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We study coherent synchrotron radiation by electrons in the Frenet-Serret coordinate system with a
constant curvature 1=ρ. Based on the Hamiltonian in the Courant-Synder theory of particle accelerators, we
find in general that the transverse force is essentially the Lorentz force but with a substitution of the
transverse magnetic field Bx;y → ð1þ x=ρÞBx;y, where x and y are the transverse positions. The curvature
term provides us a key to derive the point-charge wakefield explicitly in terms of the incomplete elliptic
integrals of the first and second kind, resulting in a steady-state theory of the coherent synchrotron radiation
in two-dimensional free space.
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I. INTRODUCTION

Coherent synchrotron radiation (CSR) in the bending
magnets is one of the most important limits to the advance
of the brightness of the electron beam in storage rings for
infrared and terahertz radiation [1–3] and bunch compres-
sors [4] in free-electron-laser (FEL) light sources [5] and
high-energy linear colliders. In rings, it induces microwave
instability [6,7], causing bursting [8] of synchrotron radi-
ation. In compressors, it increases the energy spread and
causes microbunching [9,10]. An advance in the under-
standing of CSR has played an important role in the design
and operation of the FEL facilities and can have a great
impact for future accelerators.
Historically, the one-dimensional theory of CSR was

developed in terms of a simple longitudinal wakefield
[11–14]. These wakes were implemented in the code Elegant

[15], which is widely used in simulations for the design of
magnetic bunch compressors. The simulations are largely
in good agreement with the experimental observations
[4]. However, as a theory itself, it is not quite complete
because it simply ignores the transverse force without any
explanation. Our goal in this paper is to develop a two-
dimensional theory and lay a solid foundation for further
advances toward a complete theory of CSR.
The importance of the transverse force of CSR was

first emphasized by Talman [16] and later by Carlsten and
Raubenheimer [17]. The study was followed with the
calculation of the transverse wake by Derbenev and
Shiltsev [18] and later refined by Stupakov [19]. There
were similar studies in simulations [20–23]. However, the
theory is never fully developed largely because of subtleties

in dealing with curvature, relativistic effect, and singularity.
In this paper, we will continue their efforts and start with
the curvature.

II. EQUATION OF MOTION

Given the scalar and vector potentials,

E⃗ ¼ −∇ϕ −
1

c
∂A⃗
∂t ; ð1Þ

B⃗ ¼ ∇ × A⃗ ð2Þ
in the curvilinear coordinate system shown in Fig. 1, the
Hamiltonian is well known [24],

Hsðx; px; y; py; t;−H; sÞ ¼ −
�
1þ x

ρ

�
Ps −

e
c
As; ð3Þ

where

Ps¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
H−eϕ

c

�
2

−
�
px−

e
c
Ax

�
2

−
�
py−

e
c
Ay

�
2

−m2c2

s
;

As¼
�
1þx

ρ

�
As: ð4Þ

FIG. 1. The curvilinear coordinate system.
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Three Hamilton equations lead to

x́ ¼ ∂Hs

∂px
¼

�
1þ x

ρ

�
px − e

c Ax

Ps
;

ý ¼ ∂Hs

∂py
¼

�
1þ x

ρ

�
py − e

c Ay

Ps
;

t́ ¼ ∂Hs

∂ð−HÞ ¼
�
1þ x

ρ

�
H − eϕ
c2Ps

: ð5Þ

Using Eqs. (5) along with the Hamillton equations,
ṕx ¼ −∂Hs=∂x, ṕy ¼ −∂Hs=∂y, we derive the equations

�
x́Ps

1þ x
ρ

�0
¼ Ps

ρ
þ e
c

�
ct́Ex þ

�
ýBs −

�
1þ x

ρ

�
By

��
; ð6Þ

�
ýPs

1þ x
ρ

�0
¼ e

c

�
ct́Ey þ

��
1þ x

ρ

�
Bx − x́Bs

��
ð7Þ

that govern the transverse motion. For a uniform magnetic
field B0 in the vertical direction, Eq. (6) reduces to

�
x́ps

1þ x
ρ

�0
¼ ps

ρ
−
e
c

�
1þ x

ρ

�
B0; ð8Þ

where ps ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 − p2

x − p2
y

q
and p is the momentum of the

particle. Applying Eq. (8) to the design particle with
momentum p0, we find that the field has to satisfy

B0 ¼
cp0

eρ
: ð9Þ

Substituting it back into Eq. (8), we have

�
x́ps

1þ x
ρ

�0
¼ ps − p0

ρ
−
xp0

ρ2
: ð10Þ

Using the paraxial approximation ps ≈ p and ignoring the
nonlinear terms, the equation of the horizontal motion
becomes

x˝ þ x
ρ2

¼ δ

ρ
; ð11Þ

where δ ¼ ðp − p0Þ=p0.
If there are additional electromagnetic fields, including

self-fields, present, we can substitute the expression B0 in
Eq. (9) into Eq. (6) as an extra field and obtain the equation
of the horizontal motion

�
x́Ps

1þ x
ρ

�0
þ xp0

ρ2

¼ Ps − p0

ρ
þ e
c

�
ct́Ex þ

�
ýBs −

�
1þ x

ρ

�
By

��
: ð12Þ

Now, the bending field B0 is excluded explicitly.
Using again the paraxial approximation and ignoring the

nonlinear terms similar to the previous case, we simplify
Eqs. (12) and (7) to

x˝ þ x
ρ2

¼ δ

ρ
þ e
cp0βs

�
Ex þ βyBs − βs

�
1þ x

ρ

�
By

�
;

y˝ ¼ e
cp0βs

�
Ey þ βs

�
1þ x

ρ

�
Bx − βxBs

�
; ð13Þ

where βx, βy, and βs are the components of β⃗ ¼ v⃗=c, the
velocity normalized to the speed of light. The transverse
motion is driven by the electric and magnetic fields. The
transverse force is the expected Lorentz force but with extra
terms that are proportional to x=ρ. The importance of these
terms will become clear later.
For the energy change, it is easier to start with dE=dt ¼

ev⃗ · E⃗ and then we have

δ́ ¼ e
cp0βsβ

β⃗ · E⃗: ð14Þ

III. ELECTRIC AND MAGNETIC FIELDS

Now we consider the relativistic effect in computing the
fields. For simplicity, we assume that all particles are
moving in the horizontal plane. In fact, this simplification is
consistent with the 2D theory of CSR since the particles
will remain in the plane as we will see later. When a
charged particle is moving on a circular orbit from point A
to B as illustrated in Fig. 2, it generates electromagnetic
fields, which can be expressed by the Lienard-Wiechert
formula [25],

FIG. 2. A source particle (at A) moves along a circular orbit and
radiates electromagnetic fields that reach a testing particle (at D).
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E⃗ ¼ e

�
n̂ − β⃗

γ2ð1 − β⃗ · n̂Þ3R2

�
ret
þ e
c

�
n̂ × fðn̂ − β⃗Þg × _⃗

β

ð1 − β⃗ · n̂Þ3R

�
ret
;

ð15Þ

B⃗ ¼ n̂ × E⃗; ð16Þ

where n̂ ¼ R⃗=R and R⃗ is the vector from the point A, where
the source particle is at the retarded time t0, to D the
observation point at the time t. The retarded time is given by

t0 ¼ t −
R
c
: ð17Þ

The first term in Eq. (15) is due to space charge and is not
important for ultrarelativistic electrons because of the
suppression of a factor of 1=γ2. In this paper, we ignore
the space-charge term and focus only on the radiative term
as the source of the coherent synchrotron radiation.
This approach is recently introduced [26] to analyze the
longitudinal effect in a 2D model.

The acceleration is defined as _⃗
β ¼ dβ⃗ðt0Þ=dt0. With the

radius ρ of the circle, we have _β ¼ cβ2=ρ. Using the
acceleration and trigonometry, it is straightforward to
compute the electromagnetic fields. Their nonvanishing
components can be written as

Es ¼
eβ2½cos 2α − ð1þ χÞ�½ð1þ χÞ sin 2α − βκ�

ρ2½κ − βð1þ χÞ sin 2α�3 ; ð18Þ

Ex ¼
eβ2 sin 2α½ð1þ χÞ sin 2α − βκ�

ρ2½κ − βð1þ χÞ sin 2α�3 ; ð19Þ

By ¼
eβ2κ½ð1þ χÞ sin 2α − βκ�
ρ2½κ − βð1þ χÞ sin 2α�3 ; ð20Þ

where α ¼ θ=2 and κ ¼ R=ρ is given explicitly,

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 þ 4ð1þ χÞsin2α

q
; ð21Þ

with χ ¼ x=ρ. There are many equivalent expressions of the
fields given the relation in Eq. (21). Here, we have chosen
the ones with simple factors, especially in the denominator.
Otherwise, the numerical noise will overwhelm the fields
near the singularity.

IV. RETARDED CONDITION

Since the expressions of the fields are subject to the
retarded condition in Eq. (17), we need to solve the
condition in terms of the position of the source particle
at the moment t. During the time interval t − t0, the source
particle moves from A to B along the arc with speed v as
illustrated in Fig. 2. So the arc length between point C and
B is given by

l ¼ vðt − t0Þ − ðs − s0Þ; ð22Þ

where s − s0 is the arc length between A and C. Moreover,
if we introduce z ¼ s − vt as the longitudinal position, then
Eq. (22) leads to l ¼ z0 − z. Using the retarded condition in
Eq. (17), we can rewrite Eq. (22) in terms of α,

ξ ¼ α −
β

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 þ 4ð1þ χÞsin2α

q
; ð23Þ

where ξ ¼ −l=2ρ. Given ξ and χ, the angle α can be found
with a Newton search using Eq. (23).
Expanding up to the fourth order of α, Eq. (23) can be

rewritten as

α4 þ 3ð1 − β2 − β2χÞ
β2ð1þ χÞ α2 −

6ξ

β2ð1þ χÞ α

þ 3ð4ξ2 − β2χ2Þ
4β2ð1þ χÞ ¼ 0: ð24Þ

The solution of this quartic equation is given in the
Appendix. A comparison between the numerical and
analytical solutions is carried out. The difference γΔα is
at a level of 10−6 in the plotting region in Figs. 3 and 4. The
agreement is so good that we use the analytic solution for
its computational efficiency in this paper.

V. FORCES

Knowing α and reading from Eqs. (13) and
Eqs. (18)–(20), the transverse force is given by

Fx ¼
e2β2½sin 2α − βð1þ χÞκ�½ð1þ χÞ sin 2α − βκ�

ρ2½κ − βð1þ χÞ sin 2α�3 ð25Þ

and Fy ¼ 0 so that the particles stay in the horizontal plane.
Using α, we compute and plot Es and Fx in Fig. 3. The

scalings of the plots are chosen according to their approxi-
mated invariancewith respect to γ. Note thatFx ∼ γ3 instead
of γ4 in the vicinity of the origin because of the cancellation
between the electric and magnetic forces. The singularity of
the transverse force is clearly seen in the right plot. Because
of these complicated features when two particles are
approaching each other, it is often difficult to use Es and
Fx as Green’s functions for a bunch distribution in practice.
It is worth noting that in the asymptotic region

where μ ¼ 3γ3ξ ≫ 1 and χ ¼ 0, our results of Es ¼
2e=½ρ2ð6ξÞ4=3� and Fx ¼ e2=½ρ2ð6ξÞ� fully agree with the
known results in the 1D theory [12,27].

VI. POTENTIALS

Here we continue on dealing with the singularity.
A method to avoid the singularity in the Green’s functions
is integration by parts. It requires us to know the integral of
the Green’s function. Differentiating the retarded condition
in Eq. (23), we have
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dξ ¼
�
1 −

βð1þ χÞ sin 2α
κ

�
dα: ð26Þ

Combining it with the longitudinal electric field Es in
Eq. (18), we find

Esdξ ¼
eβ2½cos 2α − ð1þ χÞ�½ð1þ χÞ sin 2α − βκ�

ρ2κ½κ − βð1þ χÞ sin 2α�2 dα

¼ d
� eβ2ðcos 2α − 1

1þχÞ
2ρ2½κ − βð1þ χÞ sin 2α�

�
: ð27Þ

This relation naturally leads to a longitudinal potential,

ψ sðξ; χÞ ¼
eβ2ðcos 2α − 1

1þχÞ
2ρ2½κ − βð1þ χÞ sin 2α� ; ð28Þ

noting that the dependence of ξ is through αðξ; χÞ obtained
as the solution of the retarded condition and Es ¼ dψ s=dξ.
Similarly, for the transverse force, we haveFx ¼ dψx=dξ

with a transverse potential,

ψxðξ; χÞ

¼ e2β2

2ρ2

�
1

jχjð1þ χÞ
�
ð2þ 2χ þ χ2ÞF

�
α;
−4ð1þ χÞ

χ2

�

− χ2E

�
α;
−4ð1þ χÞ

χ2

��

þ κ2 − 2β2ð1þ χÞ2 þ β2ð1þ χÞð2þ 2χ þ χ2Þ cos 2α
βð1þ χÞ½κ2 − β2ð1þ χÞ2sin22α�

−
κ½1 − β2ð1þ χÞ cos 2α� sin 2α

½κ2 − β2ð1þ χÞ2sin22α�
�
; ð29Þ

FIG. 3. The scaled longitudinal field Esρ
2=eγ4 (left) and transverse force Fxρ

2=e2γ3 (right) as a function of μ ¼ 3γ3ξ and ν ¼ γ2χ
with γ ¼ 500.

FIG. 4. The scaled longitudinal potential ψ sρ
2=eγ (left) and transverse potential ψxρ

2=e2 as a function of μ ¼ 3γ3ξ and ν ¼ γ2χ
with γ ¼ 500.
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where Fðα; kÞ and Eðα; kÞ are the incomplete elliptic
integrals of the first and second kind, respectively. Note
that the curvature term in the transverse force is necessary
to obtain the expression.
The scaled potentials are plotted in Fig. 4. On the left, we

can see that the potential ψ s is enhanced in the tangent
direction when the source particle radiated at the retarded
time.On the right,we seemostly the “logarithmic” singularity
along the line of ξ ¼ 0with adifferent sign in the regionξ > 0
or ξ < 0. Because of this singularity, the transverse force is
infinite in the 1D theory. Fortunately, the integral over the 2D
phase space is finite. This property allows us to compute the
transverse wake for a smooth bunch distribution in the 2D
theory. It is worth noting that the divergence comes from the
term with the incomplete elliptic integral of the first kind.

VII. WAKE FIELDS

Given the potentials in Eqs. (28) and (29), and the
equations of the motion in Eqs. (13) and (14), we derive a
change of the momentum deviation δ and a kick to x́ by the
bunch wakefields

δ́ ¼ reNb

γ
Wsðz; χÞ; ð30Þ

x˝ ¼ reNb

γ
Wxðz; χÞ; ð31Þ

where re is the classical electron radius, Nb the bunch
population, and the wakes are

Wsðz;χÞ¼
ZZ

Ys

�
z−z0

2ρ
;χ−χ0

�∂λbðz0;χ0Þ
∂z0 dz0dχ0; ð32Þ

Wxðz;χÞ¼
ZZ

Yx

�
z−z0

2ρ
;χ−χ0

�∂λbðz0;χ0Þ
∂z0 dz0dχ0; ð33Þ

with Ys ¼ 2ρψ s=ðeβ2Þ, Yx ¼ 2ρψx=ðeβÞ2, and λb the
distribution that is normalized to

R
λbdzdχ ¼ 1.

The wakes of a Gaussian bunch are shown in Fig. 5. The
longitudinal wake is an order of magnitude larger than the
transverse one. The deviation of the longitudinal wake from
the 1D wake, plotted in dashed orange color in the left plot,
is rather small. The transverse wake is mostly symmetric
with respect to χ as shown in the right plot in Fig. 5.
A nearly Gaussian profile can be approximated by

WgðqÞ ¼
Λffiffiffiffiffiffi
2π

p
ρσz

exp

�
−
q2

2

�
; ð34Þ

with the coefficient

Λ ¼ ln
�ðρσ2zÞ2=3

σ2x

�
1þ σx

σz

��
: ð35Þ

This Gaussian wake is called the Talman force [18].

VIII. EMITTANCE GROWTH

In a short bending dipole of length LB, the increase of
normalized emittance due to the longitudinal wake is given
by [27]

ΔϵðsÞN ≈ 7.5 × 10−3
~βx
γ

�
reNbL2

B

ρ5=3σ4=3z

�
2

; ð36Þ

where ~βx is the beta function at the exit where the dispersion
and its slope are assumed zero. The direct emittance growth
due to the transverse wake can also be estimated using the
Gaussian wake in Eq. (34) and written as

ΔϵðxÞN ≈
ð−3þ 2

ffiffiffi
3

p Þ
24π

~βx
γ

�
ΛreNbLB

ρσz

�
2

: ð37Þ

FIG. 5. The longitudinal (left) and transverse (right) wakes at various transverse positions χ ¼ −σχ (black), 0 (blue), and σχ (red) for a
Gaussian bunch with σx ¼ σz ¼ 10 μm on a curve with radius ρ ¼ 1 m and γ ¼ 500.

TABLE I. Parameters for the last bend in the second bunch
compressor of Linac Coherent Light Source.

Parameter γ ϵN σz Nb
~βx ρ LB

Value 10,000 0.5 μm 10 μm 109 5 m 5 m 0.5 m
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For the parameters in Table I, the estimated emittance
growth indirectly from the energy spread is 38% while the
direct contribution from the transverse wake is 37.5%. This
example shows that the transverse force can significantly
increase the beam emittance in the bunch compressors.
We have developed a steady-state theory of CSR in the

2D free space. The theory is self-consistent with a proper
treatment of the singularity. It naturally approaches to the
1D theory at the limit of the transverse dimension going to
zero. It is remarkable seeing how the geometry, relativity,
and singularity have coherently played their own roles in
the theory.
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APPENDIX: SOLUTION OF THE
QUARTIC EQUATION

In general, we would like to find the roots of the
depressed quartic equation:

α4 þ υα2 þ ηαþ ζ ¼ 0: ðA1Þ

It has an analytical solution discovered by Ferrari. The
method finds a value m to factorize the fourth-order
polynomial by a product of two quadratic polynomials.
It turns out that m itself is a solution of a third-order
equation and is given by

m ¼ −
υ

3
þ
�
ζ

3
þ υ2

36

�
Ω−1=3 þ Ω1=3; ðA2Þ

where

Ω¼ η2

16
−
ζυ

6
þ υ3

216
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
η2

16
−
ζυ

6
þ υ3

216

�
2

−
�
ζ

3
þ υ2

36

�
3

s
:

ðA3Þ

Then we have

α¼

8>><
>>:

1
2

� ffiffiffiffiffiffiffi
2m

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2ðmþυÞ− 2ηffiffiffiffiffi

2m
p

q �
if ξ ≥ 0

1
2

�
−

ffiffiffiffiffiffiffi
2m

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2ðmþυÞþ 2ηffiffiffiffiffi

2m
p

q �
if ξ< 0

: ðA4Þ

These are two real roots of the quartic equation. They cover
two different regions: ahead of or behind the source particle.
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