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Strong-field few-cycle terahertz (THz) pulses are an invaluable tool for engineering highly non-
equilibrium states of matter. A scheme is proposed to generate quasi-half-cycle GV/m-scale THz pulses
with a multikilohertz repetition rate. It makes use of coherent spontaneous emission from a prebunched
electron beam traversing an optimally tapered undulator. The scheme is the further development of the
slippage control in free-electron lasers [T. Tanaka, Phys. Rev. Lett. 114, 044801 (2015)]. An explicit
condition for the spectral amplitude of undulator radiation and a phase condition for the electron density
distribution, required for the generation of desired pulses, are presented. The amplitude condition is met by
proper undulator tapering, and a generic optimal undulator profile is found analytically. In order to meet the
phase condition, the distance between the adjacent bunches is varied according to the instantaneous
resonant undulator wavelength. A 3D analytical theory is complemented by a detailed numerical study
based on a direct solution to the 3D wave equation.
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I. INTRODUCTION

Quasi-half-cycle pulses of light [1–3] are of interest from
the fundamental point of view, as they clearly reveal the
dispersive nature of spatially structured light in free space
[4] manifested as a temporal reshaping of pulses as they
propagate through the focus [5]. Such pulses are also of
importance for various applications thanks to the prefer-
ential direction of their electric fields. For example, quasi-
half-cycle pulses of terahertz (THz) and IR light allow the
engineering of new highly nonequilibrium states of matter
[6] such as light-induced superconductivity [7,8].
Crucial progress in the emerging field of the generation

of strong-field few-cycle THz light has been made during
the past decade thanks to the advance of laser-based THz
sources [9–11] based on the optical rectification of short
intense optical pulses in a crystal such as lithium niobate.
Nevertheless, the radiation spectrum of laser-based sources
is limited to the frequencies below 5 THz, and the repetition
rate of strong-field pulses is some Hz. Another method of
generation of quasi-half-cycle THz pulses is transition
radiation from high-energy charged particles traversing a
metallic foil [12,13], but it requires multi-GeV electron
bunches of a few nC charge. To boost the emitted energy by
an order of magnitude and lower the required bunch energy,
a multifoil cone radiator [14] was suggested. However, the
radiation spectrum produced by electron bunches from a

small-scale accelerator is limited to a few THz, and a high
repetition rate is a challenge because of the heat load on the
radiator.
Here, I present an approach for the generation of intense

quasi-half-cycle THz pulses via coherent spontaneous
emission from a prebunched electron beam traversing an
optimally tapered undulator. This approach opens a way to
high repetition rates up to a MHz level with a super-
conducting accelerator, which is very attractive for high-
repetition rate pump-probe experiments at x-ray light
sources such as the European XFEL and Linac-based
Coherent Light Source-II. The idea of the presented
approach can be thought of as a modification and more
quantitative study of Tanaka’s scheme [15,16], though it
originates from the independent development of a THz
light source at Uppsala University.
The basic idea of the generation of quasi-half-cycle THz

pulses is some kind of mode locking of frequency-chirped
coherent spontaneous radiation from electron bunches.
Consider a short electron bunch passing through a magnetic
field of an undulator. In the periodic undulator field, the
bunch emits a sinusoidal impulsewith the period dependent
on the undulator field. Now, if the undulator field changes
along the undulator, then a frequency-chirped impulse is
generated. The impulses emitted by two consecutive
bunches can interfere constructively at some points if the
separation between the bunches is equal to one of the
periods of the chirped sinusoidal impulse. By employing
a train of bunches with the separation between the
adjacent bunches equal to the corresponding period of the
frequency-chirped impulse, a few-cycle pulse can be
generated. In this paper, we will refer to the radiation from
a short electron bunch as an impulse, whereas the term
pulse is reserved for the superposition of impulses.
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II. FROM A FREQUENCY-CHIRPED IMPULSE
TO A QUASI-HALF-CYCLE PULSE

We wish to generate quasi-half-cycle pulses of the
form

fðtÞ ¼
�
1 −

t2

σ2t

�
e−t

2=2σ2t ; ð1Þ

whose Fourier transform reads

fω ¼
ffiffiffiffiffiffiffiffi
2=π

p
σ3tω

2e−σ
2
tω

2=2: ð2Þ

Let us see how this pulse can be connected to a frequency-
chirped impulse generated by the test electron passing
though a tapered undulator. Figure 1 depicts some Fourier
components of the quasi-half-cycle [Fig. 1(b)] and fre-
quency-chirped [Fig. 1(d)] pulses having the same spectral
density distribution. When all the Fourier components are
in phase, the quasi-half-cycle pulse is formed. A nonlinear
phase shift of the Fourier components results in the
frequency-chirped pulse. Hence, in order to generate the
desired pulse with the tapered undulator, the spectral
undulator distribution must be identical to that of the
desired pulse and the electrons must be delayed (posi-
tioned) with respect to each other such that the nonlinear
phase shift along the chirped undulator impulse is com-
pensated for.
In the spirit of Tanaka’s analysis [15], the generation of

few-cycle pulses can quantitatively be formulated as

follows. The total electric field EðtÞ produced by indivi-
dual electrons is given by the superposition EðtÞ ¼R
E0pðt − t0Þn0gðt0Þdt0, where E0 and pðtÞ are the

amplitude and profile, respectively, of the undulator
impulse; n0 and gðtÞ are the density and profile, respec-
tively, of the electron bunch. Then, the spectral complex
amplitude of EðtÞ is given by

Eω ¼ E0n0

Z
pωgðt0Þeiωt0dt0 ¼ E0n0pωgω: ð3Þ

In order to generate the desired pulse, the amplitude and
phase conditions must be met: jgωpωj ¼ fω and argðgωÞ ¼
− argðpωÞ. In the particular case of gω ¼ p�

ω, as in
Ref. [15], the electron density distribution gðtÞ is a time-
reversed replica of the chirped undulator impulse pðtÞ.
In this paper, we consider a tapered undulator driven by a

train of short bunches with varying spacing in between.
First, I derive a general expression for the radiation
spectrum of a strongly tapered undulator and then find
the optimal undulator profile from the amplitude condition.
The phase condition is met by positioning the electron
bunches at the distances equal to the radiation wavelength
of the undulator impulse. An analytical analysis is followed
by a 3D numerical solution to the wave equation with an
excitation source in the form of a single bunch and
prebunched beam. The geometry of the problem in shown
in Fig. 2.

III. THE MODEL

We turn to the derivation of the general expression for the
field emitted by a short electron bunch traversing a planar
tapered undulator, whose symmetry plane is lying in the xz
plane with x and z being the transverse (horizontal) and
longitudinal coordinates, respectively. The undulator is
assumed to be wide in the x direction such that the magnetic
field depends only on the transverse (vertical) coordinate y
and z. Let the magnetic field be the product of a sinusoidal
carrier sin kuz and a slow-varying envelope fuðzÞ. The
corresponding vector potential reads

Au
x ¼ A0fuðzÞ sin kuz cosh kuy ð4Þ

FIG. 1. Schematic illustration of the Fourier decompositions (a)
and (c) of the quasi-half-cycle (b) and frequency-chirped
(d) pulses, respectively. The quasi-half-cycle pulse is formed
by the superposition of in-phase sinusoidal components, whereas
the frequency-chirped pulse is composed of the sinusoidals with a
nonlinear phase shift in between them. The amplitudes of the
Fourier components are not to scale.

FIG. 2. Schematic of a tapered undulator and a prebunched
beam. The distance between the bunches s changes as the
radiation wavelength along the undulator impulse λ.
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and satisfies the wave equation under the assumption
λud ln fu=dz ≪ 1. Here, λu and ku are the period and wave
number, respectively, of the periodic component of the
magnetic field. The undulator comprises Nu periods,
Lu ¼ Nuλu.
Spontaneous undulator radiation is dictated by the

trajectories of the electrons; therefore, we now briefly
examine them for completeness. We choose z as an
independent variable. Since the vector potential is inde-
pendent of x, the corresponding component of the canoni-
cal momentum is preserved so that the x component of the
electron’s velocity normalized to the speed of light c reads

βx ¼
K
γ
fuðzÞ sin kuz cosh kuy: ð5Þ

Here, γ is the electron’s energy measured in units of the rest
mass, and K ¼ jejA0=mec2 is the undulator parameter with
eð<0Þ and me being the charge and mass of the electron,
respectively. A low-emittance electron bunch is considered;
hence, the initial spread in velocities is ignored. Motion
in the y direction for small deviations is described by
the harmonic oscillator equation with a spatial period of
λβ ¼

ffiffiffi
2

p
γλu=KfuðzÞ. The oscillations in y—referred to as

betatron oscillations—occur on a spatial scale much longer
than the undulator period. In what follows, we neglect
them assuming that the betatron phase shift is smallR Lu
0 dz0=λβðz0Þ ≪ 1, which is valid for a short undulator,
i.e. Nu ≪ 2

ffiffiffi
2

p
γ=K.

The electron’s energy is preserved in a magnetic field, so
for a relativistic electron (γ ≫ 1) the longitudinal velocity
and arrival time to position z read

βz ≈ 1 −
1

2γ2
−
β2x
2
¼ 1 −

1þK2f2uðzÞsin2kuz
2γ2

;

cte ≈ ct0 þ
Z

z

0

dz0

βzðz0Þ
≈ ct0 þ

�
1þ 1

2γ2

�
z

þ K2

2γ2

�
1

2

Z
z

0

f2uðz0Þdz0 − f2uðzÞ
sin 2kuz
4ku

�
: ð6Þ

Here, t0 is the injection time of the test electron. In order to
obtain the last two terms in Eq. (6), we used the integration
by parts of the term f2uðzÞsin2kuz appearing in teðzÞ and
neglected high-order harmonics. Our result (6) is similar to
that arising in the studies of Thomson scattering of laser
pulses on electron bunches [17,18].
Consider the radiation field copropagating with the

electron bunch

Eðr⃗; tÞ ¼ Re
Z

∞

0

EωðzÞe−iωðt−z=cÞdω: ð7Þ

The dominant component of the radiated field is created by
the transverse current density jx, since the velocity of

undulations in the x direction is much larger than that in
other directions. Hence, only Ex is considered. Assuming
that the rate of energy transfer from the electron bunch to
the radiation field is low—i.e. EωðzÞ is a slow function of
z—we may use the paraxial approximation so that the
complex Fourier amplitude satisfies the equation

�
∇2⊥ þ 2iω

c
∂
∂z

�
Eω ¼ −iω

4π

c2
jω: ð8Þ

Here, jω is the Fourier transform of the x component of the
current density. It reads

jω ¼ Q
2πσ2b

vx
vz

F exp

�
−

r2

2σ2b

�
exp½iωteðzÞ�; ð9Þ

where F ¼ expð−ω2σ2T=2Þ is the bunch form factor, σT and
σb are the rms bunch duration and transverse size, respec-
tively, Q is the total charge, and vx and vz are the x and z
components of the velocity, respectively.
A solution to (8) is given by the convolution of (9) with

the Green function of (8), which is [19]

G ¼ 1

4πðz − z0Þ exp
�
iωjr⃗⊥ − r⃗ 0⊥j2
2cðz − z0Þ

�
: ð10Þ

In the approximation of small undulator oscillations com-
pared to the transverse size of the electron bunch, the
spectral complex amplitude Eω at the end of the undulator
turns out to be

Eω ¼ E0
ω

Z
Lu

0

gðz0Þfuðz0Þ exp
�

−r2

w2ðz0Þ þ iΨðz0Þ
�
dz0; ð11Þ

where the amplitude and phase factors read

E0
ω¼−

QKFðωÞ
πσ2bγc

; ΨðzÞ¼ kr2

2RðzÞ−ϕðzÞþψðzÞ ð12Þ

and gðzÞfuðzÞ is the local envelope with gðzÞ given by

gðz0Þ ¼ JJðz0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðLu − z0Þ2=z2R

p : ð13Þ

Here, zR ¼ kσ2b is the effective Rayleigh length, k ¼ ω=c,
and JJ stands for the JJ factor [20] responsible for
longitudinal wiggling of electrons

JJ ¼ J0ðAÞ − J1ðAÞ; A ¼ K2f2uðzÞ
4ξ

: ð14Þ

The waist, Gouy phase shift, radius of curvature, and
ponderomotive phase are
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w2 ¼ 2σ2b

�
1þ ðLu − zÞ2

z2R

�
; ϕ ¼ arctan

�
Lu − z
zR

�
;

R ¼ ðLu − zÞ
�
1þ z2R

ðLu − zÞ2
�
;

ψ ¼ 2π

λuξ

�
zð1 − ξÞ þK2

2

Z
z

0

f2uðz0Þdz0
�
: ð15Þ

We introduced a normalized wavelength ξ ¼ λ=λ0 with
λ0 ¼ λu=2γ2 being the Doppler-upshifted period of the
undulator field. The approximation of small undulator
oscillations can be quantitatively written as πNuNF ≫ 1,
where NF ¼ zR=Lu is the electron bunch Fresnel number
[21]. The analysis is limited to the fundamental harmonic,
since higher harmonics are typically suppressed by the
bunch form factor FðωÞ of low-energy bunches used for the
generation of THz radiation.
Integral (11) can be solved using the method of sta-

tionary phase [22]. The main contribution to (11) comes
from the so-called stationary point, in the vicinity of which
the total phase ΨðzÞ is quasiconstant:

d
dz

�
kr2

2RðzÞ − ϕðzÞ þ ψðzÞ
�
¼ 0: ð16Þ

One can check that ψ 0 ∼ 1=λu and ϕ0 ∼ ðkσ2b=RÞ0 ∼ 1=zR,
where the symbol prime stands for the derivative with
respect to z. Typically, zR ∼ Lu so that ϕ0 and ðkr2=RÞ0 can
safely be disregarded and the stationary phase condition
reduces to ψ 0ðzÞ ¼ 0. Moreover, it turns out that for the
right tapering ðk=RÞ is almost constant with z. The explicit
equation determining stationary points is given by

ξ≡ λ=λ0 ¼ 1þK2f2uðz0Þ=2: ð17Þ

The solution to (11) for nondegenerated stationary points
Ψ00ðz0Þ ≠ 0 reads

EωðξÞ ≈
X
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

jΨ00ðz0;jÞj

s
E0
ωgðz0;jÞfuðz0;jÞ

× exp

�
−r2

w2ðz0;jÞ
þ iΨðz0;jÞ þ i

π

4
sgnΨ00ðz0;jÞ

�
:

ð18Þ

The summation is over all stationary points z0;j that are
within the integration interval and located from the ends of
the interval at a distance greater than the width of the
corresponding resonance [23]. The region of validity of
(18) and a set of solutions to (11) valid for any wavelength
are given in the Appendix. The asymptotic solution (18) is
obtained from Eq. (11) by Taylor expanding the phase
around point z0 up to the second order and integrating only
the phase term while the rest is factored out at point z0

thanks to its slow dependence on z. The derivatives of ϕ
and ðkr2=RÞmay be omitted, since ϕ00∼ðkσ2b=RÞ00∼ψ 00=Nu.
Note that the diffraction effect is accounted for in (18)
through gðz0;jÞ and Rðz0;jÞ.

IV. OPTIMAL TAPERING

For a symmetric undulator profile fuðzÞ, condition (17)
is satisfied for two positions in the undulator, and the
spectral component (18) is the sum of two waves with the
same frequency and amplitude but different phases. As is
pointed out in Ref. [18], such a superposition results in
oscillations in the spectrum of emitted radiation. In order to
avoid these oscillations, the undulator profile must be a
monotonic function of z.
In order for the superposition of the impulses (18)

emitted by individual bunches to form the proper quasi-
half-cycle pulse not only on axis but also off axis, the waist
and curvature of the wavefront along the impulse must be
constant. Then, the 1D result (3) applies directly. It turns
out that for small z and fu these conditions are roughly
fulfilled if fuðzÞ ∝ z. Figure 3 shows an example of the
change of gðzÞ and ½kðzÞσ2b=2RðzÞ� along the undulator for
a linear positive taper fu ¼ z=Lu and a negative taper
fu ¼ ð1 − z=LuÞ. For the positive taper, the diffraction
effect is mitigated, which has a simple physical interpre-
tation: A short-wavelength part of the impulse generated at
the beginning of the undulator (17) has a bigger Rayleigh

FIG. 3. Typical variation of gðzÞ and kðzÞσ2b=2RðzÞ along the
undulator for two trial tapers fu ¼ z=Lu and fu ¼ ð1 − z=LuÞ
referred to as the positive and negative ones. The bunch and
undulator parameters are discussed in detail in Sec. V.
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length zR (smaller divergence) than a long-wavelength part
generated towards the end of the undulator so that the
divergence times the distance is roughly constant. Hence,
we limit the following analysis of the sought taper to the
positive one f0u > 0, focus the attention on the on-axis
radiation, and assume gðzÞ ¼ const.
The amplitude condition for the generation of a few-

cycle pulse [see Eq. (3) and the discussion there] can be met
if the spectral density of undulator radiation jEωj2 is equal
to that of the desired pulse. Hence, by equating jEωj2 of
(11) to jfωj2 of (2) (times some normalization constant) and
solving the resulting equation, we can find the optimal
undulator profile. But before proceeding to the actual
calculation, let us see how the typical spectrum from a
strongly tapered undulator compares to the spectra of few-
cycle pulses. The comparison is graphically presented in
Fig. 4, in which the spectra of the undulator impulse,
single-cycle, and 1.5-cycle pulses are shown. To illustrate
the features and shape of the undulator spectral distribution,
we consider a simple undulator field profile comprising a
linear positive taper followed by a quick quadratic
decrease. The wavelength for each spectrum is normalized
to the value corresponding to the peak of the spectrum so
that all the spectral peaks are aligned. The short-wavelength
part of the undulator spectrum matches well that of the
single-cycle and 1.5-cycle pulses. However, the long-
wavelength part of these pulses extends much beyond that
of the undulator spectrum. Specifically, the upper value of
ξ1=2, defined as the normalized wavelength corresponding
to half of the maximum value of the spectral distribution,
reaches around 2 and 3 for the single-cycle and 1.5-cycle
pulses, respectively. For the undulator spectrum, ξ1=2

reaches 1.3 at most for any K of the considered example
of the undulator profile. From the results of the Appendix, it
follows that in the vicinity of the maximum of fu the
spectral amplitude EωðξÞ is only half of the result (18) [24]
so that ξ1=2 ≈ 1þK2=2 (max½fu� ¼ 1). The peak of the
undulator spectrum is located away from ξ1=2 by the width
of the resonance (A9), which approximately reads as

ξpeak ≈ 1þK2

2
−
1

4

�
K
�
1þK2

2

��
2=3

: ð19Þ

The bottom value of ξ1=2 corresponds to fu ≈ 1=2, since
Eω ∝ fu so that ξ1=2 ≈ 1þK2=8.
Because of the discussed difference in the width of the

spectrum, it does not seem feasible to generate single-cycle
or shorter pulses. In contrast, the quasi-half-cycle pulse (1)
has a 50% narrower spectrum, and it is plausible that such
pulses can be produced with a tapered undulator. Below, we
derive a closed-form analytical solution for fuðzÞ yielding
the quasi-half-cycle pulses (1) using a simple quadratic
approximation to the spectrum (2).
Let us first Taylor expand jfωj2 [Eq. (2)] in the vicinity of

its maximum. It is convenient to Taylor expand jfωj2 with
respect to the wavelength, since it is directly proportional to
fu. The result reads

jfωj2 ≈
4

e2
½1 − αðξ − ξ̄Þ2�; ð20Þ

where, in order to make the coming results more general,
we introduced the parameters α and ξ̄ being proportional to
the inverse normalized bandwidth and peak normalized
wavelength, respectively. In the particular case of quasi-
half-cycle pulses, α and ξ̄ are equal to 8=p2

0 and p0=
ffiffiffi
2

p
,

respectively, with p0 being 2πcσt=λ0. Hence, the relation
αξ̄2 ¼ 4 must hold.
The condition jEω=E0

ωj2 ¼ jfωj2 takes the form

fuξ
f0u

¼ ζLu½1 − αðξ − ξ̄Þ2�; ð21Þ

where ζ is the length normalization parameter. This is the
governing equation for the sought optimal undulator profile
fu. Replacing ξ by 1þ f2uK2=2 in accordance with (17),
separating the variables z and fu, and integrating the
quadratures, one obtains

z
ζLu

¼
�
αξ̄2 − 1

2
logð2þ f2K2Þ − αf2K2=4

− ½αð1 − ξ̄Þ2 − 1� log f
�����f¼fu

f¼0

: ð22Þ

The last term is singular at the bottom limit, so we impose
the constraint

FIG. 4. Comparison of the spectra of the single-cycle and
1.5-cycle pulses to the on-axis undulator spectrum. The undulator
profile is depicted in the inset. The undulator spectrum is
calculated numerically using (11) but neglecting diffraction.
The wavelength for each spectrum is normalized in the way
that the peaks of the spectra are aligned. The wavelengths
corresponding to the peak value of the undulator spectrum
λundpeak and half of it λund1=2 are presented as well.
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½αð1 − ξ̄Þ2 − 1� ¼ 0; ð23Þ

which sets a limitation on the profile of spectrum that can
be generated with the tapered undulator. Then, the sought
solution for the optimum undulator profile reads

z
ζLu

¼ 1

2

2ξ̄ − 1

ðξ̄ − 1Þ2 log
�
1þ f2uK2

2

�
−

f2uK2

4ðξ̄ − 1Þ2 : ð24Þ

The right-hand side of (24) must be a single-valued
function of fu, which sets the maximum fuK for given
ξ̄ as follows:

max½fuK� ¼ 2

ffiffiffiffiffiffiffiffiffiffi
ξ̄ − 1

q
: ð25Þ

This condition limits the bandwidth of generated pulses,
since ξ̄ and α are interconnected. The normalized duration
of the pulse ξ̄ ¼ ffiffiffi

2
p

πcσt=λ0 is a free parameter within
the specified constraints (23) and (25). The normalization
parameter ζ can be found from the condition that z ¼ Lu
when fu attains its maximum value. Hence,

ζ ¼
�
1

2

2ξ̄ − 1

ðξ̄ − 1Þ2 logð2ξ̄ − 1Þ − 1

ξ̄ − 1

�
−1
: ð26Þ

Consider the case of the quasi-half-cycle pulses (1).
Combining the condition αξ̄2 ¼ 4 with (23), we obtain that
ξ̄ ¼ 2 and α ¼ 2. Then, from (25) it follows that K ¼ 2.
The optimal undulator profile, depicted in Fig. 5, can
approximately be cast in the form

fuðzÞ ≈ 5.4

�
ζz
Lu

�
3

þ 10

�
ζz
Lu

�
2

þ 4.8

�
ζz
Lu

�
; ð27Þ

where ζ ¼ 0.65.

V. NUMERICAL RESULTS AND DISCUSSION

As it follows from the analytical results (see Fig. 3), the
diffraction effect is mitigated for a linear positive taper. In
order to check the impact of diffraction for the found
optimal tapering, which is, in fact, quasilinear, a detailed
numerical study was performed with a 3D simulation code.
The code solves directly the 3D wave equation with a
source in the form of a collection of charged slices whose
shape and dynamics are governed by external magnetic
fields and radiation fields. The equations of motion are
solved using a second-order leapfrog integration, which is
symplectic. A typical number of slices per bunch is 100.
The wave equation is solved in the beam frame using the
spectral method [25] (basically using Fourier transforms
with respect to time and transverse coordinates and
propagating in z). The frequency range in the simulation
spans from zero to about 250 THz with a frequency
resolution of around 0.04 THz. The corresponding
resolution in time is around 2 fs. The resolution in the
phase space of transverse wave numbers (transverse Fourier
space) is 1 mm−1, and the integration step in z is 0.5 mm.
The code was benchmarked against the numerical results of
Ref. [26] for a regular undulator driven by a short electron
bunch creating strong coherent spontaneous emission. A
discrepancy between the results of the two codes for the
emitted energy is less than 5%. The numerical code was
also checked against the analytical results of Saldin,
Schneidmiller, and Yurkov [21] for a regular undulator
and against (18) for a linear taper.
In order to meet the phase condition [see Eq. (3)] for the

generation of the quasi-half-cycle pulse, the distance
between the adjacent bunches is varied according to the
instantaneous resonant wavelength (17). The distances
calculated analytically are further adjusted in numerical
simulations and are shown in Fig. 6 along with the resonant
wavelength (17). The number of bunches is 13, and the
parameters of the single bunch are as follows: charge
Qb ¼ 50 pC, duration σT ¼ 25 fs, 2 mm · mrad emittance,

FIG. 5. Optimal undulator field envelope and radiation fre-
quency vs distance in the undulator. Lu ¼ 70 cm.

FIG. 6. Distances between the adjacent bunches and the
resonant wavelength (17) along the undulator. The corresponding
temporal separation between the bunches is also presented.
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energy γmec2 ¼ 20 MeV, and radius σb ¼ 1 mm. There
are Nu ¼ 15 undulator periods of σu ¼ 5 cm. The total
betatron phase shift

R Lu
0 dz0=λβðz0Þ is 0.25 rad so that the

betatron focusing for such a short undulator can be
neglected. The Rayleigh length at the beginning of the
undulator zR ¼ 2πσ2b=λ0 ¼ 40 cm.
The results of 3D simulations at the output of the

optimally tapered undulator (27) are illustrated in Fig. 7.
The density plots of Eω and EðtÞ in the frequency-space
and time-space domains, respectively, are depicted for a
single bunch and a prebunched beam. The on-axis values of
Eω and EðtÞ are plotted in Fig. 8. From the top left graph in
Fig. 8, one can see that the single-bunch undulator
spectrum reproduces well the quasi-half-cycle spectrum,
which supports the analytical model. Diffraction is miti-
gated as discussed in Sec. IV. However, if the orientation of
the taper is wrong, then the diffraction effect is dramatic
and broadband undulator emission is suppressed. To
demonstrate this, in Fig. 9, the spectral and temporal
distributions of the undulator emission from a single bunch
for the reversed optimal tapering are depicted.
The resulting pulse created by the prebunched beam (see

bottom right graphs in Figs. 7 and 8) reproduces well the
quasi-half-cycle pulse (1) but has long oscillating tails.
The contrast of stray peaks to the main peak is around 1∶8.
The peak electric field of the resulting pulse is around
0.1 GV=m, and the pulse energy is about 10 μJ. There are
three main factors resulting not in a perfect pulse shape:

(i) The single-cycle undulator spectrum does not match
completely that of the desired pulse; (ii) there are 13
discrete bunches, whereas the phase condition resulting
from (3) formally requires an infinite number of radiators
(electrons) to compensate for the phase shift of the
continuum of frequencies of the chirped undulator impulse;
(iii) the contrast is proportional to 1=Nbunches with
Nu ¼ Nbunches, but diffraction limits the maximum length
of the undulator. In passing, a genetic numerical optimi-
zation algorithm failed to find the undulator profile yielding
better results for the single-bunch emission than the
analytical profile (27).

VI. SUMMARY AND DISCUSSION

This paper presents a strategy to generate electromag-
netic pulses of the desired spectral bandwidth and temporal
shape by using a prebunched electron beam and a tapered
undulator. The general formula (18) for the radiation field

FIG. 7. Top left: Density plot of Eω generated by a single bunch
as a function of the frequency and normalized radial distance
r=σb; top right: density plot of EðtÞ generated by a single bunch
as a function of the time and r=σb; bottom left: Eω generated by a
prebunched beam as a function of the frequency and r=σb; bottom
right: EðtÞ generated by a prebunched beam as a function of the
time and r=σb.

FIG. 8. Top left and top right: On-axis Eω and EðtÞ generated
by a single bunch vs the frequency and time, respectively; bottom
left and bottom right: on-axis Eω and EðtÞ generated by a
prebunched beam vs the frequency and time, respectively.

FIG. 9. Spectral and temporal distributions of the undulator
emission for the reversed (deliberately wrong) orientation of
optimal tapering, foptu ðLu − zÞ.
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from a heavily tapered undulator taking into account
diffraction is derived. It extends the results existing in
the literature [27]. An extension of the stationary phase
method used to derive (18) is also presented, which can be
useful for studies of Compton backscattering [17,18]. By
matching the spectrum of the undulator radiation (18) to
that of the desired pulse, a generic optimal undulator is
found (24). The analytical approach indicates that it is
possible to generate pulses that are just one and a half
cycles long, but the generation of even shorter pulses does
not seem feasible because of the very wide spectrum of
such pulses; see Fig. 4. It is interesting to note that
diffraction is greatly mitigated for the found optimal
tapering, and 3D numerical simulations show that the
single-bunch undulator spectrum reproduces well the
quasi-half-cycle spectrum.
In order to meet the phase condition of the quasi-half-

cycle pulse generation, a train of short electron bunches is
used. The distance between the adjacent bunches is varied
according to the instantaneous resonant radiation wave-
length. The resulting radiation pulse has a peak field of
0.1 GV=m with a contrast ratio to stray peaks of 8∶1. The
simulation results are presented just at the undulator output.
As the generated pulses propagate away from the undulator,
the free-space dispersion of transversely confined light will
result in the temporal reshaping of the pulses, but it can be
reversed by proper focusing [28].
The generation of prebunched beams with the required

characteristics has not been demonstrated yet, but the
theoretical studies [29] suggest that 100 pC ellipsoidal
bunches are compressible to 30 fs, and recent experimental
results [30,31] give evidence that high-quality ellipsoidal
bunches can be produced. Space-charge effects in
200 MV=m X-band rf guns are greatly reduced. This opens
a way for producing prebunched beams by illuminating the
photocathode of an rf gun by a train of laser pulses [32].

Another option to produce such beams might be nonlinear
longitudinal space-charge bunching that naturally results in
the increasing period between the bunches because of the rf
gun field curvature [33]. The generation of quasi-half-cycle
pulses by prebunched beams is quite immune to the spread
in arrival time of the electron bunches as demonstrated
in Fig. 10.
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APPENDIX: STATIONARY PHASE METHOD

Consider the integral

IðξÞ ¼
Z

zB

zA

fðz0; ξÞeiψðz0;ξÞdz0 ðA1Þ

with a generic undulator profile shown in Fig. 11 defined at
the interval from zA to zB. Function fðzÞ is a slow function
of z compared to ponderomotive phase ψ (15).

FIG. 10. On-axis EðtÞ vs the time taking into account the spread
of the arrival time of the bunches. The results for ten shots and the
averaged value are depicted.

FIG. 11. Generic undulator profile vs longitudinal distance z is
schematically depicted in the upper plot. The bottom plot shows
corresponding resonant wavelengths (A4) and resonances around
them. For ξ < ξA and ξ > ξE, the solution to (A1) is given by
(A2). For wavelengths ξ, whose resonances are completely within
the integration region and isolated such as the stationary points C
and C0, the solution (A3) is applicable. For the end points A and
B, the value of the integral is half of (A3). In the vicinity of the
degenerated point E, ψ 00ðzEÞ ¼ 0, Eq. (A10) should be used.
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First of all, we notice that in the spectral region
characterized by the nonvanishing derivative of the phase,
i.e. ψ 0ðzÞ ≠ 0, there exists an exact solution to (A1):

IðξÞ¼ eiψðzÞ
X∞
j¼0

Mj

ijþ1

fðzÞ
ψ 0ðzÞ

����zB
zA

; M¼−
1

ψ 0ðzÞ
d
dz

; ðA2Þ

which can be derived by integrating by parts. Then,
obviously, ψ 0ðzÞ ¼ 0 is a special case.
By Taylor expanding ψðzÞ to the second order around the

stationary point z0 such as ψ 0ðz0Þ ¼ 0 and extending the
integration limits to infinity, we can integrate (A1) to obtain

IðξÞ ≈
X
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

jψ 00ðzÞj

s
fðzÞeiψðzÞþðiπ=4Þsgnψ 00ðzÞ

����
z¼z0;j

: ðA3Þ

The integration region can be extended, because the main
contribution to the integral comes from the region over
which a variation of ψ is less than π. Otherwise, if the
variation of ψ is greater than π, then the contributions of the
integrand from different points cancel out each other to a
large extent, since the factor in front of the exponential is a
slow function of z and basically we integrate a sinusoidal
function multiplied by a slow-varying amplitude. The
condition of “slowness” of fðzÞ can be formulated as
fðzÞ changes insignificantly over z0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π=ψ 00ðz0Þ

p
, which

is the scale of the variation of ψ by π.
Phase ψðzÞ vanishes locally for resonant wavelength

ξ0 ¼ 1þK2f2uðz0Þ=2; ðA4Þ

and solutions to (A4) are limited by ξmin¼1þK2min½f2u�=2
and ξmax ¼ 1þK2max½f2u�=2.
Result (A3) is valid for such wavelengths ξ0 that the

whole resonance around given z0ðξ0Þ is within the inte-
gration limits ½zA; zB� as is, for example, the case for the
stationary points zCðξCÞ and zC0 ðξC0 Þ depicted in Fig. 11.
For the end points A and B, the value of IðξÞ is half of that
of the inner point (A3).
If the resonances start to overlap as, for instance, for

stationary points zDðξDÞ and zD0 ðξD0 Þ, then the value of
integration has to be reduced by the amount of overlapping.
In the limiting case of the merged resonances correspond-
ing to point E, Eq. (18) is not applicable, since the
stationary point is degenerated ψ 00 ¼ 0. The corresponding
behavior of the phase is exemplified in Fig. 12.
Let us find the width of resonance Δz at the degenerated

point E (see Fig. 11) in order to derive a quantitative
condition of validity of Eq. (A3). It can be estimated from
the condition jψðz0 þ ΔzÞ − ψðz0Þj ¼ π that yields

Δz
λu

≈
ξ=4

1 − ξþK2f2u½zE�=2
: ðA5Þ

The resonance D0 may be treated as isolated if

zðξD0 Þ − ΔzðξD0 Þ ≥ zðξEÞ: ðA6Þ

The case of equality in this condition gives a critical value
of ξ0D such that the resonancesD andD0 are contiguous; see
the highlighted region ½ξD0 ; ξE� in Fig. 11(b) and the
corresponding resonances in Fig. 11(a). Let us rewrite
Eq. (A6) in the equivalent form

1þK2

2
f2u½zðξ0DÞ� ¼ 1þK2

2
f2u½zðξEÞ þ Δzðξ0DÞ� ðA7Þ

and Taylor expand the right-hand side with respect toΔz up
to the second order, since f0uðzEÞ ¼ 0. It becomes

ξD0 ¼ ξE þ 1

2!

K2

2

d2f2u
dz2

����
zE

½ΔzðξD0 Þ�2: ðA8Þ

The left-hand side of Eq. (A8) is equal to that of
Eq. (A7) by definition. It is advantageous to seek a solution
for Δξ ¼ ξE − ξD0. Then, from Eq. (A5), it follows
that

ΔzðξD0 Þ
λu

≈
ξE
4Δξ

;

which allows us to derive a cubic equation for Δξ:

Δξ −
K2

8

���� d2f2udz2

����
zE

����
�

ξE
4Δξ

�
2

¼ 0:

FIG. 12. Illustration of the ponderomotive phase behavior for a
parabolic undulator profile fu ¼ 1 − ð2z=Lu − 1Þ2.
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The spectral width of the resonance is

Δξ ¼ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

2

���� d2f2udz2

����
zE

����ξ2E3

s
: ðA9Þ

Equation (A9) can also be used to estimate the width of the
resonances in the vicinity of the end points A and B.
A natural extension of solution (A3) for the degenerated

stationary point zE is to Taylor expand ψðzÞ up to the third
order in the vicinity of zE. By using the integral [34]

Z
∞

0

cosðx3 ∓ axÞx ¼ π
ffiffiffi
a

p

3
ffiffiffi
3

p
�
J−1=3ðbÞ þ J1=3ðbÞ
I−1=3ðbÞ − I1=3ðbÞ

	
;

where b ¼ 2ða=3Þ3=2, we arrive at the solution

IðξÞ ≈ 2gðzEÞeiψðzEÞ
sgnψ 000ðzEÞffiffiffi
3

p jψ 000ðzEÞj=6
π

ffiffiffi
a

p

3
ffiffiffi
3

p

×

�
J−1=3ðbÞ þ J1=3ðbÞ; sgn½ψ 0ðzEÞψ 000ðzEÞ� < 0

I−1=3ðbÞ− I1=3ðbÞ; sgn½ψ 0ðzEÞψ 000ðzEÞ� > 0

	
:

ðA10Þ

Here, a ¼ ψ 0ðzEÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijψ 000ðzEÞj=63

p
.

Equations (A2), (A3), and (A10) give solutions to
integral (A1) for all wavelengths. To illustrate the results,
the above analytical results are compared to a numerical
solution to (A1) in Fig. 13 for a parabolic undulator profile
fu ¼ 1 − ð2z=Lu − 1Þ2. The considered undulator profile
gives rise to a complicated spectral profile accurately
reproduced according to the analytical formulas.
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