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Nowadays, designs for ring-based light sources use multibend lattices for achieving a very small
emittance of around 100 pmrad. In this type of storage ring, the chromaticity correcting sextupoles
generally have greater strengths than those used in typical third-generation light sources. Therefore,
controlling lattice nonlinearity such as amplitude-dependent tune shift (ADTS) is important for enabling
stable operations and smooth beam commissioning. As the strength of the sextupoles increases, their
higher-order terms contribute significantly to ADTS, rendering well-known lowest-order formulas
inadequate for describing tune variations at large horizontal amplitudes. In response, we have derived
explicit expressions of ADTS up to the fourth order in sextupole strength based on the canonical
perturbation theory, assuming that the amplitude of a vertical betatron oscillation is smaller compared with
the horizontal one. The new formulas express the horizontal and vertical betatron tune variations as
functions of the action variables: J, and J, up to O(J2) and O(J y). The derived formulas were applied to a
five-bend achromat lattice designed for the SPring-8 upgrade. By comparing the calculated results with the
tracking simulations, we found that (1) the formulas accurately express ADTS around a horizontal
amplitude of ~10 mm and (2) the nonlinear terms of the fourth order in sextupole strength govern the
behaviors of circulating electrons at large horizontal amplitudes. In this paper, we present explicit
expressions of fourth-order formulas of ADTS and provide some examples to illustrate their effectiveness.
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I. INTRODUCTION

Optimizing lattice nonlinearity presents a major chal-
lenge for designing a storage ring with strong sextupole
magnets. The amplitude dependence of betatron tunes is
one of the key parameters in the optimization procedure for
avoiding unstable beam motions resulting from harmful
resonance lines by choosing a proper working point and by
suppressing tune variations with amplitudes. The lowest-
order formulas of the amplitude-dependent tune shifts
(ADTS) are well known [1,2] and are usually incorporated
in an objective function of nonlinearity optimization.
However, for a ring with very strong sextupole magnets,
the lowest-order formulas are no longer effective for
describing tune variations at large amplitudes near a border
of dynamic aperture because of the dominant contributions
from the higher-order terms.

A good example where the higher-order terms govern
beam behavior at large amplitudes is the type of multibend
achromat lattices adopted in many light source facilities to
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achieve extremely small emittance [3]. At SPring-8, a five-
bend achromat (5BA) lattice was selected for the basic
structure of the storage ring for the performance upgrade [4].
The maximum strength of the chromaticity-correcting sextu-
poles is about six times larger than that for the present ring,
which uses a double-bend lattice for its unit structure. Our
approach to sextupole optimization is based on an analytical
model with ADTS coefficients incorporated in the objective
function [5]. In optimization procedures, we first used the
lowest-order formulas of ADTS to suppress tune variations
to obtain larger dynamic apertures. However, after some
calculations we found that the lowest-order formulas are
insufficient to describe tune variations at large horizontal
amplitudes. Tracking simulations consistently indicate that
the higher-order terms in sextupole strength govern the
behavior of electrons at large amplitudes. Hence we need to
estimate higher order terms by other means.

In the 1990s, techniques were developed for computing a
map that transfers initial coordinates at some reference
position to final coordinates. These techniques provided
access to higher-order effects up to a desired order
[6-10] numerically. Maps could be calculated using Lie
transformations or truncated Taylor series with algebraic
techniques. The maps obtained could be used for faster
tracking instead of the conventional element-by-element
approach. Also, by casting a map into the so-called normal
form [11], interesting physical quantities such as nonlinear
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chromaticities and amplitude-dependent tune shifts could
be extracted up to quite a high order. The map method is
therefore one of the standard and powerful tools used for
studying nonlinear beam dynamics, offering great benefits
for analyzing nonlinear beam behavior: once a magnetic
lattice is given and a map is calculated, one can easily
derive higher-order coefficients numerically and predict
how the beam will behave at large amplitudes or large
momentum deviations.

In design work, however, we usually start by trying to
understand a mechanism (or beam physics) that dominates
the nonlinear behavior of the beam. Needless to say, it is
better to understand the underlying mechanisms that
determine higher-order coefficients of ADTS in order to
proceed efficiently with nonlinear lattice design. From this
viewpoint, we insisted on an analytical method and tried to
derive explicit expressions of the higher-order coefficients
of ADTS, though the optimization itself would be possible
in a completely numerical manner by incorporating the map
method in the optimization algorithm with proper con-
straints. We also point out that when one tries to find an
optimum set of sextupole strengths in a numerical manner,
a procedure for map calculation and tracking is needed for
each trial set of sextupoles. The purpose of our paper is to
offer another convenient tool for studying and mitigating
lattice nonlinearity. For example, for the design of a basic
lattice of a unit cell having a moderate number of sextupole
magnets, our formulas [Eqgs. (96)-(98)] are applicable
for fast evaluation of the objective function in nonlinear
optimization.

However, as one can easily imagine, it is not an easy task
to extract high-order lattice nonlinearities in an analytic
form. In fact, the explicit expressions of ADTS of the
fourth-order or higher in sextupole strength are, to the
authors’ knowledge, not found in literature. This is because
the number of terms in canonical perturbation treatments
increases rapidly as we proceed to higher orders. For our
goal of optimizing sextupole strengths for a SBA lattice,
we need to describe the behavior of both the horizontal and
the vertical tunes correctly at large horizontal amplitudes
[12]. Hence, we assumed that the amplitude of the vertical
betatron oscillation is smaller compared with the horizontal
one and neglected terms of O(J3), where J, is the action
variable of the vertical oscillation, in calculating the
Hamiltonian of the fourth order in sextupole strength.
Our assumption is valid in most practical cases for
discussing the beam injections and betatron oscillations
caused by electron-electron scattering, in which tune
variations depending on the horizontal amplitude govern
stability in motion. This assumption greatly reduces the
number of terms that we have to treat and allows the
analytical description of explicit expressions of higher-
order formulas of ADTS.

In Sec. II, we briefly review application of the canonical
perturbation theory to storage rings with a sextupole

magnetic field distribution. The Hamiltonian is expressed
by a sum of terms having a power series of sextupole field
strength A(s). We keep terms up to A* since the next-order
contributions to the well-known ADTS formulas come
from the Hamiltonian terms of O(4*). Details of higher-
order perturbation treatments are described in Sec. IIl. As
mentioned above, we assume that the amplitude of the
vertical betatron oscillation is smaller compared with the
horizontal one to simplify the canonical perturbation treat-
ments. In Sec. IV, we apply the formulas to a five-bend
achromat lattice for the SPring-8 upgrade and check their
validity by comparing our analytical calculations with
tracking simulations. Finally, we summarize our results
in the last section.

II. CANONICAL PERTURBATION THEORY

A. Hamiltonian for a ring with a sextupole
magnetic field distribution

We first review the canonical perturbation theory
[13—15]. For storage rings with a sextupole magnetic field
distribution B”(s), the transverse motion of electrons
(X, py.y. py) is described by the Hamiltonian

H=Hy+V, (1)

where

2 2
Ho= 4 Bt (000) + s )2 =307 @

is for the linear betatron oscillation and

V=20 ) ®)

is the sextupole field potential with

BII (S)

Als) = Bl

(4)

The g(s) is the quadrupole field potential, p(s) is the
bending radius, and [Bp] is the magnetic rigidity. By using a

generating function
x? Bi(s)
F<xa¢x’y,¢y,s) = — tanqﬁx—

25, s) 2
y? By (s)
o] G

where 3, and f3, are the horizontal and the vertical betatron
functions, respectively, we perform a canonical transfor-
mation from the coordinate (x,p,.y,p,) to the action-

angle one (¢, 1., ¢,.1,):
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21p.(s) cos b, (6) 2JAS) <Sm¢w Ails) ¢)) ()
pils) )
2Ix/ﬂx<s)<51n¢x osey |, (7) H(poLotpyo1y,s) = Ho(L 1y,5) + V(o L by L), (10)
21,p,(s) cos ¢, (8) Iy Iy
: ' Holle Ly 8) =3 0S¥ {4
V(g Loy Iy s) = %mwﬁ/z V2(5){cos 3, + 3 cos b, }
=301 1,8Y% (5)B,(s){2 cos ¢, + cos(¢, + 2¢,) + cos(eh, — 2¢b,)}]. (12)

By following the treatment of the canonical perturbation
theory with A being a perturbation source, we can find a
canonical transformation from (¢,,I,. ¢y, 1,) to (@, J,,
@y.J,), where a new Hamiltonian H is written by only J,
and J, up to some order in 4. To do this, we first write a
generating function G in the following form:

G(qﬁx"]x’ ¢y1]y’ S) = ¢x‘]x + ¢y']y

3 G P Todydys), (13)

n=1

where G is a contribution of O(1"). The transformation is
then carried out by

=g 30 el gy
b= o= 3] g
I = a¢y—fv+n§°'; "’X’JX’%’JY’S) (16)
’ = gjci - ni;ac(n)(qu,ajjy, ¢},,Jy,s)’ (17)
=1+ 07 = H 1, ,s> V(e oty Iy )

Z ¢x’Jx’¢\’J}’s) (18)

By using Egs. (14) and (16) in the first and second terms
of Eq. (18) and carrying out a Taylor expansion in (/,,1,)
at (J,,J,) up to the fourth order in sextupole strength,
we have

H=H9+HY + A® + GO L 7Y + 0(»%),  (19)
O =Zx Oy (20)

- 1 oG"MH 1 9G6MH  9GM
AV =v 4 — +— + ; 21
B, 0b, B, 0b, " Bs @

196%  196%  ovaGh

Pe O¢. Py Oby O, O,
v oG oG?)

To1, 0h, 05

(22)

23 _ 190G 19G6%  9vaGc?  av oG
HY =— +— + + 5
ﬂx a¢x ﬁy a¢y aJx 8¢x 8Jy 845}
+1@ oG 2+ >V 86(1)6G(1)+8G(3)
2072 \ 0, dJ1.0J, op, Op,  Os '
@ _ LoGW  19GY

(23)
=5, 04, B, 0p,
?voGc oc»  9*v oG oGP
T2 9g. g, 00,00, 09, 09,
0*vV oG® oG 193V (oGN3
" 01,07, g, b, 6013 (W)
1 v [0GIN\?20GY oGW
207201, ( a¢x) ap, s

N oV 0GB N v dG®)
ol O¢,  OJ, O¢,

(24)

The term H™ represents a quantity of O(A") and the
argument of each function on the right-hand side is

(¢x"]x’ d)yﬁ‘]yv

and H® are asymmetric with respect to x and y because

s). We see that the expressions of H%
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V(oo by Jy.5)/]0J5 =0 for k >2. The nth-order
generating function G is determined to satisfy

H™ — (H™) =0, (25)

where (A) means the average of A over ¢, and ¢,. Then,
after calculating generating functions up to the Nth order
by solving Eq. (25) step by step, the Hamiltonian (19) is
approximated as the following autonomous form with the
Nth order in sextupole strength:

H
mz

}+Z

) + O(N*. (26)

I
mz

SONLE

The betatron tune is calculated by

(z=2xy), (27)

where C is the circumference.

B. Lowest-order perturbation

The first-order generating function G(!) is obtained by

solving Eq. (25) with n = 1:

19GY 196 oG
_ — =y, 28
B, 0dy B, 0d, | 0s (28)
1 oG 1 G oG
vih=y_{v — . 2
< T 500, "B op, " os > ®9)

From the periodicity of G(!), we have the following

conditions:

oG\ oG oG
0 d =0. 30
<a¢x> <a¢y> . <6> 0
These relations can be confirmed by Eqs. (37) and (42)
given below. Equation (12) gives (V) = 0 and hence

= V(hx: s by, Iy 5)

2
= g‘li/zAl (s)(e30 +e_39+3e1o+3e_y)

2
— 2.’)1(/ JyAz(s)(2el_0 + 26,1,0 + 61,2
+e_ 1 rteote )

+00
ST e (31)

m,n=—00

A1(s) = oS H(0) (2)
M) =S BB, (3
em,n = el(m¢X+n¢\>. (34)

There are eight nonzero terms of vf,f)n

1 1 2 3/2
v =0, =31 A (s).
ohlg = ol = 20374, (5) — 47120, A (s).
1 1 1 1 2
oy =o)L = o)y = o, = 202,45 (s),
vih =0 for other (m,n). (35)

Equation (28) is now written as

{i o 19
P Oby ﬂy&ﬁy

} ——vanemn (36)

and a periodic solution to this equation is given by

+00 |
Z gl(ﬂ,)nem.nv (37)

m,n=—0o

1 i

gmn =7 Gin a(my, + nvy)
s+C
ds’v,(,yn (Jx7 Jy’ s/)eim‘l’x(s’.s)Jrin‘Py(x’.s)’ (38)
Y.(s'os) =w (s) —y.(s) —m, (z=xy), (39)
s ds,
v.(s)= | ——, 40
=7 (40)
v (C)
= . 41

By using Eq. (35) we have the following expressions

for gg,?,,:
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1 1)*
g =" = -73/232(3)»

3
a1 = 9o = i12By(s) — 20020 By (s),
ah=g"", = —zf/ J,By(s),
9522 = 9(711) =—isy 27, Bs(s).
g,,i),, =0 for other (m,n) (42)
where we have defined
| s+C
= / IAPN A MK
Bi(s) = o [ A () 43)
| s+C
— / 1 i3, (s,s)
B,(s) = Sin 30, / ds'A|(s')e , (44)
s+C
_ / AP M)
Bi(o) = g [ A (s, (45)
| s+C
B = ds’'A-(s' i{‘i’x(s’.s)JrZ‘P.(s’,s)}’
(s) sin 7z (v, + 2vy) Sha(s')e !
(46)
| s+C
B — ds'A- (s i{‘Px(s’,s)—Z‘l’y(s’.s)}.
s(s) = sinz(v, — 2vy) / sAa(s)e
(47)
We then have
- 10GY 1960 oG
(HYy = <V+ +— + >:o, (48)
Pe Op. By 09, Os

and, as seen from Egs. (26) and (27), the betatron tune is
not shifted by the perturbation of O(A!).

With the expression (37) for G, we can evaluate the
average of the next-order term of the Hamiltonian (22):

(HC)y = <8V oG (49)

v oG
dJ, 09,

a7, 0,

where we have used the fact that

el oG oG
G =G ) =0 = (G)=o o
These relations hold due to the periodicity of G?) as
seen in the first-order case. By substituting Eqs. (31) and

(37) into Eq. (49) and collecting angle-independent terms
proportional to e, we obtain

<H(2>> = Wxx"% + WX,V‘IX‘]}' + Wy}"]g’ (51)
W, = —2A,Re(3B, + B,), (52)

ny = 12A1RC(B3> + 4A2RC(B1 — 234 + 235), (53)

Wyy = —2A2Re(4B3 + B4 + BS) (54)

Here, we have used the following relations:

eml,nlemz,nz = em1+m2,n]+n2’ (55)
€ _m—n— e;,n’ (56)
0
@em.n = imem,m (57)
0
o €man = inem,n' (58)
O,

From Eq. (27) with H = H + (H®) we have the
following expressions for the betatron tune:

c c
~x:2i/ZT ZL/ s)dsJ, +21”/ny )dsJ,,
0 0
(59)
c c c
Uy :%[;—j—i—%{ny(s)ds.lx+%[2Wyy(s)ds[v.
(60)

It is apparent that these are equivalent to the well-known
lowest-order formulas of ADTS [1,2]:

Uy = Uy + 0 + ayJ (61)

v

Uy = vy +ayJ, + ayJy, (62)
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C s+C

=gz [ KR [ asap )|

0 s

s+C

c
Ay = ay, _643‘—”/dsﬂ(s) )3/2(s) / ds'A(s") )lc/z(s/)ﬁy(s/)
0

s+C
cosW, (s,s) 1

sin v,
s 0

3cos (s, s)

(63)

cos 3%, (s, 5)
sin v,

sin 3zv,

C
cos¥(s's) 1 / dsi(s)pY>(5)B,(s)

sin v, 647
0

s+C

C
x / ds 2B () T - / dsA(s)BY(s)p,(s) / ds'A(s")BY* (5') B, ()

N

" [cos{‘I‘X(s’, 5) +2%,(s".5)}  cos{W¥,(s'.s) —2¥,(s".5)}

sin 7z (v, + 2vy)

C s+C

Ay — ———
) 647
0 K

sin (v, — 2uy)

cos{W,(s",s) +2¥,(s".5)}

J (64)

dsi ()8 (5B, (5) / ds' ("B (),(')

T !/
y Pcos (s, s)

sin 7w, sinz(v, + 2v,)

ITI. HIGHER-ORDER FORMULAS

A. Assumptions for a small vertical
oscillation amplitude

The procedure of canonical perturbation treatment itself
is well established. In theory, it is straightforward to
perform treatments up to any order in sextupole strength.
In practice, however, when we move beyond the lowest-
order transformation we soon encounter a rapid increase in
the number of terms that we have to manipulate [16].
Moreover, as is well known [13] and we will see later, the
next-order contributions to ADTS come from the fourth-

order Hamiltonian (H (4)> since the third-order Hamiltonian

(H®)) vanishes. This means that in order to obtain explicit
expressions of the next-order formula of ADTS, the
perturbation procedure must be repeated twice more, which
is practically impossible.

Therefore we assume that the amplitude of the vertical
betatron oscillation is smaller compared with the hori-
zontal one. This is practically valid because a high beam
injection efficiency and a large momentum acceptance
require a wide acceptance mainly in the horizontal plane.
We then neglect the terms O(J3) and O(J3), where J, and
J, are the action variables for the horizontal and vertical
betatron oscillations. This assumption greatly reduces
the number of terms that we have to treat and allows
explicit expressions of ADTS. In the following sections,
we show the step-by-step details for deriving fourth-order
formulas.

cos{¥,(s',s) — 2%, (s, s)}] ' (65)

sin7z(v, — 2vy)

B. Second-order perturbation

As in the first-order treatment, the second-order gen-
erating function G is obtained by solving Eq. (25) with
n=2:

(Lo 1o 2
B Ody Py O,  Os

}G(2> =—_v@, (66)

_ oV oGW

@ =
I O,

+8_V8G(” _Jov oG +@aG<l>
al, O, oI, O,  dJ, O¢,
(67)

and we have used Eq. (50). Every term on the right-hand
side of Eq. (67) is known and can be calculated by using
Eqgs. (31) and (37). The term V? is then expressed in the
following form:

+0o0
V(o JrntbyJyos) = Y tian(edyes)enn  (68)

m,n=—0o0

where there are 22 nonzero terms of vﬁ,%)n and their explicit
expressions are given by Egs. (A1)-(A3) in Appendix A.

The second-order generating function is expressed by

+00
G? = Z gfﬁ)nem,n» (69)

m,n=—0oo
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2) I
2sinz(my, + nvy)

s+C

X / ds’vf,f,)n

N

(J J )eim‘i‘x(s’,s)+in‘i’).(s’,s)
X

s (70)

v

and their expressions are given by Egs. (A4)—(A6).
The average of the third-order term of the Hamiltonian
(23) is calculated as follows:

iy = (V.96 OV IGR 1V (560N
- \OJ, O, D, Op,  20J3 \ O,
2 m pgGM
n 0°V oG\ 0G ’ )
0J, 0], O, O,
where we have used the conditions of
oG®) oG®3) aG®)
pr— — _ . 2
(26 - (%7 o g (%57) 0. o

By substituting Egs. (31), (37), and (69) into Eq. (71) we
easily find

(H®)Y = 0. (73)

This means that the third-order term of the Hamiltonian
does not contribute to the tune shift, as is well known.

C. Third-order perturbation

In a similar manner, the third-order generating function
G®) is obtained by solving

(e
P Oy

_ov oG N v oG®
T 0J, 0p,  OJ, O,
v oG oG

+
9101, 0p, O,

+o0

N vy s)enn

m,n=—0oo

1o 0
py Oy, Os

}G(3>:—V<3), (74)
10V (0GD\?
(5.)

(3) _or
v 20J2

(75)

and we have used Eq. (73). The solution has a form of

+0o0
GO = Z

(3)

Imn€mn» (76)
m,n=—oo
g = :
" 2sina(my, + nvy)
s+C
% / ds/vgr?,)n(Jx,Jya s/)eim\l‘x(s’,s)Jrin‘I’y(A",s). (77)

S
®3)
There are 46 nonzero terms of v/,

of 1153,),, and g,(;)n are given in Appendix B.

The fourth-order term of the Hamiltonian is calculated
by

and the expressions

() = <a_vaG<3>> N <a_vaG<3>> N <a2_vaG<1> 0G<2>> +< »?v oG" aG<2>> +< PV oG? aG<1>>
aJ, O, aJ, O, dJ2 op, O, dJ0J, Op, O, dJ0J, Op, O,
10°V (OGN 3 1 v [0GI\?oGW
(=37 )+ (5352 . (78)
693 \ o, 200200, \ 0, ) O¢,
By substituting Egs. (31), (37), (69), and (76) into Eq. (78) and collecting e (-terms, we finally obtain
(HY) = W J3 + W J2, + O(2), (79)
1
W, =2A,Re % (B} + 9B2B; + 6B, BB, + 9BB; + 18B,B, B} + 3B3B3)
+ (B, + 3B% +3B;)C, + 2(B} + 3B3;)C, + 3B5C; — 3D, — 3D, |, (80)
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1
Wy = 24 Re [_Z (B2Bs + 3B2B; + 6B, B;Bs + 2B, B;B; + 2B, B,B;+6B, B3 B; + 6B,B}B;)

—2(Bs + 3B3)C, —4B3C, + (B, + 3B} + 3B})Cy + 2(B} + 3B3)Cs — 3(Dg + D7)]

3 1
+ 2AzRe{Z (BIB; + BiB; + 2B B,B3) + 3 (2B,B;B, — 2B,B;Bs + 2B, B}B,

—2BB;Bs + BB}, — B}B:i+2B,B;B, — 2B, B}Bs) + 2(B} + B} + 2B}, — 2B%)C, +4B;C,

+2 {—(Bl + B})Ce — (Bi + B3)Cs + (B + B3)Co — B3Cy, + B;Cm} +2(D; +2Dg — 2D9)}, (81)

where C;(s) and D;(s) are defined by (B4) and (B8) in Appendix B, respectively.

D. Fourth-order formulas of ADTS

Up to the fourth-order in sextupole perturbation, the
Hamiltonian is now written as

H=HY 4+ (H?) 4 (HY) (82)
where %, (H®)), and (H*) are given by Egs. (20), (51)
and (79), respectively. We then have the following expres-

sions of higher-order ADTS:

Uy =y + 200 + Cody + 3002 + 200,00, (83)

Uy = vy + ol 420000y + Cony 3 (84)
c

g = % / dsW gp(s). (85)
0
c

Copy = %/ dsW(,/;],(s), (86)

0

where the subscripts @, f, and y denote x or y, and ¢,4 and
Cqpy are the second- and fourth-order contributions, respec-
tively. In Eq. (83) the fourth-order term proportional to J 5 is
neglected, and in Eq. (84) the fourth-order terms propor-
tional to J,J, and J§ are neglected. As explained previ-
ously, our main concern is with the behavior of electrons on
a median plane where y = 0, and at J, =0 we have

];x = Uy —+ ZCXXJX + 3Cxxx‘,§’ (87)
I?_V — l/y + nyJx + Cxny)ZC' (88)

Relations among the horizontal coordinates (x, p,),
(¢, 1), and (@, J,) are given by Egs. (6), (7), (14),
and (15). By using Eqgs. (13), (69), (70), (A4), (76), (77),
and (B5), we have the following expressions for canonical
transformation at J, = 0:

|
I, = J, —2JYRe(Byes o + Byes)
—4J3Re(Cres +2Cseq 0 + 3Cse40)
—2J3?Re(Dye g+ 3Dse5 + 5Dses
+7Dge7 + 9Dsey ). (89)

P =y — J,l/zlm(3Ble1’0 + Byes o)
—4J,Im(Cey + Creqp + Caegy)
— 577 Im(Dyey o+ Dyes 9+ Dses
+ Dyer o+ Dseo ). (90)

E. Sextupole-separated form of coefficients

In Egs. (85) and (86), the sextupole strengths can be
separated by rewriting Eqgs. (32) and (33) as

Ay(s) = ZM%), (91)
Ay(s) = Z&Aé”(s), (92)
0) = o= M(0) (93)
O OGO XONCY

where we have introduced the following step function:

s ={,

0, otherwise

s; <s<s;+L;
(95)

and s;, L, and 4; = B";/[Bp] are the entrance position,
length, and strength of the ith sextupole magnet, respec-
tively. By substituting Eqgs. (91) and (92) into the expres-
sions of B;(s), C;(s), and D;(s), we have the following
forms for coefficients:
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ZA,A]F(Z’; , (96)
Cxxx = Zl )*k/ll XngJ]Cd ’ (97)
i.j.k,l
Coy = O HidihihiFA" (98)
i.j.k,l

where F,, (i) ), FUK) and F xl){f !

parameters and the betatron phases at sextupole magnet
positions and their explicit expressions are given in
Appendix C. These types of formulas are useful for
sextupole optimization procedures since the evaluation

of F((;/;) Fff,{f”, and Fff){;d) is needed only once at the

are determined by the Twiss

beginning. After this, the coefficients ¢, ¢y, and ¢y, can
be calculated immediately for an arbitrary set of {4;}.

IV. NUMERICAL EXAMPLES

As pointed out in the Introduction, the higher-order
terms contribute significantly to the motion of circulating
electrons when the sextupoles are much stronger than those
used in typical third-generation light source storage rings.
In this section, we apply our formulas (87) and (88) to a
five-bend achromat (SBA) lattice for the SPring-8 upgrade

0.5

09 04

0.7 -

0.6 -

05 L1
4 3 -2 -1 0 1 2 3 4

x[mm] / (B [m])"*

0.8

0.7 -

0.6

0.5

4 3 -2 -1 0 1 2 3 4
x{mm]/ (B [m])"

FIG. 1.

[4], where target emittance is about 100 pmrad at 6 GeV
(with damping by insertion devices) and the maximum
strength of the sextupole magnets is about 6 times larger
than that for the current ring. Below, we compare the actual
results with the tracking simulations and discuss the
effectiveness of the formulas.

In numerical calculations, we divided each sextupole
magnet (0.18 m or 0.30 m long) into segments and varied
the number of division Ny;, to check for convergence. For
precise calculations of coefficients with at least 0.1%
accuracy, we set Ng, = 50, and for rough estimations
with 10%—-20% accuracy, we set Ng;, = 10-20 in order to
save CPU time. We also note that if the ring has a periodic
structure with the number of periods N ,, each coefficient of
ADTS is N, times greater than that for a unit structure, and
this fact also saves CPU time.

In Fig. 1, we present examples of ADTS for three
different sets of sextupole strengths. In these calculations
the same linear optics having a bare emittance of 169 pmrad
is used, and the ring is composed of 42 unit cells, though
the actual ring has four long-straight cells and two injection
cells that were neglected for the present purpose of
demonstrating the validity of the formulas. In these figures,
the fractional part of the horizontal and vertical betatron
tunes, v, and vy, are plotted as a function of the normalized
horizontal beam position, x/+/f,, where (= 5.5m) is the
betatron function at an observation point (at the center of a

1 0.5
09+ 0.4
0.8 - 0.3

>N (<<

0.7 - 0.2
0.6 - 0.1
0.5 T T 0

4 3 -2 -1 0 1 2 3 4

x{mm] / (B [m])"

Examples of ADTS for three different sets of sextupole strengths for the SBA lattice for the SPring-8 upgrade. Betatron tunes

calculated by the second-order (dashed curves) and fourth-order (solid curves) perturbation formulae are shown together with those by

tracking simulations (markers).
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1x10°

8x10°

6x10°1 Y

[m]

J

4x10°}

2x10°}

1

0 1 1 L
4 3 -2 -1 0 1 2 3 4
x{mm] / (B [m])"

FIG. 2. The relationship between the action variable J, and the
normalized coordinate x/+/f, for the case (a) of Fig. I.

straight section). The solid curves show calculations by the
perturbation formulas up to O(4*), dashed curves are for
the lowest-order formulas up to O(4%), and markers show
the results of the tracking simulations. We see that the

X

S =N W A
T

x'[mrad] / (y [m™])"?

_4 L L L L L L L

4 -3 2 1 0 1 2 3 4

x{mm] / (B [m])"*

x'[mrad] / (y fm™"1)"

A D N = & = N W &
;

1 1 1 1 1

1
£
()

FIG. 3.

é 10 1 2 3 4
x[mm] / (B [m])"*

fourth-order formulas explain well the nonlinear behavior
of ADTS and that the lowest-order formulas are no longer
applicable at large horizontal amplitudes.

The abscissa of Fig. 1 is the normalized coordinate
x/+/P, and it is related to the action variable J, through
Egs. (6) and (89). Figure 2 shows an example of this
relationship between J, and x/+/B, for the case (a) of
Fig. 1. In Eq. (89), the coefficients B;, C;, and D, are the
quantities of O(A!), O(4?), and O(4?), respectively, and
each curve in Fig. 2 indicated as O(4") corresponds to the
truncation of Eq. (89) at the nth-order in sextupole strength.
We see that as we proceed to higher orders, the parabolic
relation at the lowest order is deformed, which causes the
asymmetry of calculated tunes shown in Fig. 1 by the solid
and dashed curves.

By using Egs. (89) and (90), one can also estimate how
the horizontal phase-space ellipse is deformed. The results
are shown in Fig. 3 by solid curves for the case (a) of
Fig. 1. For comparison, we show the results of tracking
simulations using red dots. As seen from Eq. (89), the
lowest-order correction up to O(A!) is due to the terms B;,
introducing a modulation of the ellipse in the form of

X

S =N W A
T

x'[mrad] / (y [m™?

4 3 2 -1 0 1 2 3 4
x[mm] / (8 [m])"*

X

x'[mrad] / (y [m™)Y?

[l
EN

4 3 -2 1 0 1 2 3 4
x[mm] / (B [m])"*

The horizontal phase-space (Poincare map) for the case (a) of Fig. 1. The position and angle of electrons are normalized by

the Twiss parameters f, and y, at an observation point. Red dots represent tracking simulation results and solid curves represent
perturbation calculations up to the nth-order in sextupole strength, with n =0, 1, 2, and 3.
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exp(i¢p,) and exp(i3¢,). As the order of perturbation
increases, agreement with the tracking data improves,
and at the third-order correction, the phase ellipse modu-
lation in the form up to exp(i9¢,) is incorporated and
the overall agreement is also satisfactory. The perturbation
calculations up to O(4?) explain the tracking data quite
well.

We also checked the applicability of Egs. (96) to (98) by
applying them to a unit cell with eight sextupole magnets.
We divided each sextupole magnet into 50 pieces to carry

(i) (i)

out numerical integrals and evaluated F\ ap > Frix s and
Fﬁ’){ykl). Though there are 84 coefficients for Fii{f” and

Ffé{:fl), the CPU time required to calculate all of these
coefficients was a few tens of seconds when using a
standard computer. Once these coefficients are obtained,
the objective function in optimization can be evaluated
very quickly without doing particle tracking. The storage
ring lattice is generally designed to have periodicity and
our formulas (96) to (98) are practically applicable to a
unit cell structure having a moderate number of sextupole
magnets.

V. SUMMARY

We developed the explicit expressions of higher-order
formulas of ADTS using the canonical perturbation theory
up to the fourth-order in sextupole strength, assuming that
the amplitude of vertical betatron oscillation is smaller
compared with the horizontal one. By applying these
formulas to the SPring-8-II lattice having a target emittance
of around 100 pmrad, we confirmed that the formulas
reproduce well the tracking simulations and that the fourth-
order terms in sextupole strength govern the behavior of
betatron tunes at large horizontal amplitudes. These results
show that the formulas are suitable for understanding and
controlling the nonlinear behavior of circulating electrons
in a ring with strong sextupole magnets.
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APPENDIX A: THE SECOND-ORDER
GENERATING FUNCTION

As shown in Eq. (66), V(2 is a "source" for the second-
order generating function G, By substituting Egs. (31)
and (37) into Eq. (67) and neglecting the terms of 0(]3),

we obtain v,(,f),, as the following form:

V(T s d s 5) = SSou(s)T2 + T (5)J,J

o (AD)

The coefficients SS,%),I are given by

S0 =SC00 = —A1By,

Sio =S40 = —Ai(B1 +3B,).

S3) = 5% = —A,(3B, + B} +3B,),

S =0 for other (m,n) (A2)

Tf()) = T(zﬁ) = 2AB3 + 2A;B,,
P2 = 7%, ~ 20, (38, + )
+244(B, + By — 2B, + 2Bs),
T =T%", = A\By + AB,,
TS = T(_zz),*—z =A1(3By + B5) + Ay(B, + B, — 8By),
T =T = 3A,(By + B)

+ Ay(By + B —
2 2)x « « * N
%, :Té)z:A (B4 + 3B%) + Ay (B} + B + 8B%),

8B, + 8BY).

2 *
7%, = T¢" = AB: + AB3,
@ _

2

@ _
Ty, =T9" , = —4A,B,,
©)

2 2)% *
T, = T8, = —4A,(B, — BY),

2 2)* *
<2)4 = Té,)74 = 4A, B3,
2

T, =0 for other (m, n). (A3)

The parameters A;(s) and B;(s) are given by
Egs. (32)-(33) and Eqs. (43)-(47), respectively. The
second-order generating function G is given by
Egs. (69) and (70), and the function 951%.)” can be written

in the form of

Gon(J sy, 8) = Ooin($)I2 + Toin(s)J T (A4)

v

o) (s) = i
" 2sinz(mv, + nv,)

s+C
X / ds/S'(i)n(S/)eim‘{’x(s’,s)-&-in‘l’y(s’,s)’ (AS)

s

i

riun(s) = 2sin z(mv, 4 nv,)

s+C
% / dS/T,(yi)n (sl)eim‘PX(s’,s)+in‘P).(s’,s) . (A6)

s

064001-11



KOUICHI SOUTOME and HITOSHI TANAKA PHYS. REV. ACCEL. BEAMS 20, 064001 (2017)

APPENDIX B: THE THIRD-ORDER GENERATING FUNCTION

By substituting Egs. (31), (37) and (69) into Eq. (75) and neglecting the terms of 0(]5), we obtain the following

: £ 0.
expression of vy:

Vin(J s d 3 8) = San(8)13 + To(s)J3 1. (B1)
The coefficients SS,?_),[ are given by
. 1
S5y =850 = A, {135 - 6C3},
. 1
S =59 = A, {Z (2B, B, + 3B2) — 4C, — 18C3},
. 1
sy =8 = A {Z (B2 + 6B, B, + 2BB, + 3B2) —2C, — 12C, — 18C3},
. 1
S50 =595 =4 {Z (3B} + 2B, B} + 6B, By + 6B/By + B3 + 2B,B3) — 6C; — 12C, — 6c3},
. 1
s =50 =4, {Z (3B + 6B, B% + Bi2 + 2B, B, + 6B} B, + 2B, B + 6B,B})—6C, — 2C; — 4c2},
S, =0 for other (m,n) (B2)

and T,(,f?,, by

" 1
T§3(>) = T(—37),0 = —A,B,B; + EAZB% —4A,Cs5 + 12A,C5,
3 * " 1
T(53 = T—s),o = —A(BB;3 + 3B,B; + B,Bj) + EAz(ZBle + B3) + 2A;(B,B, — B, Bs)
— ZAI(C4 + 6C5) + 4A2(2C2 +3C3+ Cpp — C13),
* 1
T$) = 7)) = —A,(3B,Bs + B B; + 3B,B5 + B, B + 3B,B}) + SA2(B} + 2B, + 2BiBy)

+2A5(B By + ByBy + BB — B|Bs — ByBs — B,B5) — 6A,(Cy + 2Cs)

+4A5(Cy +2C, 4+ C3 — Cy + C, — Cy3),

Ty = Ty = —A\(3B,B; + 3B;Bs + ByBs + B3B3 + 3B, B; + B{B; + 3B,B3)

1
+A2{2(B% +2BBj + 2B;B, + 2B,B;) + 2(BB, + B{By + BB}, + B,B; — B|Bs — B{Bs — B|B% — BZB§)}
—2A,(3C, + C; 4+ 2Cs) +4A,(C + Cs + C{ + Cs — Cy),

3 3)% 1 1
ng) = T(77),72 =—5A1B:By + ZAzB% —4A,Cpp +6A,C5,

3 3)x 1 « 1
T =1, = ~5A1(B1By +3ByBy + ByBY) + Az{Z (2B,B, + B2) + 43234}

—2A,(Cg + 6Cyy) +2A5(2C, +3C;5 +4Cy»),
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1
T =T%", = ~5A1(3B1By + BiBy + 3B,B, + B\ B; + 3B,55)
1
+ Az{Z (B} +2B,B, + 2B;B,) + 4(B|B; + BB, — BQB;)}
—6A,(Cs +2C») +245,(Cy +2C, +4Cg +4Cy +4C5),
. 1

) =10, = ~3A1(3B1By +3B{By + ByB, + B3By + 3B,B; + BiB; + 3B,B;)
+A2{

—2A,(3Cg + C§+2Cyp) +2A5(C +4C¢ +4C; +4Cg +4C),

(B} + 2B, B} + 2B;B, + 2B,B;) + 4(B, By + BB, — B, B: — BZB§)}

A=

1
T, = T7y = —SAI(B\By + 3B{By + 3B3B, + 3B, BS + 3B;B; + B,B; + B3B)

4
—2A,(Cg +3C§ + 2C13) + 2A5(Ci 4+ 4C6 + 4C; — 4C — 4CT),

1
+ Az{— (2B\B; + B>+ 2B\B; + 2B,B}) + 4(B;B, + BB, — B\ B, — BTB;)}

1%, =15, = —%Al (B;By -+ 3B3B, + B, B} + 3B} B: + 3B;B)
+ Az{j—1 (Bj? + 2B, B3 + 2B;B}) + 4(B3By — B{B; — B;B;)}
—64,(C5 +2C}3) + 2A5(C} + 2C; — 4C5 — 4C}, — 4C}y),
T8, =15, = —%Al (B3By -+ BB + 3B3B}) + Az{jt (2B}B; + B3?) — 43;3;}

—2A,(C§ + 6C75) +2A,(2C5 + 3C5 — 4C75).,

3 3)x 1 * % 1 * * *
T77),2 = Tg,fz = _EAleBs +ZA2322 —4A,C3 + 6A,C5,

Tgii - T(_35>*_4 - 2AszB4 - 2A1C10 + 4A2C12,

T(’;) T(3>*

4 =T34 =2Ay(B By + ByBy — ByBs) — 6A,Cyg + 44, (Cg +4Cyp + C1y),

) =TU)", =2A,(B\By + BB, — B,B: — B,B}) — 2A,(3Cy + C}}) + 4A5(Cy + 4C; + Cg + 4Cy),
), = TV = 24,(B}B, + BB, — B\B} — B{B%) — 24,(Cyo + 3C;,) + 44,(Cg +4C; — C; —4C),
T8, = TS, = 2A,(B3B, — B{B: — B3B%) — 6A,C;, — 4A,(Cy + 4C}, + Ciy),

5)4 = T?)_’Z = —2A;B3B5 — 2A,Cy; —4A,Cs,

)

3)*
T = 707 = 84,(C; + Cyp).
3)x% ”
1.6 — T(1,>—6 = 8A2(C7 - C11>’
0] = TV = —84,C},
3

TS,L),, =0 for other (m, n). (B3)
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In the above, we have defined

Ci(s) = —iosy(s).  Cals)=—iofh(s).  Cils) = —iahy(s).

Cyls) =—itg)(s).  Cs(s)=—itig(s).  Cols) =—ith(s).  Cyls) = —irgi(s).

Co(s) =—itoa(s).  Cols)=—its)n(s).  Ciols) = —itsy(s).  Cuils) =—ityly(s).

Cio(s) = —ita(s).  Cials) = =iy (s) (B4)

and af,f,),,(s) and Tﬁf)n(s) are given by (A5) and (A6), respectively. The third-order generating function G®) is given by
Egs. (76) and (77), and the function gg,i),, has a form of

gl(?;l;,)l’l<-]x’ Jy’ ) - Gm Vl(s>J5/2 + TSJ::,)YZ(S)JS\’;/ZJ)” (BS)
. s+C
3 _ ! 1 0(3) ¢ o HimP (s 5)+inP, (s'.5)
m,n d Sm n * y s B6
’ - 2sina(my, + nv,) / S Sma(s)e (B6)
. s+C
3) _ ! 1(3) [\ imW (s",5)+in¥, (s'.s)
mmn — . d Tm n * Y . B7
. 2s1nﬂ(m1/x+m/y)/ $Ta(s')e (B7)
For later use, we define the following:
. 3 . 3 . 3 . 3
Di(s)=—io[g(s).  Dals)=—iolols).  Ds(s)=—icky(s).  Dals)=—iorg(s).  Ds(s)=—ichy(s),
. 3 . . 3 . 3
De(s)=—itiy(s),  Dis(s)=—izsols),  Dsls)=—ieyals),  Dols) = —iri y(s). (BS)
APPENDIX C: EXPLICIT EXPRESSIONS OF F.), F%), AND FJ)’
With the use of Egs. (91) and (92) we have
B(s) = DB (5) (C1)
> ik Gy (C2)
i.j
= " 2auDi( (C3)
i.j.k
where
s+C | s+C
» (i) — o Y, (s's) 7 (i) — 13 i3, (s'.s)
B = A B = A
! sin v, / ds'Ar(s)e ’ 2 (5) sin 37y, / ds'A(s)e '
| s+C | s+C
R — 123G ¢ N LT (5s) B0y — 13 Y {5 8) 2, (5.5)
B = ds'A B = ds'A )
3 (8) sinm/x/ 4y (s)e ’ 4 () sinz(v, + 2vy) A4y (s')e
! s+C
R ) — PAG) o Li{ (s )2, (s's) }
B ds’A ) , C4
V0= im0 (c4)

N
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s+C
~(ij 1 A » 7 (J)* »( i s'.s
C(s) = 55— / ds'[<A} 3B + B + 3BY))] e,
1 s+C
651/)( )= 2 sindav / ds/[_A<11>(B<1/) + 339))}s’eiw"<s/’s)’
| s+C
C:(}’l])( )EZSin67w /dS/[_A<11>Bél)]s’ei6%(sas)’
1 s+C
ci( )= / ds'2AV(3BY) + BY") + 240 (BY + BY) — 2BY) 1 2BY)] 25,
1 s+C
EP6) = g [ AV B + 23V B et
| s+C
C0) = 5mgm | A BAV (B + BY7) + A B + B — 8B+ 8B e,
y
| s+C
G = S / ds'[~4Ay) (B — BY")] e
§
| s+C
O 0) = gy | WAV GBY + B BB+ BY 8B 2w,
X y
| s+C
&) = 5zt | ATADED 380+ A B+ BY 4 B e -,
X y
1 s+C
C%)(S)Ezsinzn(u + 20y / ds'[~4AY B W (),
X y
1 s+C
) = 3t =) / ds'[4A; B ] ()0 (),
x y
| s+C
17 (s) ) / ds'[A)BY) + Ay BY] e 1),

%)= 2¢in 27 (2u, + vy

N

Y (s) = ;

=i
 2sin27(2u, —vy)
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~ (i 1 ~(i 1 ~ (i)~ ~ * () 5 *
DM (5)=— / ds’ [A§’>{1(3BEJ>B§">+6B“ BY" BV B 2BV BY + 6BV BY +2BY BY +6BY B

s+C

2sinzv,
s

_66(11']() _Zé(ljk)* _46%/7() }:| ei‘{’x(s’,s)’

s+C

- i 1 I
DM (s) = /ds’[ ”{ (3BYB\" +2BY B{"" +-6BY'BY + 6B/ B + BY B +2BY BY"")

s+C

b(;jm(s)z%mls — / 4 _AY’ {%(Eﬁ”éﬁ“ L 6BUBY 2B BO 3BV BN _ gt _ lzégjk)_lgégjk)}:|s/ei5%(s
e

D (5) =5 [ ¢ |3V {GBY B 4380 B0 —act - 1se ] e,
v
e

2sin3nv,
N

_66(]Jk 12C (jk) 6C (jk) }:| eiB‘PX(s’,s)’

5

~ (i 1 () om = () = (s i~ < (i) = - )
DM (s)=— / ds’[—A(l>(3B§-’>B§k)+3B§” BY + BYBY+BY"BY +3BY B + BY B 3BV B

2sinzv,
s

1 (i 1 i)* T () 5 (k)
+A<2){§( BYBY 128V BN 2BV B + 2BV BY")

ij 1 “() an0) % =
B (5) =— /dsfx{_Ap@BgﬂngJJer BY 1380 B0 + BYBY" 4 3B B

N

1~ N~ o~ ~ (Ve ~ ~i" o~ e ~ ()~ (k)%

—6A ( )+2c( ))_’_4Ag’)(égﬂ<)+zég/k)+6'é/k)_6;/1‘)_,[_6(1/2/‘)_6(1]3]‘))] /ei3‘Px(s’,s)7

s+C

1 Lty 05 0) 3k = nk)  50) Bk
X y

Y 5’) (36*;]]() + églk)* +2c< ))+2A( )(é(lfk) +46‘élk) +46§Jk) +4é§lk) +46(1]0k>) ei‘l’x(s’,s)JriZ‘l’y(s’.s)’

s
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s+C
k) 1 L0 gurpor 300 g (ks oy BY 4 3BUB0 1 Bl
D (s)——/ds {——A (BB 4+ 3B +3BY BN 438V + 3BV BN 4 gUrp
9 Zslnﬂ'( —21/}) : 2 1 1 4 1 1 5 2 5
a1l == =
+B(’)B§k’)+A§){Z(2B§”B§"> +BYBY 2B BY 4 2BY) BT

+2A(21)(651k) + 4Céjk)* + 4(~/*§jk)* _ 46&1") _ 4&511k)>j| ol u(s'.s)—i2¥,(s5) (C6)

From Egs. (52), (53) and (54), we then have

C
Fi) = 5 dsWiD(s),  (af = xx.xy.yy). (C7)

0
W (s) = Re[—24\ (3B + BY))],, (C8)
W (s) = Re[124BY) + 440 (BY) — 2BY + 2BY)] (C9)
W0(s) = Re[-2A0 (4BY) + BY + BY)] . (C10)

for the second order coefficients, and from Egs. (80) and (81), we have

C
ij 1 = (ij
myzﬂ/wmw@, @
0
| C
ijkl ijkl
FU = 2”/61 W (), (C12)
0

e - 1 i e ) = (e () = (s = (1) ) = (D () = () = (s
() (5) =2ReA ! (s) {ﬁ(B(lj)ng)Bgl)+9B(1/)B§k>B<11) +6BY BB +- 9B BB +18BY BV BY" +3BY B BY")

(B 38U 4 3B 4 2B 4 3D 4 3350 _3p0] ey

+
+ BUBOBD _ BYVBORO 28D B BY — 2BV B BY) + 280" + B 1280 — 2B

5 (J)* A(kl >0 2(7) %N\ Akl = (7)* ()% Akl ) =~ (j)* kil 1
4B E 2B+ BV (B BB+ B — B + B

+2(DY" 4 2D§* — 2D(’k[))}, (C14)
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for the fourth-order coefficients. Once ;\Ei) (s) and ;\(Zi)(s)

are given as Egs. (93) and (94), BEZ) (s), Cﬁ,” (s), and DS,” (s)
are obtained by carrying out integrals using Egs. (C4),

(C5), and (C6) in turn, and the coefficients Fly', FU",

and F}(&f” are finally evaluated by integrating ng)(s),
Wﬁ{f” (s), and W)(f){;fl) (s). We note that all of these integrals
contain the step function A;(s) defined by Eq. (95) in their
integrand. This means that in numerical calculations, we
need to know the integrand only at sextupole magnet

positions sgm), i.e., the position on the mth mesh point

in the ith sextupole magnet.
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