities, a total
of 22 designs (See Supplemental Material at [23] for
detailed results).
From Fig. 6, it can be seen that the transition between

reentrant and non-reentrant cavities appears at an aperture
of approximately rir ¼ 60 mm. Hence, depending on the
iris radius either the first (if rir ≤ 60 mm) or the second
cavity type (if rir > 60 mm) potentially perform better in
terms of b2=Bpk.
The optimal cavity length is always close to half of the

wavelength if the iris ellipse is small compared to the
equator ellipse [Figs. 7(a) and 7(b)]. However the opti-
mization tends towards larger iris ellipses the greater the
aperture. For mechanical and economic reasons, we have
to restrict the ratio air=aeq. The upper limit of 1.0 avoids
too large iris ellipses that artificially lengthen the cavity
whereas the lower limit at 0.1 avoids too small curvatures
and a too high electric surface field at the iris.
The remaining design parameters can be expressed by

the ellipticity of iris and equator which we define as the
logarithmic ratio of the vertical and horizontal half axis of
an ellipse [Figs. 7(c) and 7(d)].
In case of the non-reentrant cavity, the ellipticity

increases (equator) or decreases (iris) approximately lin-
early with the aperture. Note, the logarithmic definition
yield an exponential dependency of the ratio bx=ax. In a
first iteration the optimized designs for iris radii rir ≤
80 mm provided throughout an almost circular contour
[data set with dashed lines in Fig. 7(c)]. In a second
iteration a lower constraint was applied ensuring at least a
three times larger vertical than horizontal axis. This
improved slightly the performance of the corresponding
cavities and yield a more continuous correlation between
the relative quadrupolar strength b2=Bpk and the iris
radius rri.
Toward larger beam pipe radii rir > 90 mm the mini-

mum of the goal function is very shallow, meaning that any
small parameter change especially in the ellipticities will
not have a notable effect on the b2.

C. Properties of the optimized cavities

The properties of the designs are summarized in Figs. 8
and 9 as functions of the iris radius. Each abscissa
point is related to an optimized geometry. Due to the
smaller apertures the maximal achievable quadrupolar
strength of reentrant elliptical cavities is higher than that

FIG. 6. Optimal tangential angle as a function of the iris radius
rir . The transition between a reentrant and non-reentrant elliptical
cavity is at rir ∼ 60 mm.

FIG. 7. Optimized cavity parameters as functions of the iris
radius rir . (a) Cavity length. (b) Ratio between iris and equator
ellipse by means of their horizontal half axes. Due to mechanical
constraints, this ratio is limited. (c)—(d) Logarithmic ratio
between the vertical and horizontal half axis (ellipticity) for
the iris and equator ellipse.

(a) (b)

FIG. 8. (a) Maximal quadrupolar strength of the optimized
cavities distinguished by their aperture assuming a magnetic peak
field at the surface of Bpk ¼ 100 mT. (b) The corresponding ratio
of the surface peak fields Bpk=Epk.
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of non-reentrant elliptical cavities. The first are limited to
around b2 ¼ 0.16 Tm=m with an aperture of rir ¼ 25 mm
while the latter achieve a maximum of b2 ¼ 0.12 Tm=m
with apertures between rir ¼ 50–60 mm. The ratio of the
surface peak fields is consistently around 2.6 mT=ðMV=mÞ
as shown in Fig. 8(b). The limitation is clearly determined
by the magnetic field at the surface.
With increasing aperture the number of required cavities

to provide the same betatron tune spread increases mono-
tonically, and thereby the length and impedance of the
whole system. Due to a limited space of 10 m length for
HL-LHC, the iris radius of the elliptical cavity must not be
greater than rir ¼ 125 mm.
A system of non-reentrant 800 MHz elliptical cavities

that satisfy the requirements of Table I provides an effective
longitudinal impedance of at least 4 mΩ, almost 5% of the
entire LHC impedance budget (Fig. 9). This value can be
significantly larger in a system that should provide a large
margin with respect to the numerous kinds of instabilities
in a synchrotron. Reentrant cavities, operating at the
same frequency provide more than 8% of the budget,
which is a clear disadvantage of this cavity type besides. A
rescaled and more compact version consisting of non-
reentrant cavities operating at 1200 MHz provides a total

effective longitudinal impedance which lies between 4
and 6% of the budget. The effective transverse impedance
[Fig. 9(b)] is not of concern since the results are throughout
small against the defined impedance budget in Table II.
To conclude, one may chose for HL-LHC a non-

reentrant elliptical cavity with rir ¼ 90–100 mm. The
required three cavities result in nearly the lowest possible
effective longitudinal impedance of 4 mΩ.

D. LOMs and HOMs

In analogy to the cylindrical pillbox whose eigenmode
solutions can be calculated analytically, we have to deal
with monopole and dipole modes below the operating
frequency of the quadrupolar mode. All of them are trapped
inside the cavity and potentially excited by the beam.
Moreover higher order modes appear up to 1.7 GHz in
the longitudinal and transverse wake spectra. A summary
can be found in Table III for an optimized cavity with
rir ¼ 90 mm.
Taking advantage of the field distribution of the quadru-

pole mode it is reasonable to extract the power of LOMs
and HOMs by placing couplers around the equator at
the low field regions of the operating mode (Fig. 10).
This has the advantage that the coupler does not require a

(a)

(b)

FIG. 9. Effective longitudinal (a) and transverse (b) impedance
accumulated over the number of required cavities to satisfy
the conditions in Table I. In solid, the number of cavities is
rounded up. In dashed, the number of cavities is not rounded
providing smoother relation that shows a shallow minimum at
rir ¼ 125 mm for the longitudinal impedance.

TABLE III. Trapped lower and higher order modes for a
800 MHz non-reentrant elliptical cavity with rir ¼ 90 mm.

Monopole modes Dipole modes

Mode Frequency [MHz] Mode Frequency [MHz]

TM010 417.7 TM110 594.5
TM020 896.2 TE111 778.2
TE011 1107.5 TE121 1281.0
TM011 1137.9 TM131 1586.7
TE021 1430.9

FIG. 10. Electric and magnetic field distribution of the quadru-
pole mode in the transverse plane. The cavity is equipped with
ports at the low field regions potentially suitable for damping
lower and higher order modes.
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notch filter at 800 MHz or at least not a filter with so strict
requirements as typically for HOM couplers of accelerat-
ing type cavities. Furthermore, the ports yield a significant
frequency separation between the two polarizations of
the quadrupole mode in the order of 10–20 MHz. To excite
the correct polarization, a special coupler design is
required. Preliminary simulations have shown that the
ports can have a diameter up to 100 mm without notably
modifying the field distribution or enhancing the sur-
face field.

IV. FOUR-VANE CAVITY

The disadvantages of the previously discussed elliptical
cavities can be summarized as follows: (i) The maximum
achievable quadrupolar strength b2 per cavity is relatively
low which result in a large number of cavities. (ii) The large
size of the cavity with an equator radius of approximately
300 mm and a length of around 200 mm requires
correspondingly large cryomodules, hence, more cooling
power is needed. All this increases the cost of the entire
system. (iii) The limitation by the magnetic field on the
surface may cause the cavity to quench. (iv) The effective
longitudinal impedance is high with respect to the LHC
impedance budget. All these drawbacks can be resolved by
a cavity design whose contour in the transverse plane forms
a quadrupole-like electric field according to the boundary
conditions. In principle, such a geometry is given in
Fig. 1(b). If carefully chosen, the field along the transverse
contour (surface field) can be more “evenly” distributed
than in case of the elliptical cavity (compare Fig. 10) which
allows a higher quadrupolar strength within the limits of
the surface fields. The real cavity is obtained by a smooth
transition from the quadrupolar contour to the beam pipe. It
should be smooth in order to avoid field enhancements and
to reduce the longitudinal and transverse impedance.
Figure 11 illustrates the cavity design which we denote
as four-vane cavity. It is obvious that the disadvantages
mentioned above can be only overcome at the cost of a
more complex design.
Similar as for the elliptical cavity we define the trans-

verse contour by two conjugated arcs connected with a
straight line. However, the equator is simplified to a circle
with the radius aeq. Nevertheless, we will continue with the
previous notation and talk about iris and equator ellipse
to avoid any confusion with the equator radius req. The
profiles which are shown in Figs. 11(c) and 11(d) have to be
mirrored in the azimuthal direction seven times to obtain
the complete transverse contour as the one sketched in
Fig. 1(b).
Since the arc of the equator ellipse is located in the

region of high magnetic fields (Fig. 12), we require that
the radius aeq to be as large as possible, which has the
convenient side effect of less parameters to be optimized.
Depending on the iris radius rir and iris ellipse (air, bir), the
center of the equator ellipse is either on the diagonal of the

length req [Fig. 11(c)] or displaced from this diagonal
[Fig. 11(d)]. In the latter case, the length of the straight
between the conjugated arcs is zero. However, in the view
of the numerous eigenmode simulations it is recommended
to insert additional but very short straight segments in the
contour to avoid construction or meshing problems within
the simulation tools. In Fig. 11, these parts are labeled by
the symbol Δ.
The tangential angle α is limited to a positive range

between 0 and 20 deg. A reentrant profile with negative

(a) (b)

(c) (d)

FIG. 11. Four-vane cavity design. (a) 3D view of the cavity
with an open-left segment to depict the unique parts of the
longitudinal and transverse cross-section. A quarter of the
longitudinal cross section is shown in (b) while (c) and (d) show
two different versions of the transverse cross section (only an
eighth). The difference is given by a displacement of the circle
resulting from a larger iris radius rir in (d). The beam is located
along the bottom line in (b) or at the lower left corner in (c) and
(d), respectively.

FIG. 12. Normalized field magnitude of the TE like quadrupole
mode on the surface and in the transverse plane at the longitudinal
center of a four-vane cavity.
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angle result in a cavity which is probably more difficult to
fabricate and therefore excluded.
The transition from the quadrupolar contour to the

circular beam pipe is defined by the tapering angle αtap.
Note, the two curvatures along this tapering shown in
Fig. 11(b) must not be smaller than the curvature provided
by the iris ellipse in order to avoid additional field
enhancement at the taper.

A. Optimization

For the four-vane cavity, not the magnetic but the
electric field at the surface is the limiting factor.
Correspondingly, we modify the prime objective such
that b2=Epk has to be maximized in the frame of the
optimization. In contrast to the axially symmetrical
geometries, the optimization of the four-vane shape
relies on 3D eigenmode solvers using HFSS or CST

MWS. Regardless, the simulation time for a cavity at
800 MHz is on average in the same order of magnitude
as the eigenmode simulations require for the previously
discussed elliptical shapes using SLANS2. The reason is
the compactness of the four-vane structure. The diameter
of the cavity is approximately three times smaller than in
the case of elliptical cavities.
A parametric model has been developed for both, HFSS

and CST with the difficulty of ensuring a correct con-
struction for any reasonable ensemble of design parame-
ters according to Fig. 11. The model is able to cover both
cases that are depicted in Figs. 11(c) and 11(d). The
evaluation of peak fields at the surface and the calculation
of the quadrupolar strength b2 are post processing steps
which can be defined in both programs either by using
intrinsic functions or by self-written macros using for
example VBSCRIPT. It turned out that the peak fields
provided by HFSS are too unreliable such that we finally
focused on CST.
Currently there is no build-in optimizer available in

CST that incorporates a side condition to ensure a given
frequency by adjusting one of the parameters. Therefore we
consider the equator radius req likewise as a free variable
and proceed the optimization in the following steps: 1. The
iris radius rir and the tapering angle αtap are fixed for the
optimization. 2. Parameter sweeps are carried out with
respect to air, bir, α; lhv, and req, providing the quadrupolar
strength and peak fields at the surface. 3. For each ensemble
(air, bir, α; lhv), evaluate the equator radius req that satisfy
the given frequency by interpolation. 4. For each ensemble
(air, bir, α) evaluate the parameter lhv (half of a vane length)
that maximize b2 with respect to the limiting field. As in the
previous step, this is done by interpolation. 5. Analyze the
dependency of b2=Epk and b2=Bpk on the remaining free
parameters (air, bir, α) The optimization is carried out for
various combinations of the aperture (iris radius rir) and the
tapering angle αtap as both parameters are expected to have
a significant influence on the longitudinal and transverse

impedance. Note, the center and half axes of the equator
ellipse (with aeq ¼ beq) are defined by the other parameters
such that aeq is maximized. The number of simulations that
have been done is in the order of 2000–5000 per iris radius
and tapering angle and required between 12–30 hours.

B. Optimal design parameters

A total of 15 cavities operating at 800 MHz have been
optimized in terms of quadrupolar strength providing an iris
radius of 20,30, and 40 mm and tapering angles between
30 deg and 80 deg. The parameters and properties are
summarized in the Supplemental Material at [23]. In the
line of optimizations, it turned out that the maximum
achievable quadrupolar strength reduces the larger the
tangential angle between the iris and equator ellipses α
is, similar to what is shown in Fig. 8(a). Therefore the angle
was fixed to one degree.
The optimal cavity length including the taper varies from

design to design in a range between lcav¼200–300mm,
hence, all of them are considerably above half the wave
length.
Figure 13 shows an example of quadrupolar strength

relative to the surface peak fields as a function of the
remaining free parameters given by the iris ellipse. It can
be seen that the ratio Bpk=Epk is always smaller than
2.13 mT=ðMV=mÞ indicating the limitation by the electric
field. The maximum in Fig. 13(b) yield an ellipse very close
to a circle with air < bir. Other apertures and tapering
angles provided qualitatively the same result of having

(a) (b)

FIG. 13. Quadrupolar strength with respect to the magnetic (a)
and electric (b) surface peak field as a function of the two half
axes of the iris ellipse. In dashed blue, the reference line of a
circular profile. In dashed green, regression line of the maximums
in (air , bir). The cavity length is optimized for each data set with
an iris radius rir ¼ 30 mm, a tapering angle αtap ¼ 30 deg, and a
tangential angle α ¼ 1 deg. The circle emphasizes the optimized
design.
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almost a circular arc. As the maximum appears relatively
flat, we decided to simplify the iris ellipse, in general, to a
circle (air ¼ bir). The flatness allows large tolerances for
the iris ellipse which facilitate the fabrication.
We did not choose the iris ellipse that maximizes b2=Epk.

Rather, we applied a weighting between both b2=Epk and
b2=Bpk according to:

E0

b2

�
Bpk

B0

þ Epk

E0

�
¼ E0

B0

·
Bpk

b2
þ 1 ·

Epk

b2

¼ w1 ·
Bpk

b2
þ w2 ·

Epk

b2
; ð9Þ

with w1 < w2. This expression used as a goal function that
has to be minimized lead to the optimum shown in Fig. 13
by the circles. The advantage of such a weighting is a
slightly smaller iris ellipse without reducing the quadru-
polar strength, appreciably. Note, the larger bir the smaller
the gap between the vanes which complicates the surface
preparation of the cavity. Moreover the ratio of the surface
peak fields is somewhat improved by this weighting as it
includes the magnetic peak field as well.

C. Properties of the optimized cavities

The properties of the designs are summarized in
Fig. 14. In agreement with the elliptical cavities, the
quadrupolar strength rises with decreasing aperture rir,
however, the values are significantly larger. Depending on
its aperture a four-vane cavity is able to provide between
two to five times more strength than a non-reentrant
elliptical cavity with an iris radius of rir ¼ 60 mm. This
exceeds clearly the performance gain obtained by re-
entrant elliptical cavities.
The ratio of the surface peak fields is as expected

below 2.13 mT=ðMV=mÞ but in contrast to elliptical
cavities the ratio is not independent of the aperture. This
becomes clear if we consider the gap between the vanes.
The smaller the iris radius the smaller is the distance
between the vanes which provide an alternating polari-
zation in the azimuthal direction similar to a quadrupole
magnet. Hence, the electric field at the corresponding
surfaces increases while the peak magnetic field remains
unchanged. Both, the quadrupolar strength as well as the
ratio of peak fields are not noticeably influenced by the
tapering angle αtap.
The effective longitudinal impedance of an entire

system of four-vane cavities to satisfy the requirements
in Table I is by a factor between two to four smaller than
an adequate system of elliptical cavities provides. The
effective transverse impedance is moderately larger but it
is minor with respect to the LHC impedance budget.
Depending on the tapering angle the longitudinal imped-
ance varies by a factor of almost two. With respect to the
achievable quadrupolar strength, the effective longitudinal

impedance of a system of four-vane cavities can go down
to a tenth of the impedance of a corresponding system of
elliptical cavities.
To conclude, by comparing all properties of the optimized

designs, one may chose for HL-LHC a 800 MHz four-vane
cavity with an iris radius of rir ¼ 30 mm and a tapering
angle of αtap ¼ 30 deg. Only one cavity is required to
provide the value in Table I. The system provide an effective
longitudinal impedance of 0.55 mΩ, almost eight times
lower than the selected system of elliptical cavities in
Sec. III C.

D. LOMs and HOMs

The large apertures at the ends of the cavity yield that
only a few modes are trapped inside the cavity. Basically
only the first two dipole modes are of interest: a TE111-like
mode with a frequency between 700 and 750 MHz and a
TM111-like mode at around 1 GHz. With a bunch sigma of
80 mm, the transverse wake spectrum is largely dominated
by the first dipole mode which can be easily extracted if
the beam pipe radius becomes slightly larger by 20–30 mm.
A corresponding sketch is illustrated in Fig. 15. The beam

(a) (b)

(c) (d)

FIG. 14. Properties of the optimized 800 MHz four-vane
cavities with different iris radius rir and tapering angle αtap.
(a) Maximum achievable quadrupolar strength per cavity.
(b) Ratio of surface peak fields. The effective longitudinal
(c) and transverse (d) impedance are related to a whole system
of cavities to provide the quadrupolar strength in Table I.
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pipe diameter increase is defined by the final beam pipe
radius rbp and by a further taper with the angle αbp. In
Fig. 16, the quality factor derived from the transverse
wakefield is shown for two different cavities as a function
of the parameters rbp and αbp. Between a beam pipe
radius of 120–125 mm the quality factor drops down as
the TE11 mode starts to propagate through the beam pipe.
Apparently, the tapering angles αtap and αbp have a minor
influence on the propagation.
In this example, the transverse wake field for a beam

pipe radius of rbp ¼ 124 mm or larger does not show any
trapped modes. Based on this modification it is reasonable
to apply LOM and HOM damping outside of the cryo-
module using lossy materials in the beam pipe rather than
couplers close to the cavity.

E. Multipole field errors

These errors mainly arise from higher order multipoles
bm which satisfy the azimuthal periodicity of the

fundamental multipole bn. They are correlated via the
following condition:

m
n
¼ 3; 5; 7;… ð10Þ

Further information can be found in [9]. As for the
fundamental multipole b2 describing the quadrupolar
strength we use (2a) or (2b) to calculate the multipoles
of higher order from an eigenmode solution. Table IV
shows the result of one optimized cavity.
The elliptical cavity do not provide any higher order

multipoles due to the exact sinusoidal azimuthal depend-
ency of the field components which is not the case for
the four-vane cavity. However, there may appear so-called
random multipole errors due to fabrication errors and
tolerances which is beyond the scope of this paper.

V. RF-POWER

Using the lumped circuit model from [11] one can derive
a relation between the required input power Pg in order
to compensate the beam loading and the coupling factor
between the quadrupole resonator and the input coupler
represented by the external quality factor Qext. According
to [11], the input power is given by:

Pg ¼
1

2
ðR=QÞ∥jIgj2: ð11Þ

Note, we apply the circuit definition of the R=Q values
according to:

ðR=QÞ∥ ¼
V2
∥

2ωU
; ð12Þ

with longitudinal voltage V∥, the stored energy U inside
the cavity and ω as the angular frequency of the rf field.
The model current Ig of the lumped circuit model, is
calculated by:

Ig ¼
�

V∥

2ðR=QÞ∥

�
1

Qext
þ 1

Q0

�
þ Ib;DCFb sinϕ

�

þ j

�
Ib;DCFb cosϕ −

V∥Δω
ωðR=QÞ∥

�
; ð13Þ

with the intrinsic quality factor Q0 of the cavity, the
adequate DC beam current Ib;DC weighted by the

FIG. 15. Quarter of the longitudinal cross section of the four-
vane cavity with beam pipe enhancement to allow the propaga-
tion of the first dipole mode.

FIG. 16. Q-factor derived from the transverse wakefield for a
design with an iris radius of rir ¼ 30 mm and a tapering angle
αtap of 30 deg (a) or 60 deg (b), respectively. The beam pipe
radius rbp varies in a range where the dominating dipole mode
starts to propagate. The tapering angle αbp describing the beam
pipe enhancement is applied on the axis of abscissae.

TABLE IV. Different multipoles of the four-vane cavity with
rir ¼ 30 mm and αtap ¼ 30 deg.

Multipole Unit Value for Epk ¼ 50 MV=m

b2 [Tm=m] 3.47 × 10−1

b6 [Tm5=m] 9.62 × 104

b10 [Tm9=m] 1.98 × 1010
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bunch form factor Fb, the synchronous phase angle
ϕ, and the angular frequency deviation Δω between
cavity resonance and the provided wave from the power
coupler.
If we assume Q0 ≫ Qext, a correct tuning of the cavity

such that Δω ¼ 0 and synchronous phase of the longi-
tudinal voltage ϕ ¼ 0 which means that the deflective
voltage V⊥ is on crest as foreseen for the quadrupole
resonator operation, Eqs. (11) and (13) simplify to:

Pg ¼
V2
∥

8ðR=QÞ∥Qext
þ 1

2
ðR=QÞ∥QextI2b;DCF

2
b: ð14Þ

In order to investigate the worst case we consider the
azimuthal angle φ where the longitudinal voltage V∥ is
maximal for a given radius ρ0. For the elliptical cavity,
this voltage can be derived exactly from (4) based on the
quadrupolar strength. In case of the four-vane cavity,
Eq. (4) provides an approximation with the correction
factors related to the multipoles described in Table IV.
In general, this voltage is calculated by the eigenmode
solution for the individual cavity. As V∥ is proportional
to the squared distance of the beam from the center ρ,
the longitudinal R=Q ratio is proportional to ρ4.
Correspondingly in (14), the first term is independent of
the beam displacement whereas the second term, which is
related to beam loading effect, is proportional to the fourth
power of the displacement. Figure 17 shows the required
input power for an optimized four-vane cavity as a function
of the external quality factor for different transverse
positions of the bunch. The needed input power is very
moderate and by almost one order of magnitude smaller
than required for the HL-LHC crab cavities [24], even for a
bunch position as much as few mm from the cavity axis.
This is only true if Qext > 1 × 106 can be used in operating
the cavity.

VI. CONCLUSION

Two methods have been presented to optimize the
elliptical and the four-vane quadrupole resonator by
means of their quadrupolar strength with respect to
the limiting surface peak fields. In principle, these
methods can be applied to any arbitrary geometry for
either axially symmetrical or axially nonsymmetrical
cavities. Considering the maximum achievable quadru-
polar strength of a non-reentrant elliptical cavity as a
reference, the reentrant elliptical cavity is able to provide
up to 30% more strength. The four-vane cavity can deliver
between two to five times more strength than the reference
depending on its iris radius. It should be noted that this
is only true for small iris radii rir < 50 mm. Otherwise,
elliptical cavities become more efficient.
The significantly lower longitudinal impedance, the

sparse LOM and HOM spectrum, and the lower number
of required cavities argue clearly for the four-vane cavity if
small apertures are allowed. The compactness of the cavity
is a further advantage with respect to the size of the
cryomodule but complicates certainly the fabrication and
surface cleaning. Though it was shown that the perfor-
mance of the four-vane quadrupole resonator is marginally
influenced by deviations in the iris ellipse. Hence, the
difficulty lies rather in a proper surface preparation
impacting the maximum achievable peak field. We there-
fore favor a design not with the smallest investigated
aperture but the optimized geometry with an iris radius
of rir ¼ 30 mm and the tapering angle of αtap ¼ 30 deg.
For this example, we have calculated in Sec. IV E system-
atic multipole errors which serve as input for eventual
beam dynamic simulations in the future. Likewise for this
example, the required rf power lies significantly below
10 kW with an optimal external quality factor in the order
of Qext ¼ 3 × 106. Hence, the rf power needed is very
moderate which facilitates the requirements for the power
coupler and the whole rf system.
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