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The efficiency of a free-electron laser can be enhanced by the phase jump method. The method utilizes
the phase-shifting chicanes in the drift sections between the undulator segments. By applying appropriate
phase jumps, the microbunched electron beam can decelerate and radiate coherently beyond the initial
saturation, enabling further energy transfer to the optical beam. This article presents a new physics model
for the phase jump method, and supports it with numerical simulations. Based on the electron dynamics in
the longitudinal phase space, the model describes the energy extraction mechanism, and addresses the
selection criteria for the phase jump magnitude. While the ponderomotive bucket is stationary, energy can
be extracted from electrons outside the bucket. With the aid of the new model, a comparison is made
between the phase jump method and undulator tapering. The model also explores the potential of the phase
jump method to suppress the growth of synchrotron sidebands in the optical spectrum.

DOI: 10.1103/PhysRevAccelBeams.20.060703

I. INTRODUCTION

In most single-pass free-electron laser (FEL) facilities,
the undulator line is segmented by drift sections, where
instruments for beam focusing, trajectory correction and
diagnostics are installed. Often time, phase shifters are also
installed in the drift sections [1–4].
Conventional phase shifters are compact magnetic chi-

canes, made up of either permanent magnets or electro-
magnets. The magnetic chicane can be used to increase the
electron path length in the drift section, thus adjusting the
phase angle between the electron beam and the optical wave.
A common application of phase shifters is phase

correction, equalizing the phase angles at the two ends
of a drift section. This allows the optical waves emitted in
different undulator segments to interfere constructively.
Without the phase correction, the velocity difference
between electrons and light in the drift section can lead
to an unwanted change in the phase angle, causing the
optical waves to interfere destructively.
Another application of phase shifters is the suppres-

sion of the fundamental wavelength in harmonic lasing,
thereby increasing the spectral intensity of the desired
harmonic [5,6]. In addition, the phase shifter is an essential
element of the mode-locking technique [7] for the gen-
eration of attosecond optical pulses.
Moreover, phase shifters can be used for further energy

extraction beyond the initial saturation, and hence the

enhancement of the FEL efficiency. This is achieved by
choosing appropriate phase jumps, and purposely altering
the phase angle between the electron beam and the optical
wave. This phase jump method was first proposed by
Varfolomeev et al. [8], and can be used in place of the
technique of undulator tapering [9–11].
The phase jump method was subsequently studied by

Ratner et al. [12]. The study exploits the mathematical
equivalence of phase jumps and undulator tapering, and
relies on a preoptimized taper to deduce the required
phase jumps.
In this article, we further the study of the phase jump

method by developing a physics model independent of
undulator tapering. Our intuitive model illustrates the
particle dynamics in the longitudinal phase space, and
enables a deeper understanding of the energy extraction
mechanism.
In Sec. II, we start with the steady-state model, focusing

on a single ponderomotive bucket. We propose the micro-
bunch deceleration cycle, and describe the energy extrac-
tion both in and out of the bucket.
In relation to this mechanism, we discuss the selection

criteria for each phase jump, the requirement on the
undulator segment length, and the origin of the final
saturation. We then compare and contrast our phase jump
model with the classic Kroll-Morton-Rosenbluth (KMR)
model [9] of undulator tapering.
In Sec. III, we verify the features of our steady-state

model by means of a steady-state numerical simulation.
In Sec. IV, we expand the steady-state model to include

time-dependent effects. In particular, we discuss the poten-
tial of the phase jump method to suppress the growth of
sidebands in the optical spectrum.
In Sec. V, we perform a time-dependent simulation to

demonstrate that the phase jump method remains valid in
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the presence of time-dependent effects, and to demonstrate
that the phase jump method is more effective than undulator
tapering in sideband suppression.

II. STEADY-STATE MODEL

A. Problem description

Consider an FEL with a planar undulator line segmented
by drift sections, as depicted in Fig. 1. All undulator
segments have the same length Lsegm, and all drift sections
have the same length Ldrift. In every drift section, there is a
phase shifter installed. The distance between the centers of
every two adjacent phase shifters is Lsegm þ Ldrift, which is
constant.
In this section, we develop a one-dimensional, steady-

state model of the phase jump method, which makes use of
the phase shifters to sustain the growth of radiation power at
the fundamental wavelength beyond the initial satura-
tion point.
In particular, we are interested in the effect of the

phase jumps alone, in the absence of undulator
tapering. We therefore restrict ourselves to a constant
undulator period λu ¼ 2π=ku and a constant undulator
parameter

K ¼ eB0

mecku
; ð1Þ

where e is the absolute value of the electron charge, me is
the electron rest mass, c is the speed of light, and B0 is the
peak undulator field.

In addition, we assume the amplitude E0 and phase ϕ of
the optical field to be slowly varying in the course of the
FEL interaction.

B. Energy definitions

The energy of an electron can be expressed as γmec2,
and the resonant energy γRmec2 is defined by

γR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λu
2λ

�
1þ K2

2

�s
; ð2Þ

where λ ¼ 2π=k is the radiation wavelength.
In the case of monochromatic seeding, λ is the wave-

length of the seed radiation, and γR is determined by λ
through Eq. (2). In the case of self-amplified spontaneous
emission (SASE), γR is determined by the energy of the
incoming electron beam, and λ is determined by γR
through Eq. (2).
With undulator tapering, the undulator parameter K

decreases with increasing distance z along the undulator
line. According to the definition in Eq. (2), γR decreases
along z to retain the radiation wavelength λ. Without
undulator tapering, however, K is constant. According to
the definition in Eq. (2), γR remains constant to retain λ.
In other words, the resonant energy is constant in the

phase jump method. This allows us to express the energy of
an electron as the relative deviation from the resonant
energy, by the variable

η≡ γ − γR
γR

: ð3Þ

FIG. 1. Schematic diagram showing two of the undulator segments and the drift section in between. The phase shifter in the drift
section can increase the electron path length, thus adjusting the phase angle between the electron beam and the optical wave.
Focusing magnets, corrector magnets and diagnostics instruments are also commonly installed in drift sections, but are not shown in this
diagram.
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Even though the resonant energy is constant by definition,
if the electrons themselves can decrease in η beyond the
initial saturation point, they can continue to transfer energy
to the optical field.

C. Phase definitions

The longitudinal profile of the electron bunch is cus-
tomarily treated in slices of width λ. During the FEL
interaction, each slice contains a pondermotive potential
well. In the steady-state model, all slices are assumed to be
identical, and it suffices to consider only a single slice.
In the analysis of phase jumps, we are not interested in

the absolute phase of an electron. Instead, it is more
convenient to consider the phase of an electron relative
the ponderomotive potential well, with the usual definition

ψ ≡ ðkþ kuÞz − ωtþ ϕ: ð4Þ
Within a single slice, ψ spans from −π to π.
As indicated in Fig. 1, we let ψorig ∈ ½−π; π� be the

original phase of an electron at the starting point of a drift
section, and ψ targ ∈ ½−π; π� be the target phase at the end
point of the same drift section. We then define the phase
jump as the difference:

ψ jump ¼ ψ targ − ψorig ∈ ½−2π; 2π�: ð5Þ

Note that ψ jump ¼ 0 does not mean that the phase shifter
is turned off. Instead, it means that the phase shifter is
configured merely for phase correction, whereby the phase
angle between the electron and the optical field at the
beginning of the drift section is preserved at the end of the
drift section.
Note also the sign convention that a positive ψ jump

corresponds to shifting the electron forward in ψ .
However, a conventional phase shifter applies the phase
jump by increasing the electron path length. It can only
shift electrons backward in ψ , but not forward. In practice,
if the required ψ jump is positive, we need to shift the
electron backward to another potential well by a phase of
2nπ − ψ jump, where n is a positive integer.
As a side note, this phase jump method for efficiency

enhancement can, in principle, be implemented in combi-
nation with the iSASE technique [13] for bandwidth
reduction. This is done by choosing a large n, so that the
optical field emitted by the electrons toward the tail of the
bunch may develop correlations with the electrons toward
the head of the bunch, thus increasing the coherence length.

D. Equations of motion

In our model of the phase jump method, we concern
ourselves with the electron dynamics in the longitudinal
phase space ðψ ; ηÞ. In the undulator segments, the longi-
tudinal dynamics of an electron can be described by two
equations of motion:

dη
dz

¼ −
Ω2

2ku
sinψ ; ð6Þ

dψ
dz

¼ 2kuη: ð7Þ

A derivation of these equations is given in Ref. [14].
In Eq. (6), the quantity

Ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e

mec2
kuKfBE0

γ2R

s
∝

ffiffiffiffiffiffi
E0

p
ð8Þ

is the angular frequency of the synchrotron oscillation,
which has the dimension of inverse length. Meanwhile,
fB ¼ J0ðξÞ − J1ðξÞ is the Bessel factor for planar undu-
lators, with ξ ¼ K2=½2ðK2 þ 2Þ�. By substituting Eq. (6)
into the derivative of Eq. (7), we can verify that the
longitudinal dynamics satisfies the pendulum equation

d2ψ
dz2

þ Ω2 sinψ ¼ 0: ð9Þ

E. Phase space trajectories

The equations of motion (6) and (7) satisfy the Hamilton
equations for the Hamiltonian

Hðψ ; ηÞ ¼ ckuη2 þ
cΩ2

2ku
ð1 − cosψÞ: ð10Þ

The electron trajectories in the longitudinal phase space
ðψ ; ηÞ are given by the level set of the functionHðψ ; ηÞ, and
are shown in Fig. 2.

- - /2 0 /2

-h

0

h

I

IIIII

IV

FIG. 2. The longitudinal phase space ðψ ; ηÞ, with electron
trajectories shown by the blue curves. The red curve is the
separatrix, and the region enclosed by it is the ponderomotive
bucket. The straight lines η ¼ 0 and ψ ¼ 0 divide the space into
four quadrants, as indicated by the Roman numerals.
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In particular, the trajectory highlighted in red is known as
the separatrix. Along the separatrix, the Hamiltonian has
the value

Hsep ¼ Hð�π; 0Þ ¼ cΩ2

ku
: ð11Þ

The region enclosed by the separatrix is known as the
ponderomotive bucket. Within the bucket, H < Hsep.
The trajectories are closed orbits, and the electrons are
trapped. Outside the bucket,H > Hsep. The trajectories are
unbounded, and the electrons are untrapped.
The maximum η value along the separatrix gives the

half-height of the bucket,

h ¼ Ω
ku

: ð12Þ

Invoking the definition of the synchrotron frequency in
Eq. (8), we obtain the proportionality

h ∝
ffiffiffiffiffiffi
E0

p
; ð13Þ

meaning that the bucket half-height h increases with the
optical field amplitude E0.
In Fig. 2, the horizontal line η ¼ 0 and the vertical line

ψ ¼ 0 divide the longitudinal phase space into four quad-
rants, as indicated by the Roman numerals.
In quadrants I and II, ψ > 0. In quadrants III and IV,

ψ < 0. According to Eq. (6), this implies dη=dz < 0 in
quadrants I and II, and dη=dz > 0 in quadrants III and IV.
In other words, electrons decelerate in quadrants I and II,
and accelerate in quadrants III and IV. Due to the
conservation of energy, energy is transferred to the optical
field in quadrants I and II, and energy is absorbed from the
optical field in quadrants III and IV.
In quadrants I and IV, η > 0. In quadrants II and III,

η < 0. According to Eq. (7), this implies that electrons have
increasing ψ in quadrants I and IV, and decreasing ψ in
quadrants II and III.

F. Phase jump commencement

The essence of the phase jump method is microbunch
deceleration. The aim is to decelerate the microbunched
beam after the initial saturation, so that it can continue to
radiate coherently. Thus, the phase jumps should com-
mence in the vicinity of the initial saturation point, where
the microbunching is fully developed.
In the exponential regime, the phase shifters should be

configured for ψ jump ¼ 0, or there will be disruption in the
microbunch development. For SASE FELs in particular,
applying ψ jump ≠ 0 in the exponential regime can also lead
to a red or blue shift in the radiation wavelength, depending
on the magnitudes of the phase jumps and their positions
along the undulator line [6].

G. Microbunch deceleration mechanism

To analyze the microbunch deceleration, it is convenient
to follow the motion of an average particle within the
microbunch μ. Let ðψ̄ ; η̄Þ be the coordinates of the average
particle in the longitudinal phase space. They can be
defined as

η̄≡ hηiμ ¼
1

N

XN
j∈μ

ηj; ð14Þ

ψ̄ ≡ arg he−iψiμ ¼ −i ln
�
1

N

XN
j∈μ

e−iψj

�
; ð15Þ

where N is the number of particles in μ.
Microbunch deceleration takes place in quadrants I and

II, where particles decelerate and transfer energy to the
optical field (see Fig. 2). Thus, a general principle of the
phase jump method is to increase the time that the average
particle spends in the deceleration quadrants (I and II), and
decrease the time that the average particle spends in the
acceleration quadrants (III and IV).
In the longitudinal phase space ðψ ; ηÞ, a phase jump

moves a particle horizontally. If the average particle lies in
quadrant IV, then we should choose a phase jump that
moves it into quadrant I. If it lies in quadrant III, then we
should move it into quadrant II. If it lies in quadrant II but is
about to enter quadrant III, then we should move it to a
slightly larger phase within quadrant II (i.e. away from
quadrant III).
The mechanism is illustrated in Fig. 3. Suppose that the

average particle has an original phase ψ̄ ¼ ψorig < 0 at the

-
orig targ

-h

orig

0

h

jumpsegm

segm

1 2

3

IV

III II

I

FIG. 3. The microbunch deceleration cycle as illustrated by the
movement of the average particle within the ponderomotive
bucket. Position 1 corresponds to the starting point of a drift
section, position 2 the end point of the same drift section, and
position 3 the end point of the subsequent undulator segment.
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starting point of a drift section, as indicated by position 1.
We then apply a phase jump ψ jump > 0, so that the average
particle arrives at a target phase ψ̄ ¼ ψ targ > 0 at the end
point of the drift section, as indicated by position 2.
In an ideal phase shifter, electrons have no energy loss to

synchrotron radiation, and the average particle has the same
η at position 2 as at position 1.
At position 2, the electrons enter an undulator segment,

and follow the phase space trajectories described by
Eqs. (6) and (7). In particular, the average particle follows
the solid blue curve. So long as ψ̄ > 0, the microbunch
decelerates, and transfers energy to the optical field.
The average particle then arrives at position 3, as it

reaches the end point of the undulator segment. Depending
on the length Lsegm of the undulator segment, position 3 can
be located in either quadrant II or III. In quadrant III, where
ψ̄ < 0, the microbunch absorbs energy from the opti-
cal field.
Within the undulator segment, ψ̄ and η̄ of the average

particle have changed by Δψ segm and Δηsegm, respectively.
Provided that Δηsegm < 0, the microbunch has a net decel-
eration, and hence a net energy transfer to the optical field.
In the course of the energy transfer, the optical field

amplitude E0 changes. Consequently, the bucket half-
height h changes according to the proportionality (13).
In principle, this can also lead to a distortion of the particle
trajectories in the longitudinal phase space ðψ ; ηÞ.
However, since E0 is assumed to be slowly varying, the
distortion of the solid blue curve is negligible as the average
particle transits from position 2 to position 3.
The end point of the undulator segment is also the start

point of the next drift section. We can then repeat this
microbunch deceleration cycle, by taking position 3 of the
old cycle as position 1 of the new cycle. The cycle can
continue until the end of the last undulator segment.
As the cycle continues, the microbunch moves towards

the bottom of the ponderomotive bucket. Close to the
bottom of the bucket, further phase jumps will move the
microbunch out of the bucket. In other words, we can
divide the energy extraction process beyond the initial
saturation point into three main stages: (i) the in-bucket
regime, (ii) the out-of-bucket regime, and (iii) the final
saturation regime.
With an appropriate choice of the target phase ψ targ in

every phase jump, we can have Δηsegm < 0 in every
undulator segment between the initial saturation and the
final saturation. Obtaining the precise value of the optimal
ψ targ is a matter of empirical phase scan. But from a
theoretical perspective, there are general criteria for a good
choice of ψ targ within the deceleration quadrants.

H. In-bucket regime

The in-bucket regime is the first stage beyond the initial
saturation point. At this stage, microbunch deceleration

takes place along the closed orbits within the ponder-
omotive bucket.

1. Lower bound for good target phase

In the single-cycle microbunch deceleration illustrated in
Fig. 3, the energy extraction is the most efficient if the
average particle stays within the deceleration quadrants
throughout the entire undulator segment, and never man-
ages to enter quadrant III. For this to be the case, the chosen
target phase ψ targ must satisfy the criterion

ψ targ − jΔψ segmj ≥ 0

⇔ ψ targ ≥ jΔψ segmj: ð16Þ

In order to proceed from here, we obtain an expression
for Δψ segm by integrating both sides of Eq. (7) with respect
to z over one undulator segment. This yields

jΔψ segmj ¼ 2ku

����
Z

z0þLsegm

z0
η̄ðzÞdz

����: ð17Þ

Within the undulator segment, we expect the average
particle to decelerate, and η̄ðzÞ should therefore be more
negative than the original value ηorig right before the
undulator segment. Hence,

jΔψ segmj ≥ 2kujηorigjLsegm: ð18Þ

Combining the inequalities (16) and (18), we obtain the
lower bound ψmin for the choice of ψ targ:

ψ targ ≥ 2kujηorigjLsegm ≡ ψmin: ð19Þ

When configuring each phase shifter, ψ targ needs to be at
least ψmin, for the average particle to have a chance of
avoiding the acceleration quadrants. If ψ targ is less than
ψmin, then the average particle will definitely enter quadrant
III within the upcoming undulator segment.

2. Upper bound for good target phase

During the in-bucket regime, we should keep the average
particle in the bucket as long as possible. This allows us to
fully exploit the in-bucket regime before the average
particle becomes detrapped.
Thus, the upper bound ψmax for the target phase ψ targ is

given by the separatrix in the deceleration quadrants (see
Fig. 3). This can be expressed mathematically as

Hðψmax; ηorigÞ ¼ Hsep: ð20Þ

To proceed from Eq. (20), we can substitute the right-
hand side by Eq. (11), and the left-hand side by Eq. (10)
with ðψ ; ηÞ ¼ ðψmax; ηorigÞ. Cognizant of the fact that
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0 ≤ ψmax ≤ π, we can then solve for ψmax, and obtain the
expression

ψmax ¼ 2 arccos

�
k2ujηorigj
Ω2

�
: ð21Þ

This is the upper bound for the choice of ψ targ, in order to
avoid entering the out-of-bucket regime.

3. Undulator segment length

Within the first few cycles of the mechanism depicted in
Fig. 3, the average particle should have reached the η < 0
region, i.e., quadrants II and III. For the microbunch
deceleration to be efficient, the average particle should
stay within quadrant II, without entering quadrant III.
However, this will not be possible if jΔψ segmj is too large
(see Fig. 3). From the inequality (18), we notice that
jΔψ segmj increases with the undulator segment length
Lsegm. This imposes an upper limit on Lsegm.
As a particle undergoes one complete orbit in the

ponderomotive bucket, it travels down the undulator
magnet by a distance of one synchrotron period
Lsync ¼ 2π=Ω. As the particle sweeps across one quadrant
in the bucket, it undergoes a quarter of a complete orbit, and
travels down the undulator magnet by a distance of Lsync=4.
Thus, for the average particle to stay within a single

quadrant (namely, quadrant II), an undulator segment
should be no longer than Lsync=4. Since Lsync varies with
z, the requirement for the undulator segment length is

Lsegm <
1

4
min½LsyncðzÞ�: ð22Þ

I. Regime transition

As the microbunch deceleration cycle continues, the
relative energy deviation η̄ of the average particle becomes
more and more negative, meaning that jηorigj becomes
larger with every phase jump.
Throughout the in-bucket regime, ψmin increases with

jηorigj according to Eq. (19), and ψmax decreases with
increasing jηorigj according to Eq. (21). As the average
particle is close to the bottom of the bucket, we will
eventually encounter a scenario where ψmin > ψmax.
In sucha scenario, it is no longerpossible to choosea target

phase ψ targ in the range ψmin ≤ ψ targ ≤ ψmax. We are then
forced to chooseψ targ > ψmax, andmove the average particle
out of the bucket. Thismarks the endof the in-bucket regime,
and the beginning of the out-of-bucket regime.

J. Out-of-bucket regime

In the out-of-bucket regime, the trajectories in the longi-
tudinal phase space ðψ ; ηÞ are unbounded. Nonetheless,
microbunch deceleration is possible. The mechanism is

similar to that in the in-bucket regime, and is illustrated
in Fig. 4.

1. Deceleration efficiency

The deceleration efficiency in each undulator segment
depends on the slope of the particle trajectory in the
deceleration quadrants of the ðψ ; ηÞ space. The steeper is
the slope, the higher is the rate at which a particle loses
energy.
The slope is given by the derivative dη=dψ . Dividing

Eq. (6) by Eq. (7), we can obtain an expression for the
derivative as follows:

���� dηdψ
���� ¼ Ω2

4k2ujηj
sinψ : ð23Þ

Note that in the deceleration quadrants, we have 0 ≤ ψ ≤ π
and hence 0 ≤ sinψ ≤ 1. As a result, jdη=dψ j is inversely
proportional to jηj, and the deceleration efficiency
decreases with increasing jηj.
For the in-bucket regime, jηj < h. For the out-of-bucket

regime, jηj > h. Thus, the deceleration efficiency is lower in
the out-of-bucket regime than in the in-bucket regime.As the
microbunch deceleration cycle continues, the deceleration
efficiency decreases with every undulator segment.

2. Lower bound for good target phase

For the in-bucket regime, the deceleration in an undu-
lator segment can be made more efficient by keeping the

-
orig targ

orig

-h

0

h

jump

segm

segm 1 2

3

IV I

III II

FIG. 4. The microbunch deceleration cycle as illustrated by the
movement of the average particle outside the bucket. Position 1
corresponds to the starting point of a drift section, position 2 the
end point of the same drift section, and position 3 the end point of
the subsequent undulator segment.
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average particle in the deceleration quadrants and prevent-
ing it from entering the acceleration quadrants. This argu-
ment also applies to the out-of-bucket regime. Thus, the
lower bound for a good ψ targ in the out-of-bucket regime is
also given by Eq. (19):

ψmin ¼ 2kujηorigjLsegm:

3. Upper bound for good target phase

In the out-of-bucket regime, the average particle is
already outside the bucket. The separatrix does not impose
any limit on ψ targ. In principle, the upper limit of ψ targ in the
out-of-bucket regime is π, which is the maximum phase in
the deceleration quadrants.
However, it is not favorable to let the average particle get

too close to π, or a fraction of the particles within the
microbunch will leak into the π < ψ < 3π region, which
corresponds to the acceleration quadrants associated with
the bucket ahead. In that region, particles absorb energy
from the optical field.
The precise upper bound for the choice of ψ targ depends

on the ψ spread of the microbunch. But roughly speaking,
the upper bound for a good ψ targ is slightly below π.

K. Final saturation regime

According to the relation (18), jΔψ segmj increases with
jηorigj. At some point in the out-of-bucket regime, jηorigj
will have become so large that

jΔψ segmj ¼ π: ð24Þ

This signifies the onset of the final saturation regime.
Beyond that point, it is no longer possible to prevent the

average particle from moving into quadrant III within a
single undulator segment, regardless of the choice of ψ targ
(see Fig. 4). The microbunch deceleration cycle then
becomes inefficient, and Δηsegm approaches zero.
As Δηsegm approaches zero, the inequality (18) can be

approximated by

jΔψ segmj ≈ 2kujηorigjLsegm ≡ ψmin: ð25Þ

With this approximation, the relative energy deviation at
the onset of the final saturation regime is then

jηorigj ¼
π

2kuLsegm
: ð26Þ

The final saturation point is reached when Δηsegm ≥ 0,
i.e. when it is no longer possible to maintain a net transfer
of energy from microbunch to the optical field.

L. Small subtlety about phase jump

When using a nonisochronous phase shifter, it is impor-
tant to note that the specified phase jump is only valid for

particles at a certain reference energy. In other words, a
particle which is not at the reference energy experiences a
different phase jump from the specified value.
In applying the phase jump method, it is convenient to

use the resonant energy γRmec2 as the reference energy, as
it is constant. But in our model, we are mainly concerned
about the phase jump applied to the average particle, which
has γ ≠ γR in general. Therefore, we need a conversion
formula between the phase jump ψA

jump for the average
particle and the phase jump ψR

jump for particles at the
resonant energy.
To obtain such a conversion formula, we model the

phase-shifting chicane as a one-period undulator, with
undulator period λ̂u and deflection parameter K̂. After
the one undulator period, the slippage λ̂ is given by

λ̂ ¼ λ̂u
2γ2

�
1þ K̂2

2

�
: ð27Þ

For particles at the resonant energy, γ ¼ γR. The slippage
λ̂ is related to the phase jump ψR

jump by

ψR
jump

2π
¼ −

λ̂

λ
; ð28Þ

where λ (without the caret) is the actual radiation wave-
length of the FEL. The negative sign in the equation arises
from the sign convention of ψR

jump.
In general, the average particle has γ ≠ γR. In the same

one-period undulator, the average particle experiences a
different slippage λ̂þ Δλ̂, which is related to the phase
jump ψA

jump by

ψA
jump

2π
¼ −

λ̂þ Δλ̂
λ

: ð29Þ

To proceed from here, we take the differential on both
sides of Eq. (27), and obtain

Δλ̂ ¼ λ̂u
2

�
1þ K̂2

2

��
−2Δγ
γ3

�
¼ −2λ̂

Δγ
γ

¼ −2λ̂ η̄ : ð30Þ

As usual, η̄ is the relative energy deviation of the average
particle. Using Eqs. (28), (29), and (30), we can eliminate λ,
λ̂, and Δλ̂. This results in the conversion formula

ψA
jump ¼ ψR

jumpð1þ 2η̄Þ: ð31Þ

M. Comparison with undulator tapering

Apart from the phase jump method, undulator tapering is
another common technique for efficiency enhancement in
FELs. In this subsection, we compare and contrast the two
techniques. In particular, we discuss the similarities and
differences between our phase jump model and the classic
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Kroll-Morton-Rosenbluth (KMR) model [9] of undulator
tapering.
Both models make use of one-dimensional Hamiltonian

mechanics to describe the particle dynamics in the longi-
tudinal phase space ðψ ; ηÞ. The KMR tapering model
follows the motion of a resonant particle, which defines
the stable point in the middle of the ponderomotive bucket.
Our phase jump model follows the motion of the average
particle within the microbunch.
In the KMR model, we directly control the undulator

parameter K, and move the resonant particle vertically in
the ðψ ; ηÞ space. In our phase jump model, we directly
control the phase jump ψ jump, and move the average particle
horizontally in the ðψ ; ηÞ space.
In both models, the energy extraction is sustained

beyond the initial saturation point by bringing a fraction
of particles toward lower energies. As these particles
decelerate, energy is transferred to the optical field, due
to the conservation of energy.
However, the underlying principle of the particle decel-

eration is different in the two models. In the KMR model,
particle deceleration relies on the deceleration of the bucket
itself. In our phase jump model, particle deceleration relies
on the microbunch deceleration cycle.
In the KMR model, the bucket moves toward lower

energies during the energy extraction. In this process, the
phase of the resonant particle increases, and the width of the
bucket decreases. In our phase jump model, the bucket is
stationary, and does not reduce in width. During the energy
extraction process, the optical field amplitude increases,
and the height of the bucket increases.
In the KMR model, particles need to be trapped in the

bucket in order to decelerate. In our phase jump model, the
microbunch deceleration cycle continues in the out-of-
bucket regime. Energy extraction outside the bucket is
impossible for the former, but possible for the latter.
In the KMRmodel, the efficiency of particle deceleration

is determined by the rate at which the bucket decreases in
energy. This, in turn, depends on the dK=dz, the rate at
which the undulator parameter decreases along the undu-
lator line. In our phase jump model, the efficiency of
particle deceleration is determined by dη=dψ, the slope of
the particle trajectory in the longitudinal phase space. This,
in turn, depends on the relative energy deviation η̄ of the
average particle, as evidenced by Eq. (23).
In the KMR model, the undulator segment length

required for the efficient deceleration of particles is Lsegm <
min½LsyncðzÞ�, as discussed in Ref. [11]. In our phase jump
model, the requirement is Lsegm < min½LsyncðzÞ�=4, which
is a more stringent one.
In the KMR model, the main causes of the final

saturation are the weakening of refractive guiding and
the detrapping of particles. In our phase jump model, the
main causes of the final saturation are the decrease of
jdη=dψ j and increase of jΔψ segmj with particle energy.

III. STEADY-STATE SIMULATION

A. Case definition

So far, our physics model of the phase jump method is a
one-dimensional and steady-state one. For the purpose of
verifying the model, we perform a three-dimensional and
steady-state simulation study, using the numerical simu-
lation code GENESIS [15].
We first define a case for the simulation study. The main

parameters are listed in Table I.
In the chosen case, SASE is the start-up mechanism of

the FEL. The effective shot-noise power is 830 W.
Planar undulator segments are used. Undulator tapering

is not implemented.
The lattice for strong focusing is in a FODO configu-

ration, with one quadrupole magnet in every other drift
section. The length of the FODO cell is 4.8 m. Within the
cell, the centers of the two quadrupole magnets are
separated by a distance of 2.4 m. The length of each
quadrupole magnet is 80 mm.
The strengths of the quadrupole magnets and the initial

twiss parameters are matched self-consistently to give the
average beta β̄x;y specified in Table I.
In the GENESIS simulation, we place a phase shifter in

every drift section, by putting an AD element in the external
magnet file. We control the phase jump by setting the AD
element to an appropriate value.
Here the undulator segment length of Lsegm ¼ 1 m is

smaller than what is used in most existing FEL facilities.
The small Lsegm is chosen to fulfill the requirement (22).

B. Initial saturation

In order to obtain information about the initial saturation
point, we first run the simulation in the absence of phase
jumps, by setting ψ jump ¼ 0 for all drift sections.
The simulation shows that the initial saturation occurs at

z ¼ 38.2 m within the 32nd undulator segment. The
saturation power is 2 GW. At the initial saturation point,
the bunching factor b ¼ jhe−iψij is the highest, and has a
value of 0.4.

TABLE I. Parameters of the steady-state simulation.

Parameter Symbol Value

Electron beam energy γmec2 5 GeV
Energy spread σγ=γ 1 × 10−4

Beam current I 3 kA
Normalized emittance εx;y 0.4 mm mrad
Average of beta function β̄x;y 7 m
Radiation wavelength λ 2 Å
Undulator period λu 20 mm
Undulator parameter K 1.35
Length of each undulator segment Lsegm 1 m
Length of each drift section Ldrift 0.2 m
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C. Phase jump commencement

We then repeat the simulation with the introduction of
phase jumps. We start the phase jumps in the vicinity of the
initial saturation point, where the microbunching is fully
developed. Thus, the first nonzero phase jump occurs in the
drift section at z ¼ 37 m, immediately preceding the 32nd
undulator segment. Meanwhile, we keep ψ jump ¼ 0 for all
the drift sections before z ¼ 37 m.
While there are infinite possible sets of phase jumps, we

shall discuss one chosen set which yields an increase in
radiation power beyond the initial saturation. The phase
jumps are obtained by coarse tuning within the selection
criteria discussed in Sec. II.
It is possible to obtain even higher radiation power by

fine-tuning the phase jump. However, the purpose of this
simulation study is to verify the steady-state model, and not
to perform a thorough optimization.

D. Radiation power evolution

Figure 5(a) shows the radiation power P as a function of
z, for the chosen set of phase jumps. Along the radiation
power curve, there are short, straight, horizontal sections,
where the power is neither increasing nor decreasing.
These sections correspond to the drift sections, where
the radiation does not exchange energy with the electron
beam.
After the first nonzero phase jump at z ¼ 37 m, the

radiation power continues to grow. Up until z ¼ 50 m, the
power grows monotonically. But after that, the power
fluctuates. Within every undulator segment, the power first
increases, and then decreases. Nonetheless, there is still a
net power increase.
In the undulator segment which begins at z ¼ 64.8 m,

there is no longer a net power increase within an undulator
segment. This indicates the arrival of the final saturation.

FIG. 5. Result of steady-state simulation. The following quantities are plotted as functions of the distance z along the undulator line:
(a) the radiation power, (b) the relative energy deviation η̄ of the average particle, and (c) the ponderomotive phase ψ̄ of the average
particle (in blue), together with the lower bound ψmin (in red) and the upper bound ψmax (in yellow) for the target phase ψ targ in each drift
section. The dashed vertical lines mark the beginning of the in-bucket, out-of-bucket, and final saturation regimes.
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The power at the final saturation is 36 GW, which is 18
times the power at the initial saturation.
The FEL efficiency can be defined as the power ratio

of the output radiation to the injected electron beam. With
this definition, the chosen set of phase jumps enhance the
FEL efficiency by a factor of 18. It is possible to obtain an
even larger enhancement factor by fine-tuning the phase
jump values. But again, the purpose of this simulation study
is to verify the model, and not to perform a thorough
optimization.

E. Energy evolution of the average particle

We now turn our attention to the average particle within
the microbunch. The relative energy deviation η̄ of the
average particle is defined by Eq. (14). Figure 5(b) shows η̄
as a function of z.
Before the first nonzero phase jump at z ¼ 37 m, η̄

remains close to zero, meaning that the energy of the
average particle is close to the resonant energy.
After the first nonzero phase jump at z ¼ 37 m, η̄

exhibits an overall decreasing trend. The energy of the
average particle deviates further and further from the
resonant energy. This is an evidence of microbunch
deceleration.
As η̄ becomes more and more negative, the rate of η̄

decrease becomes lower and lower. This agrees with the
prediction of Eq. (23).
Up until z ¼ 50 m, η̄ decreases monotonically. But after

that, η̄ fluctuates. Comparing Fig. 5(a) and (b), we notice
that a decrease in η̄ corresponds to an increase in P, and
vice versa. This can be explained by the conservation of
energy. When η̄ decreases, the microbunch loses energy.
This energy is transferred to the radiation, leading to an
increase in P.
The onset of the final saturation regime is defined by

Eq. (26). According to this definition, the final saturation
regime begins when η̄ ¼ 5 × 10−3. As seen in Fig. 5(b), this
corresponds to z ¼ 55.5 m.

F. Phase evolution of the average particle

The ponderomotive phase ψ̄ of the average particle is
defined by Eq. (14). Figure 5(c) shows ψ̄ as a function of z.
After the first nonzero phase jump at z ¼ 37 m, ψ̄ oscillates
in z. The upward slopes coincide with the drift sections,
while the downward slopes coincide with the undulator
segments. In other words, a crest coincides with the start
point of an undulator segment, while a trough coincides
with the end point of an undulator segment.
In terms of the microbunch deceleration cycle (see

Figs. 3 and 4), a crest corresponds to position 2, while a
trough corresponds to position 1 or 3. The period of the
oscillation is one microbunch deceleration cycle. The crest
value of each cycle is the target phase ψ targ. The phase
change represented by an upward slope is ψ jump, while the
phase change represented by a downward slope is Δψ segm.

Figure 5(c) also shows the lower bound ψmin and the
upper bound ψmax for the target phase ψ targ in each drift
section. The values are given by Eqs. (19) and (21). Recall
that ψmax is defined by the separatrix of the ponderomotive
bucket in the ψ ≥ 0 region, and that ψmin is the minimum
requirement for the average particle to avoid entering the
ψ < 0 region.
In Fig. 5(c), the region immediately after the first

nonzero phase jump at z ¼ 37 m is the in-bucket regime,
as evidenced by the fact that ψ̄ < ψmax. The decrease of
ψmax along z reflects that the average particle is moving
towards the bottom of the bucket.
In the in-bucket regime, ψ targ is made to increase with

ψmin, so as to fulfill the requirement that ψ targ > ψmin. As a
result, the average particle is prevented from entering the
ψ < 0 region. Within every undulator segment, the average
particle transfers energy to the radiation, without absorbing
energy from the radiation. This explains the monotonic
decrease of η̄ [see Fig. 5(b)].
Prior to z ¼ 46.5 m, the choice of ψ targ satisfies the

requirement ψmin < ψ targ < ψmax. But in the vicinity of
z ¼ 46.5 m, the average particle is so close to the bottom of
the bucket that we encounter the situation where
ψmin ≈ ψmax. We are then forced to choose ψ targ > ψmax,
thus placing the average particle outside the bucket. This
marks the beginning of the out-of-bucket regime.
Even though the average particle is outside the bucket, a

fraction of the particles in the microbunch are still inside the
bucket. For the next two periods of the oscillations, a part of
the microbunch follows the in-bucket trajectories, while a
part of the microbunch follows the out-of-bucket trajecto-
ries. The average particle, tracing the average behavior of
the entire microbunch, moves in and out of the bucket. At
z ¼ 49 m, ψmax ¼ 0, indicating that the average particle is
at the same energy level as the lowest point of the bucket.
In the out-of-bucket regime, ψmin continues to increase,

and becomes closer and closer to π. However, we want to
prevent the average particle from getting too close to π, or a
fraction of the particles in the microbunch will enter the
acceleration region associated with the bucket ahead. This
concern forces us to choose ψ targ < ψmin. The consequence
is that the average particle enters the ψ < 0 region, thus
absorbing energy from the radiation. Hence, η̄ no longer
decreases monotonically [see Fig. 5(b)]. Instead, η̄
decreases and increases within a single undulator segment.
The final saturation regime begins at z ¼ 55.5 m, where

ψmin ¼ π [see Fig. 5(c)]. In this regime, it is no longer
possible to prevent the average particle from entering
the ψ < 0 region, regardless of the choice of ψ targ. As
the average particle enters deep into the ψ < 0 region, the
energy extraction becomes far less effective.

G. Direct observation in phase space

Next, we observe the microbunch deceleration cycle
directly in the longitudinal phase space ðψ ; ηÞ. Figure 6
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FIG. 6. Result of steady-state simulation. Snapshots in the longitudinal phase space ðψ ; ηÞ showing a microbunch deceleration cycle in
the in-bucket regime. The red dot represents the average particle within the microbunch.
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FIG. 7. Result of steady-state simulation. Snapshots in the longitudinal phase space ðψ ; ηÞ showing a microbunch deceleration cycle
during the transition from the in-bucket regime to the out-of-bucket regime.
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FIG. 8. Result of steady-state simulation. Snapshots in the longitudinal phase space ðψ ; ηÞ showing a microbunch deceleration cycle at
the onset of the final saturation regime.
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shows a cycle in the in-bucket regime. Figure 7 shows a
cycle during the transition from the in-bucket regime to the
out-of-bucket regime. Figure 8 shows a cycle at the onset of
the final saturation regime.
In each of these phase space snapshots, the red curve

represents the separatrix of the ponderomotive bucket,
and the red dot represents the average particle. These
snapshots clearly show that the electron beam remains
microbunched along the undulator line. From these snap-
shots, it is also apparent that the microbunch moves toward
lower η as z increases, verifying the microbunch deceler-
ation once again.
In each cycle, position 1 corresponds to the starting point

of the drift section, position 2 the end point of the drift
section, and position 3 the end point of the subsequent
undulator segment.
In position 1 and position 2, the average particle has the

same η. This is expected for an ideal phase shifter, wherein
the phase jump ψ jump changes only the phase, but not the
energy, of the average particle.
In the transition from position 2 to position 3, the

particles pass through an undulator segment, where there
is energy exchange between the particles and the radiation.
The energy exchange alters the bucket half-height h
slightly. This is also expected, as h depends on the slowly
varying optical field amplitude E0 according to the pro-
portionality (13).
In all the three cycles shown here, the average particle

ends up with a lower η at position 3 than at position 1,
meaning that there is a net energy transfer from the
microbunch to the radiation in the undulator segment.
The motion of the average particle in these snapshots
reflects the mechanism depicted in Figs. 3 and 4.

H. Trace of the average particle

Figure 9 shows the trace of the average particle in the
longitudinal phase space ðψ ; ηÞ over the entire undulator
line. Within the trace, there are straight, horizontal sections,
each representing the transition from position 1 to position
2 within a microbunch deceleration cycle.
As the average particle moves from high η to lower η, the

η spacing between successive horizontal sections decreases,
meaning that the amount of energy lost by the average
particle decreases with every cycle. In other words, the
deceleration efficiency decreases as η becomes more and
more negative, as predicted by Eq. (23).
At η ≈ −6 × 10−3, the η spacing between successive

horizontal sections approaches zero. There is no longer a
net energy transfer from the microbunch to the radiation.
This indicates the arrival of the final saturation.

I. Undulator segment length

In the simulation, the synchrotron period Lsync varies as a
function of z (data not shown). The smallest value is
min½LsyncðzÞ� ¼ 5.9 m, which occurs at z ¼ 49 m. With an

undulator segment length of Lsegm ¼ 1 m as specified in
Table I, the requirement (22) is satisfied.

IV. TIME-DEPENDENT MODEL

A. Problem description

In this section, we extend the steady-state model of the
phase jump method into a time-dependent model. As
before, we consider the longitudinal profile of the electron
bunch as a series of slices, each with a width of λ.
The steady-state model assumes all slices to be identical.

For every slice, the optical field that slips into the slice
ahead is identical to the optical field that comes in from the
slice behind. This implies that the electron bunch has an
infinite length and a constant current. The resulting FEL
signal has only a single frequency component, and hence
zero bandwidth.
The time-dependent model departs from these assump-

tions, and accounts for the interactions between distinct
slices in a profile of finite length. For example, in a
Gaussian profile, the current I at any position t within
the electron bunch is given by

IðtÞ ¼ I0 exp

�
−

t2

2σ2t

�
; ð32Þ

where I0 is the peak current and σt is the RMS bunch
length.

FIG. 9. Result of steady-state simulation. The trace of the
average particle in the longitudinal phase space ðψ ; ηÞ over the
entire undulator line.
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B. Average average particle

There is one average particle for every slice. In the
steady-state model, all average particles behave in the exact
same manner, as all slices are identical. The optimal phase
jump for any one average particle is also the optimal for the
entire electron bunch.
In the time-dependent model, however, all these average

particles generally have distinct ðψ̄ ; η̄Þ values at any given
position z along the undulator line. The optimal phase jump
for one average particle is generally not the optimal for
another. In order to optimize the phase jump for the electron
bunch as a whole, we need a compromise between all the
average particles.
In obtaining the compromise, the average particles

should not be treated equally, as the slices generally do
not have the same charge. Thus, we propose to optimize the
phase jump for an average average particle, which is the
weighted average of all the average particles.
Let ð ¯̄ψ ; ¯̄ηÞ be the coordinates of the average average

particle in the longitudinal phase space. They can be
defined as

¯̄η≡X
μ

wμη̄μ; ð33Þ

¯̄ψ ≡ arg

�X
μ

wμe−iψ̄μ

�
; ð34Þ

where

wμ ¼
IðtμÞP
νIðtνÞ

ð35Þ

is the weighting factor based on the slice current IðtμÞ.
Note that the definitions (33), (34), and (35) are

applicable to any electron profile, and not specifically to
a Gaussian profile. With these definitions, the higher is the
current in a slice, the better is the slice represented by the
average average particle.

C. Ansatz for optimization

In the steady-state model, the average particle of a single
slice is put through the microbunch deceleration cycles
depicted in Figs. 3 and 4. The deceleration of the average
particle is optimized by choosing an appropriate target
phase ψ̄ ¼ ψ targ for each cycle.
In the time-dependent model, this same mechanism is

applicable to the average average particle of the entire
electron bunch. The deceleration of the average average
particle is optimized by choosing an appropriate target
phase ¯̄ψ ¼ ψ targ for each cycle.
For the average average particle, the in-bucket and out-

of-bucket regimes can be defined in relation to an imagi-
nary bucket with half-height h determined by the optical

field amplitude E0 averaged over all slices. The selection
criteria for ψ targ then remain the same as in the steady-state
model. In this subsection, we develop an ansatz for the
optimal evolution of ψ targ along the undulator line, based on
these selection criteria.
Among the selection criteria, the most important one is

the common lower bound ψmin in both the in-bucket and
out-of-bucket regimes, given by Eq. (19). This criterion is a
necessary condition for the microbunch to have a net
deceleration, Δηsegm < 0, within an undulator segment.
In contrast, the upper bound ψmax in the in-bucket

regime, given by Eq. (21), is not as crucial. Even if ψ targ

exceeds ψmax by a small amount, the energy extraction can
still continue in the out-of-bucket regime.
According to Eq. (19), ψmin increases with j ¯̄ηj of the

average average particle. Beyond the initial saturation
point, j ¯̄ηj increases gradually from zero as the electrons
decelerate. Hence, ψmin is expected to increase gradually
from zero, and this is precisely the observation in the
steady-state simulation [see Fig. 5(c)]. It is therefore logical
that the optimal ψ targ should increase with every phase shift.
However, ψ targ cannot increase indefinitely, due to the

upper bound in the out-of-bucket regime. The upper bound
is a chosen value ψ1, which is slightly less than π. This
criterion is a necessary condition for preventing a micro-
bunch from leaking into the acceleration quadrants asso-
ciated with the bucket ahead. Therefore, the optimal ψ targ

should increase gradually beyond the initial saturation point
only until it reaches ψ1, and remains at ψ1 for all
subsequent phase shifts.
We label the phase shifters along the undulator line with

the indexm ∈ f1; 2;…g. Suppose that the initial saturation
point is in the vicinity of m ¼ m0. Then, all the phase
shifters with 1 ≤ m ≤ m0 should be configured for
ψ jump ¼ 0, or equivalently, ψ targ ¼ ψorig. For m > m0,
we propose the following ansatz for the optimal evolution
of ψ targ:

ψ targðmÞ ¼
8<
:

ψ1 ×
m −m0

m1 −m0

for m0 < m < m1

ψ1 for m ≥ m1:
ð36Þ

The growth of ψ targ is chosen to be linear for simplicity, and
the phase shifterm ¼ m1 defines where ψ targ reaches ψ1 for
the first time.
The expression (36) can be regarded as a functional

form, with every value of the parameter m1 yielding a
different function ψ targðmÞ.

D. Sideband suppression

Sideband instability is a known issue of the FEL. It was
first predicted theoretically [16] and observed experimen-
tally [17] in the 1980s.
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The origin of sideband instability is the synchrotron
oscillations during the FEL interaction. In the longitudinal
phase space ðψ ; ηÞ, trapped electrons orbit around the stable
centroid of the bucket, thus oscillating back and forth in ψ
at an angular frequency Ω given by Eq. (8). These
oscillations give rise to a longitudinal modulation of
amplitude and phase in the optical pulse.
The modulation manifests itself in the FEL spectrum as

sidebands at parasitic wavelengths. The wavelength offset
of these sidebands from the desired central wavelength λ is
given by [16]

Δλ
λ

¼ � λu
Lsync

; ð37Þ

where Lsync ¼ 2π=Ω is the synchrotron period.
When the sidebands are amplified, a significant fraction

of optical power is drawn from the central wavelength to
the parasitic wavelengths. This degrades the spectral purity
and the efficiency of the FEL.
In the steady-state model, the FEL efficiency is deter-

mined solely by the fraction of the electron beam’s power
that is converted into optical power. In the time-dependent
model, the FEL efficiency is determined also by the power
ratio between the central wavelength and the sidebands.
Even with a high optical power extracted from the electron
beam, the FEL can still be inefficient if much of the optical
power is channeled to the sidebands instead of the central
wavelength.
For undulator tapering, sideband growth can be signifi-

cantly detrimental to the amplification of the central
wavelength, especially when the post-saturation undulator
section is multiple synchrotron periods long. This is
discussed in Refs. [9,18,19].
While synchrotron oscillations are responsible for the

sideband growth, the phase jump method has the potential
to suppress the sideband growth by disrupting the synchro-
tron oscillations.
In the longitudinal phase space, a complete orbit within

the bucket corresponds to a full period of synchrotron
oscillation. In the in-bucket microbunch deceleration
cycle depicted in Fig. 3, the trajectory of the particle from
position 2 to position 3 is a portion of a complete orbit.
In every cycle, the orbit is disrupted by the applied
phase jump, which brings the particle from position 1 to
position 2.
Provided that the undulator segment length Lsegm sat-

isfies the requirement (22), the particle will never manage
to make a complete orbit after the initial saturation.

V. TIME-DEPENDENT SIMULATION

A. Case definition

In this section, we conduct a three-dimensional and time-
dependent simulation study, using the same simulation

code GENESIS [15]. In particular, we apply the ansatz (36)
and optimize the phase jumps for the average average
particle.
The purpose of this simulation study is twofold: (i) to

demonstrate that the phase jump method remains valid
when time-dependent effects are taken into account; and
(ii) to compare the phase jump method to undulator
tapering in terms of efficiency.
The case chosen for the simulation study is a seeded

FEL, using longer undulator segments than in the previous
simulation. The longitudinal profile of the electron bunch is
a Gaussian function. The main parameters are listed in
Table II.
To examine the performance of the FEL over a longer

distance, we simulate the undulator line from z ¼ 0 up
to z ¼ 200 m.
At λ ¼ 1 Å, no suitable external laser is available. The

seed radiation essentially needs to come from self-seeding.
The production mechanism of the seed radiation is beyond
the scope of this simulation study. Therefore, we input the
seed radiation at z ¼ 0 without any regard to how it is
produced.
The lattice for strong focusing is in a FODO configu-

ration, with one quadrupole magnet in every drift section.
The length of the FODO cell is 10 m. Within the cell, the
centers of the two quadrupole magnets are separated by a
distance of 5 m. The length of each quadrupole magnet
is 80 mm.
The strengths of the quadrupole magnets and the initial

twiss parameters are matched self-consistently to give the
average beta β̄x;y specified in Table II.

B. Optimization results

The initial saturation point is located at z ¼ 44 m, i.e.,
the end of the 9th undulator segment, where the optical
pulse energy is 22 μJ.
For the phase jump method, we set m0 ¼ 8 in the ansatz

(36), so that the first nonzero phase jump takes place

TABLE II. Parameters of the time-dependent simulation.

Parameter Symbol Value

Electron beam energy γmec2 16 GeV
Energy spread σγ=γ 1 × 10−4

Peak current I0 4 kA
RMS bunch length σt 1 μm
Normalized emittance εx;y 0.3 mm mrad
Average of beta function β̄x;y 10 m
Radiation wavelength λ 1 Å
Seed radiation power Pseed 5 MW
Undulator period λu 40 mm
Default undulator parameter K 2.79
Length of each undulator segment Lsegm 4 m
Length of each drift section Ldrift 1 m
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immediately after the 9th undulator segment. Furthermore,
we arbitrarily set ψ1 ¼ 170° ¼ 2.97 rad for simplicity. We
then scan the parameter m1 for the highest optical pulse
energy at the final saturation, and this optimization process
yields m1 ¼ 16. The synchrotron period has a minimum
value of 24 m. With the undulator segment length of 4 m,
the requirement (22) is well satisfied.
For undulator tapering, we use the same starting point as

for the phase jump method, so as to obtain a fair
comparison. Immediately after the 9th undulator segment,
the undulator parameter decreases quadratically with every
segment, but remains uniform within every segment. We
then scan the taper strength ΔK=K for the highest optical
pulse energy at the final saturation, and this optimization
process yields ΔK=K ¼ 8%. The taper strength ΔK=K is
defined such that K is the default undulator parameter in
resonance with the initial energy of the electron beam,
and K−ΔK is the parameter of the last segment before
z¼200m.
As a side note, if a SASE case were chosen instead of the

seeded case, then the optical pulse energy would fluctuate
from shot to shot. Regardless of the method of optimiza-
tion, there is simply no way to find one set of phase jumps
(or one undulator taper) that is optimal for every shot. The
optimization for a SASE case would therefore require
characterizing the statistical properties. This subject is
beyond the scope of this article, and is left for future
studies.

C. Evolution of the optical pulse energy

Figure 10 shows the evolution of the optical pulse energy
with z for the optimal phase jumps and the optimal taper.
The dashed vertical line indicates the initial saturation
point, which is the common starting point for the phase
jump method and the undulator taper.
For the phase jump method, the final saturation occurs at

z ¼ 100 m. The optical pulse energy at the final saturation
is 0.53 mJ, which is 24 times higher than that at the initial
saturation. This enhancement in the optical pulse energy
shows that the phase jump method remains valid in the
presence of time-dependent effects.
For the undulator taper, the final saturation occurs at

z ¼ 130 m. The optical pulse energy at the final saturation
is 1.5 mJ, which is three times the value for the phase jump
method.
Comparing the undulator taper and the phase jump

method, the former extracts a larger fraction of the electron
beam’s energy in the chosen case. However, this is true only
when the undulator line is long enough for the energy
extraction to reach the final saturation.
Immediately after the initial saturation, the phase jump

method exhibits a faster growth in optical pulse energy (see
Fig. 10). This is because the phase jump method allows
particles to decelerate more rapidly in the region immedi-
ately following the initial saturation.

For tapering, the particle trapping region [10] comes
right after the initial saturation point. In this region, a mild
taper is needed to capture particles into the shrinking and
descending bucket. A milder taper corresponds to a slower
deceleration of the trapped particles.
In contrast, the phase jump method does not require

such trapping process, as the microbunch deceleration
cycle can take place both in and out of the bucket.
Particles can be made to decelerate rapidly right after
the initial saturation.

D. Evolution of the optical spectrum

Figure 11 illustrates the evolution of the optical spectrum
for the optimal taper, with the snapshots at six positions
along the undulator line. Figure 12 shows the correspond-
ing snapshots for the optimal phase jumps.
In each snapshot, the spectral power is normalized to

that at the central wavelength, to help compare the power
ratio between the central wavelength and any sideband.
Furthermore, the same binning for Δλ=λ is used in all the
snapshots.
In Fig. 11 for the optimal taper, snapshot (d) corresponds

to the vicinity of the final saturation. Before the normali-
zation, the absolute power at the central wavelength
is 0.12 TW=fm.
In Fig. 12 for the optimal phase jumps, snapshot (c)

corresponds to the vicinity of the final saturation. Before
the normalization, the absolute power at the central wave-
length is 0.14 TW=fm, close to the corresponding value for
the optimal taper.
In the FEL interaction, it is the central wavelength that

we intend to amplify. At the final saturation, even though
the taper extracts more energy from the electron beam, it
does not channel more energy to the central wavelength
than the phase jumps do.

FIG. 10. Result of time-dependent simulation. The optical
pulse energy is plotted as a function of the distance z along
the undulator line for the optimal phase jumps (blue) and the
optimal taper (red). The dashed vertical line indicates the
common starting point for the phase jump method and the taper.
The vertical axis is on a logarithmic scale.
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If we define the FEL efficiency in terms of the absolute
spectral power at the central wavelength upon the
final saturation, then the phase jump method and undu-
lator tapering are almost equally as efficient in this
case.
Between the initial and final saturations, the synchrotron

period Lsync has a mean value of 29 m for the taper, and
30 m for the phase jumps. The values for the taper and the
phase jumps are almost identical. According to Eq. (37),
the synchrotron oscillations trigger the growth of sidebands
around Δλ=λ ¼ �1.5 × 10−3.
For the taper, there is significant growth of sidebands

around these wavelengths after the initial saturation (see
Fig. 11). In the vicinity of the final saturation, the sideband

power even exceeds 40% of the central wavelength power
[see Fig. 11(d)].
For the phase jumps, there are also sidebands growing

around these wavelengths, but the power remains mostly
below 20% of that at the central wavelength (see Fig. 12).
Beyond the final saturation, new sidebands emerge

around Δλ=λ ¼ �8 × 10−3 [see Fig. 12(e)–(f)]. However,
these new sidebands can be prevented by disengaging all
the undulator segments located downstream of the final
saturation point.
From these results, it is apparent that the phase jump

method is more effective in suppressing the synchrotron
sidebands around Δλ=λ ¼ �1.5 × 10−3. Out of the energy
extracted from the electron beam, a smaller fraction is

FIG. 11. Result of time-dependent simulation. The evolution of the optical spectrum for the optimal taper is illustrated with the
snapshots at six positions along the undulator line.

FIG. 12. Result of time-dependent simulation. The evolution of the optical spectrum for the optimal phase jumps is illustrated with the
snapshots at six positions along the undulator line.
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channeled to these sidebands, and a larger fraction is
channeled to the central wavelength.
Hence, if we define the FEL efficiency in terms of the

power ratio between the central wavelength and the side-
band, then the phase jump method is more efficient than
undulator tapering in this case.

E. Phase jumps and the driven oscillator

It is apparent from Eq. (9) that the synchrotron motion in
ψ is mathematically equivalent to the simple pendulum,
which is a simple harmonic oscillator at small ψ .
The applied phase jumps act as a periodic external

driving force, turning the system into a driven oscillator.
The period of the driving force is the distance between
successive phase shifters, given by Lsegm þ Ldrift.
In this driven oscillator, there is a competition between

the natural period and the driving period. By disrupting
the synchrotron oscillations, the driving force channels
power away from the sidebands associated with the natural
period, which emerge at optical wavelengths given by
Eq. (37). This explains the suppression of these sidebands
in Fig. 12.
Beyond the final saturation, the optical field amplitude

no longer grows. Furthermore, as the microbunch is out of
the bucket, the trajectories in ðψ ; ηÞ do not form closed
orbits, and synchrotron motion no longer has a natural
period. The competition is then dominated by the driving
force. In analogy to Eq. (37), the periodic driving force can
trigger new sidebands at

Δλ
λ

¼ � λu
Lsegm þ Ldrift

: ð38Þ

With the parameter values in Table II, Eq. (38) predicts
the new sidebands to occur at Δλ=λ ¼ �8 × 10−3. This
agrees with the observation in Fig. 12(e)–(f).
According to Eq. (38), it is, in principle, possible to

influence the new sidebands by varying Lsegm and Ldrift as
functions of z.

VI. COMBINING PHASE JUMPS AND TAPER

In our time-dependent simulation, undulator tapering
yields a higher optical pulse energy at the final saturation.
However, the phase jump method is more effective in
suppressing the synchrotron sidebands, thus channeling a
larger fraction of the optical energy to the desired central
wavelength. This provides a motivation for combining the
strengths of the two techniques.
In a recent simulation study by Duris et al. [20], a strong

taper is used for the rapid deceleration of electrons, while
phase shifters are used for the suppression of synchrotron
sidebands.
In that scheme, each phase shift is chosen such that the

total slippage in the drift section corresponds to a phase of

2nπ with respect to the central wavelength, and ð2n0 þ 1Þπ
with respect to the sideband wavelength. Here n and n0 are
positive integers.
In our phase jump method, the total slippage in each drift

section corresponds to a phase of 2nπ − ψ jump with respect
to the central wavelength. The phase shifts used by Duris
et al. can therefore be seen as a special case of the phase
jump method, where ψ jump ≡ 0.
With ψ jump ≡ 0, the phase shifters do not take part in

decelerating the particles. The deceleration relies solely on
undulator tapering. As a result, there is no out-of-bucket
regime. In general, energy can only be extracted from
particles which manage to stay within the rapidly shrinking
bucket.
In the simulation study by Duris et al., the value of n

ranges from 100 to 330. This means that the slippage
introduced by a phase-shifting chicane can be as large as
330 times the optical wavelength. If the chicane is not
isochronous, then the large dispersion can significantly
degrade the bunching and the trapping.
In our phase jump method, however, the requirement

on the isochronism of the chicane is far less stringent, as
the method does not rely on large slippage to suppress the
synchrotron sidebands. Instead, the method disrupts the
synchrotron oscillations by the microbunch deceleration
cycles.
In our time-dependent simulation, n is chosen to be as

small as possible, and is always less than 20. The smallest
possible value of n depends on the length of the drift
section and the energy of the electron beam.
Beyond this work, a possible subject of further study is

the combined use of taper and phase jumps, such that both
take part in decelerating the particles, and such that the out-
of-bucket regime can be exploited.

VII. CONCLUSION

In this article, we have examined the underlying mecha-
nism of the phase jumpmethod for enhancing the efficiency
of an FEL. We have developed a new physics model, and
supported it with numerical simulations.
Our model expands beyond previous models by propos-

ing the microbunch deceleration cycle. The model also sets
out the selection criteria for the target phase in each phase
jump, eliminating the need to deduce the required phase
jumps from a preoptimized undulator taper.
In addition, the model opens up the possibility to extract

energy from particles outside the ponderomotive bucket, as
well as the possibility to suppress the growth of synchro-
tron sidebands.
In our time-dependent simulation, the phase jump

method yields a lower optical pulse energy at the final
saturation than undulator tapering. Nonetheless, the frac-
tion of energy channeled to the sidebands is smaller for the
phase jump method than for the taper. As a result, the two
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techniques yield almost identical spectral power at the
central wavelength near the final saturation.
If we define the FEL efficiency in terms of the spectral

power at the central wavelength, then the phase jump
method is just as efficient as the taper in this case.
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