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We perform Joule power loss calculations for a flat dechirper. We consider the configurations of the
beam on-axis between the two plates—for chirp control—and for the beam especially close to one plate—
for use as a fast kicker. Our calculations use a surface impedance approach, one that is valid when
corrugation parameters are small compared to aperture (the perturbative parameter regime). We find that
most of the wake power lost by the beam is radiated out to the sides of the plates. For the case of the beam
passing by a single plate, we derive an analytical expression for the broadband impedance. Our analytical
results are also tested by numerical, time-domain simulations. While our theory can be applied to the
LCLS-II dechirper with large gaps, for the nominal apertures we are not in the perturbative regime. With
input from computer simulations, we estimate the Joule power loss for nominal apertures (assuming bunch
charge of 300 pC, repetition rate of 100 kHz) is 21 W=m for the case of two plates, and 24 W=m for the
case of a single plate.
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I. INTRODUCTION

A corrugated structure device—a so-called dechirper [1]
—is being proposed for installation after the end of the
linac and before the undulator regions of LCLS-II. Such a
device has been installed in LCLS-I [2], where it has been
used for energy chirp control and as a fast kicker for self-
seeding and two color operation of the FEL [3]. Because of
the high repetition rate in LCLS-II compared to LCLS-I,
Joule heating of the device by the beam’s wakefields may
now become significant and a cooling system may be
required. Thus, it is important to estimate the amount of
Joule heating power that is deposited in the corrugated
plates.
In previous work, the surface impedance approach to

obtaining the impedances and wakes of a short, high energy
bunch in a flat dechirper was derived [4–6]. The resulting
formulas were shown to be approximate and valid in the
perturbative regime, i.e. when h=a ≪ 1, with h the corru-
gation depth and a the half aperture of the dechirper. In this
regime (assuming also that h=p≳ 1, with p the corrugation
period) the impedance can be described by a single mode
and the longitudinal wake by a damped cosine function [7].
The new RadiaBeam/SLAC dechirper at nominal param-
eters (h ¼ 0.5 mm and a ¼ 0.7 mm, thus h=a ¼ 0.7),

however, is not in the perturbative regime. In this non-
perturbative regime, it has been shown that the impedance
consists of more than one mode [8] and the wake begins
with a droop [9]. However, even for this regime analytical
fitting functions for the short-range wakes have been
derived and also verified by numerical simulation [10].
In previous work on the dechirper, the effect of the

corrugations alone was considered, and the effect of the
resistance of the boundary metal was ignored. For Joule
power loss calculations, however, one needs to include both
contributions. Also, in most of the previous work on the
impedance of a flat dechirper, the case of the beam passing
between two corrugated plates was considered. However,
when used as a fast kicker, with the beam passing close to
one plate, the second plate no longer influences the beam
nor needs to be in the problem. Note, however, that
analytical fitting formulas for the short-range wakes for
this case have also been recently derived [11] and numeri-
cally verified [12].
In the present report, by applying the surface impedance

approach to both double and single-plate dechirpers, we
obtain analytical estimates of the Joule heating power. The
surface impedance approach is used where it is not quite
applicable (h=a ¼ 0.7 and is not small), introducing an
error. In addition, our estimates ignore the effect of
reflections from the side edges of the dechirper plates.
We thus expect our results to underestimate the Joule power
losses. Finally, we test the accuracy of these calculations,
by performing numerical simulations using the time-
domain Maxwell equation solver in CST PARTICLE
STUDIO (PS) [13], and also (for verification purposes) with
the program PBCI [14]. These calculations are themselves
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quite challenging, since a fine mesh is needed to resolve the
short bunch, and runs need to be performed over a large
mesh domain for a relatively long time.
The RadiaBeam/SLAC dechirper that is installed in

LCLS-I consists of two modules. Each module has two
corrugated plates, with the beam passing between them (see
Fig. 1). Two modules were chosen in order to partially
cancel the unavoidable quadrupole wakefield that is
induced by the beam; one has plates parallel to the x − z
axis (horizontal-longitudinal) plane and is adjustable ver-
tically (the “vertical dechirper”), and the complementary
one is adjustable horizontally (the “horizontal dechirper”).
For the new LCLS-II dechirper, the corrugation parameters
will be the same: period p ¼ 0.5 mm, (longitudinal) gap
t ¼ 0.25 mm, depth h ¼ 0.5 mm; nominally the gap
g ¼ 2a ¼ 1.4 mm. The plate length L ¼ 1.5 m and width
w ¼ 12 mm. Our calculations here consider: (i) a vertical
two-plate dechirper, with the beam on the symmetry axis
(such as is shown in Fig. 1); and (ii) only the top plate, with

the beam just below it. The dechirper parameters and
typical beam and machine properties used in calculations
here are given in Table I.
The equations in this report are given in cgs units. To

convert an impedance or wake into MKS units, one
multiplies the cgs result by Z0c=ð4πÞ, with Z0 ¼ 377 Ω.

II. JOULE HEATING ESTIMATES

In a round corrugated structure of a finite length (a
dechirper), the wakefield energy loss experienced by a
relativistic beam of charged particles is partly absorbed in
the walls as Joule heating and partly generates a THz pulse
that leaves the structure just behind the driving particle. In
the flat geometry of dechirpers like those that have actually
been built—like the RadiaBeam/LCLS dechirper—some of
that energy can also escape through the aperture to the side.
The energy per unit length lost by the beam to the wake is
then given by the sum

uw ¼ uh þ ðuradÞz þ ðuradÞx; ð1Þ
with uh the energy generating Joule heating in the metal
walls, ðuradÞz the energy in the THz pulse that leaves the
end of the structure following the driving particle, and
ðuradÞx the energy radiating out the sides of the structure.
A particle of charge Q moves at the speed of light c on

the axis of a structure. The Joule energy loss into the walls
per unit length is given by

uh ¼
1

c

Z
B
Sðr; zÞ · dA; ð2Þ

with S the Poynting vector, dA the incremental surface area
vector (into the wall is positive), and B represents the
metallic boundary. The calculation is performed at time
t ¼ 0 when the particle is at z ¼ 0, and the transverse
coordinate is r. The particle is assumed to be moving to the
left; the fields are zero ahead of the particle (for z < 0).
Let us begin by sketching how we would solve the case

of a dechirper with round geometry. The walls are located at
radius r ¼ a, and the Poynting vector at the walls is given
by S ¼ −ð c

4πÞEzHϕ, with Ezðr; zÞ the longitudinal compo-
nent of the electric field and Hϕðr; zÞ the azimuthal
component of the magnetic field. The Joule energy loss
into the walls becomes

uh ¼
a
2

Z
∞

−∞
dzEzða; zÞHϕða; zÞ: ð3Þ

The fields can be written in terms of their Fourier trans-
forms; for example, for the electric field

~EzðωÞ ¼
1

c

Z
∞

0

dzEzðzÞeiωz=c;

EzðzÞ ¼
1

2π

Z
∞

−∞
dω ~EzðωÞe−iωz=c; ð4Þ

z

y

2a

t

p

h

FIG. 1. Three corrugations of a vertical dechirper. A rectangular
coordinate system is centered on the symmetry axis of the
chamber. The blue ellipse represents an electron beam propa-
gating along the z axis.

TABLE I. Selected beam and machine properties for LCLS-II
used in example calculations. This is the high charge option with
its maximum repetition rate. The charge distribution is assumed
to be uniform with peak current I ¼ 1.5 kA. The dechirper
properties are those of the RadiaBeam/LSLAC dechirper, which
consists of two modules, each with corrugated plates of length
L ¼ 2 m. The plates are made of aluminum; we take conductivity
σc ¼ 3.2 × 1017=s.

Parameter name Value Unit

Beam energy, E 6 GeV
Charge per bunch, Q 300 pC
Full bunch length, l 60 μm
Repetition rate, frep 100 kHz
Dechirper properties:
Period, p 0.5 mm
Longitudinal gap, t 0.25 mm
Full depth, h 0.5 mm
Nominal half aperture, a 0.7 mm
Plate width, w 12 mm
Plate length, L 2 m
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where ω is the frequency and a tilde indicates the Fourier
transform of a field (and similarly forHϕ). Substituting into
Eq. (3) and changing the order of integrations we obtain

uh ¼
a
8π2

Z
∞

−∞
dω ~EzðωÞ

Z
∞

−∞
dω0 ~Hϕðω0Þ

Z
∞

−∞
dze−iðωþω0Þz=c:

ð5Þ

The last integral on the right equals 2πcδðωþ ω0Þ. Thus,
we obtain

uh ¼
ca
4π

Z
∞

−∞
dω ~EzðωÞ ~Hϕð−ωÞ¼

ca
4π

Z
∞

−∞
dω ~EzðωÞ ~HϕðωÞ�;

ð6Þ

where in the last integral * indicates the complex conjugate
of a function. To obtain the last integral we used the relation
~Hϕð−ωÞ ¼ ~HϕðωÞ�; such a relation holds for the fields in
the frequency domain, since the same fields in the time
domain must be real quantities.
On the metallic surface we have the relation

~EzðωÞ ¼ ζzðωÞ ~HϕðωÞ; ð7Þ

with ζzðωÞ the surface impedance of the structure walls,
which includes both the contributions of the corrugations
and the wall resistance (the subscript z indicates that the
surface currents move in the longitudinal direction).
Substituting into Eq. (6), and noting the symmetry of
the integrand, we finally obtain

uh ¼
ca
2π

Z
∞

0

dωRe½ζzðωÞ�j ~Hϕða;ωÞj2: ð8Þ

If we write the Joule loss as uh ¼
R∞
−∞

d ~u
dω dω, then we can

define an effective Joule heating impedance ZhðωÞ, which
has a real part defined as

Re½ZhðωÞ� ¼
π

Q2

d ~u
dω

ðωÞ: ð9Þ

In this round example it turns out that all the wake losses
end up in the walls, since they have nowhere else to go. It is
easy to see that ZhðωÞ ¼ ZðωÞ, with ZðωÞ the normally
defined impedance of the corrugated structure, given by
ZðωÞ ¼ − ~Ez=Q. For a bunch of particles, the Joule heating
energy is given by

uhλ ¼
1

π

Z
∞

0

dωj~IðωÞj2Re½ZhðωÞ�; ð10Þ

with ~IðωÞ the Fourier transform of the current,
IðzÞ ¼ QcλðzÞ, and λðzÞ the longitudinal bunch distribu-
tion. However, in following energy and power calculations

we will let j~IðωÞj2 → 1, since for the small bunch lengths
considered and the frequency reach of the dechirper
impedance, this approximation is good.
The Joule power loss is simply given by P ¼ uhfrep, with

frep the bunch repetition rate. In the round case, since all the
beam energy loss becomes Joule heating, we obtain
uh ¼ 2Q2=a2. Our Joule energy loss calculations are
perturbative calculations. If, however, the corrugation
parameter ratio (h=a) is not small, then we are not in
the perturbative regime and there will be wake droop. In
such a case, to better estimate the Joule power loss we take

P ¼ frepuh

�
ϰðσzÞ
ϰð0Þ

�
; ð11Þ

with ϰðσzÞ the loss factor of a Gaussian bunch of length σz.
The point charge loss factor ϰð0Þ ¼ 2=a2 (with a the pipe
radius) in the round case, and ϰð0Þ ¼ π2=ð8a2Þ (with a the
half aperture) in the flat case. The loss factor ϰðσzÞ includes
the effect of the wake droop.

III. FLAT GEOMETRY

In flat geometry energy can also radiate out the sides. To
obtain our Joule heating estimate we perform a simple
approximate calculation. End on, a vertical dechirper looks
like what is shown in the sketch of Fig. 2(a). The vertical
gap is 2a and the width of the corrugated plates is w. For
our calculations we let the width of the plates become
infinite, and to account for the finite width as in the real
case, we perform Joule loss calculations over the boundary
only over a region of width �w=2 from the beam path [see
Fig. 2(b); the distance between the dashed lines is meant to
be w]. Our calculation is a perturbation calculation that is
only accurate when the corrugation parameters are small
compared to the aperture 2a. Note that the dechirper
parameters of Table I are not in the perturbative regime.
One contributor to inaccuracy is that we assume that the
structure is infinitely long, which does not allow for part of
the wake loss to contribute to the generation of a THz pulse
in the z direction. However, this contribution can be shown
to be small for the parameters of Table I.
Let us consider a vertical dechirper with plate walls of

width w located at y ¼ �a with respect to the axis. The
Poynting vector at the walls

S ¼
�

c
4π

�
ðExHz − EzHxÞ: ð12Þ

Note that in this case, in addition to a surface current in the
z direction, corresponding to the surface impedance ζz,
there is a surface impedance in the x direction, correspond-
ing to surface impedance ζx. The surface impedance in the
z direction is given by the sum of the resistive wall and the
corrugation impedance contributions, ζz ¼ ζrw þ ζcorr,
with [4,15],

JOULE HEATING IN A FLAT DECHIRPER PHYS. REV. ACCEL. BEAMS 20, 054403 (2017)

054403-3



ζrwðωÞ ¼
�

ω

8πσc

�
1=2

ð1− iÞ; ζcorrðωÞ ¼ −i
hω
2c

; ð13Þ

and σc is the conductivity of the metal walls. In the x
direction, we take the surface impedance to be ζx ¼ ζrw,
since the horizontal surface currents are not impeded by the
corrugations. Note that an anisotropic surface impedance
was not used before for modeling the impedance of the
corrugated structure; this form, however, is important in our
application here. Note also that with only corrugations and
no wall resistance, the Joule heating is zero.
The Joule wall energy loss per unit length becomes

uh ¼
1

2π

Z
w=2

−w=2
dx

Z
∞

−∞
dz½Ezðx; a; zÞHxðx; a; zÞ

þ Exðx; a; zÞHzðx; a; zÞ� ð14Þ

(an overall factor of 2 is added because there are two
plates). There are two contributions. Let us take
uh ¼ uhz þ uhx, with uhz the part that depends on EzHx
at the walls; uhx the part that depends on ExHz at the walls.
Following a calculation similar to that for the round case
above, we can rewrite the equation for uz in the frequency
domain as

uhz ¼
c
4π2

Z
w=2

−w=2
dx

Z
∞

−∞
dωRe½ζðωÞ�j ~Hxðx; a;ωÞj2: ð15Þ

To perform the calculation, we follow the procedure
described in Ref. [5], which explicitly gives the fields and
wakefields in structures with flat geometry for which the
effect at the boundaries can be approximated by a surface
impedance. First the frequency representation of the fields
are Fourier transformed in x as

Ĥxðq; y;ωÞ ¼
Z

∞

−∞
dx ~Hxðx; y;ωÞeiqx;

~Hxðx; y;ωÞ ¼
1

2π

Z
∞

−∞
dqĤxðq; y;ωÞe−iqx: ð16Þ

Substituting into Eq. (15), changing the order of integra-
tion, and noting the symmetry of the integrand with respect
to ω, we find that

uhz ¼
cw
8π4

Z
∞

0

dωRe½ζzðωÞ�
Z

∞

−∞
dqĤxðq; a;ωÞ

×
Z

∞

−∞
dq0Ĥ�

xðq0; a;ωÞsinc
�
wðq − q0Þ

2

�
: ð17Þ

It is this triple integral that we solve numerically to estimate
the fraction of wakefield losses that end up as Joule heating
in the walls. Note that for the special case width w → ∞,
the equation simplifies to

uhz ¼
c
2π3

Z
∞

0

dωRe½ζzðωÞ�
Z

∞

0

dqjĤxðq; a;ωÞj2 ð18Þ

(we have used the fact that the integrand is symmetric with
respect to q).
Performing a similar calculation for ux, we obtain, for

finite w,

uhx ¼
cw
8π4

Z
∞

0

dωRe½ζxðωÞ�
Z

∞

−∞
dqĤzðq; a;ωÞ

×
Z

∞

−∞
dq0Ĥ�

zðq0; a;ωÞsinc
�
wðq − q0Þ

2

�
; ð19Þ

and for infinite w

uhx ¼
c
2π3

Z
∞

0

dωRe½ζxðωÞ�
Z

∞

0

dqjĤzðq; a;ωÞj2: ð20Þ

The general form of the impedances for a flat structure,
one that can be described using the surface impedance
concept, is developed in Refs. [5,6]. A conclusion of this
work was that the final results—the impedances—were
approximate and valid, provided that the frequency
k ¼ ω=c ≫ 1=a—which is satisfied—and that jζj ≪ 1
(or h=a ≪ 1), which is not for our nominal corrugation
parameters (see Table I). The expressions for Ĥxðq; a;ωÞ,
Ĥzðq; a;ωÞ, that we need here were not given in the earlier
reports. Following the correct derivation of the fields, we
obtained the general form of Ĥxðq; a;ωÞ and Ĥzðq; a;ωÞ as
functions of beam offset (not shown). For the special case
of the beam on axis, the fields on the boundary at y ¼ a are

FIG. 2. Sketch of a vertical set of dechirper jaws seen end on:
(a) in the real geometry the jaws have a finite width w; (b) in the
model used in the calculation, the width is infinite, but the loss
integration is performed only over a width w (represented by the
distance between the dashed lines). The purple lines represent the
corrugated surfaces; the blue ellipses, the exciting particle’s
transverse location.
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Ĥx ¼ −
4πQ
c

ikq coshðaqÞ
ζzðk − qÞðkþ qÞ sinhð2aqÞ þ 2ikq½ζzζxsinh2ðaqÞ þ cosh2ðaqÞ� ;

Ĥz ¼ −
4πQ
c

ζzkq sinhðaqÞ
ζzðk − qÞðkþ qÞ sinhð2aqÞ þ 2ikq½ζzζxsinh2ðaqÞ þ cosh2ðaqÞ� ; ð21Þ

with k ¼ ω=c.
In the case of flat geometry, with corrugated plate width w → ∞, the total Joule energy loss on the walls, uz þ ux, must

equal a point charge beam’s energy loss on the axis, uw. In this case the point charge loss factor

κð0Þ ¼ uw
Q2

¼ −
1

πQ

Z
∞

0

dωRe½ ~EzðωÞ� ¼ −
1

π2Q

Z
∞

0

dω
Z

∞

0

dqRe½Êzðω; qÞ�; ð22Þ

with the on-axis electric field

Êz ¼ −
4πQ
c

ikqζz
ζzðk − qÞðkþ qÞ sinhð2aqÞ þ 2ikq½ζzζx sinh2ðaqÞ þ cosh2ðaqÞ� : ð23Þ

The impedance is given by

ZðωÞ ¼ −
~EzðωÞ
Q

¼ −
1

2πQ

Z
∞

−∞
dqÊzðq;ωÞ: ð24Þ

Substituting from Eq. (23) and integrating numerically we
obtain the impedance. The real part, for this case
(a ¼ 0.7 mm and w → ∞), is shown in Fig. 3. We see
that the impedance is a highly spiked function, with the
peak location at ka ≈

ffiffiffiffiffiffiffiffiffiffiffi
2a=h

p
≈ 1.673 [7]. Note that a

different, earlier perturbation analysis, one that ignored
wall resistance, gave essentially the same result except that
the spike reached to infinity [7]. This implies that the short-
range wake is essentially independent of the boundary
conductivity.
The Joule heating energy has two components, uhz and

uhx, corresponding to contributions from ζz and ζx,

respectively. Numerically solving Eqs. (18) and (20) for
the infinitely wide plates, we find that uhz ¼ 0.8uw,
uhx ¼ 0.2uw, and, to good accuracy, uh ≡ uhz þ uhx ¼
uw ¼ Q2π2=ð8a2Þ. This is what we expect: for plates of
infinite width, the sum of the two Joule energy contribu-
tions should equal the energy loss of the on-axis point
charge beam.
Performing the numerical integrals for finite plate width

w ¼ 12 mm, we obtain uh ¼ uhz þ uhx using Eqs. (17) and
(19). For a ¼ 0.7 mm, we find that the total Joule loss is a
small part of the beam energy loss, uh ¼ 0.03uw (with
uhz ¼ 0.91uh). Then using Eq. (9) we obtain the
real part of the Joule heating impedances, Zhz and Zhx.
In Fig. 4 we plot the Joule impedance sum, ReðZhÞ ¼
ReðZhzÞ þ ReðZhxÞ. Note that on the scale of the plot,
ReðZhÞ ≈ ReðZhzÞ and ReðZhxÞ ≈ 0. As a spot check on
sensitivity to conductivity, we reduced σc by a factor of 4,

1.5 1.6 1.7 1.8 1.9 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

ka

R
eZ

M
/m

FIG. 3. The real part of the longitudinal impedance for the
dechirper with plate width w → ∞. This plot, in different units,
and with the spike reaching to infinity, can also be found
in Ref. [7].

1.5 1.6 1.7 1.8 1.9 2.0
0.0

0.2

0.4

0.6

0.8

ka

R
eZ

h
[M

/m
]

FIG. 4. The real part of the Joule heating impedance ReðZhÞ ¼
ReðZhzÞ þ ReðZhxÞ for the beam on axis in the dechirper with
half aperture a ¼ 0.7 mm and plate width w ¼ 12 mm.
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repeated the calculation, and found that ðuh=uwÞ increased
by 35%.
We repeat the numerical calculation for several values of

plate width w. In Fig. 5 we plot the Joule energy loss vs
plate width, normalized to the point charge loss of the
beam, uw ¼ Q2π2=ð8a2Þ. We see that, even for w ∼ 100a,
only a small part of the beam energy loss ends up as Joule
heating. For our final estimate of Joule power loss of a
uniform beam of full length l ¼ 60 μm we need to use the
short-range, point charge wake of a beam on the axis of a
flat dechirper [10],

wzðsÞ ¼
π2

4a2
e−

ffiffiffiffiffiffiffi
s=s0

p
; ð25Þ

with s0 ¼ 9a2t=½8παðt=pÞ2p2� and αðxÞ ≈ 1 − 0.465
ffiffiffi
x

p
−

0.070x. For the parameters of Table I, the scale factor
s0 ¼ 434 μm. For a bunch with uniform distribution of full
length l, the loss factor is given by

ϰ ¼ 1

l

Z
l

0

ds

�
1 −

s
l

�
wzðsÞ: ð26Þ

Here ϰ ¼ 19 kV=ðpC �mÞ, and the loss compared to a
point charge beam is ϰ=ϰð0Þ ¼ 0.82.
For the beam parameters of Table I the power lost by the

beam is Pw ¼ Q2ϰfrep ¼ 170 W=m. Thus our analytical
estimate of the Joule losses for the 12 mm-wide dechirper
plates is the fraction ðuh=uwÞ ¼ 0.03 of this, orPh ¼ 5 W=m.

IV. BEAM NEAR ONE PLATE

There is interest in streaking the beam by inducing the
transverse wakes of the dechirper, by passing the beam
close to one jaw. With the beam a distance from the near
wall of b ∼ 0.25 mm and from the far wall by ≳5 mm, the

second wall will no longer affect the results. The physics
will be quite different than before: with two plates the
impedance has a narrow resonance whose frequency
depends on the plate separation 2a; in the single-plate
case this parameter no longer exists. We present more
details of this case, since the analysis of it is a relatively new
topic. Note that in [11] expressions for the wakes for a short
beam passing by a single plate of a dechirper are obtained,
and that these expressions are numerically verified in [12].
For the Joule heating calculation we start with the

equations for the magnetic fields on the wall, for a beam
offset by y from the axis of a two-plate dechirper (equations
not shown here). We let y ¼ a − b, and then let a → ∞, to
obtain the fields on the walls of one plate due to a bunch
passing by at distance b. The fields on the wall (at y ¼ b)
are given by

Ĥxðq; b;ωÞ ¼ −
4πQ
c

kjqje−bjqj
kjqjð1þ ζzζxÞ þ iζzðq2 − k2Þ ;

Ĥzðq; b;ωÞ ¼ −iζzĤxðq; b;ωÞ: ð27Þ

Meanwhile the electric field at the particle location (here, at
y ¼ 0) is

Êzðq;0;ωÞ¼−
4πQ
c

ζzkjqje−2bjqj
kjqjð1þζzζxÞþ iζzðq2−k2Þ: ð28Þ

First, note that while the point charge energy loss per
length of the two-plate system was uw ¼ Q2π2=ð8a2Þ, with
a the half gap, for the single plate it is only uw ¼ Q2=ð2b2Þ,
with b the distance between the beam’s path and the plate.
In Fig. 6 we plot ReðZÞ, where Z ¼ − ~Ez=Q (in blue).
Instead of the narrow spike of the two-plate case, we now
find a relatively broad peak.
Actually, Fig. 6 can be obtained analytically. If we let the

resistive terms of both ζz and ζx be zero, the integral over q
that needs to be performed to obtain the impedance
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FIG. 6. ReðZÞ for beam passing by one, infinitely wide
dechirper plate at a distance b ¼ 0.25 mm (blue). The analytical
results, Eq. (29), are also shown (red dashes).
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FIG. 5. Numerically calculated ratio of Joule loss into metal to
wake loss of a point charge beam, uh=uw ¼ ðuhz þ uhxÞ=uw as a
function of w=ð2aÞ (plotting symbols). The wake loss for a point
particle is uw ¼ Q2π2=ð8a2Þ.
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becomes singular. However, the integral can be performed
as a Cauchy integral, yielding a finite result (see the
Appendix for details). The result is

ReðZÞ ¼ 2π

c
kξ

1þ ξ
e−2ξb=h

����
ξ¼−1þ

ffiffiffiffiffiffiffiffiffiffiffi
1þk2h2

p ; ð29Þ

where h is the depth of corrugation. Note that the frequency
at the peak can be approximated as ðkÞpeak ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=ð2hbÞp

,
which is similar to the perturbation peak frequency formula
for the two plate case, ðkÞpeak ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðhaÞp

, with a the half
gap. The result of Eq, (29) is given by the red dashes in
Fig. 6; we see that this function is almost identical to the
earlier, numerical result that included wall resistance.
We next insert the single-plate magnetic fields, Eq. (27),

into Eqs. (18) and (20) (but divided by 2, since there is only
one plate) and numerically integrate to obtain the Joule
heating impedance for the single, infinitely wide plate
example. In Fig. 7 we show the real part of the Joule
heating impedances ReðZhzÞ, ReðZhxÞ (the components
with wall currents aligned in, respectively, the z and x
directions) that we obtain. Again the beam is assumed to
pass by at offset b ¼ 0.25 mm from the plate. As expected,
the total Joule heating impedance curve obtained numeri-
cally is the same, to good accuracy, as the impedance curve
of Fig. 6. The area under ReðZhzÞ [ReðZhxÞ] is 42% [58%]
that under ReðZÞ.
Finally, we insert the single-plate magnetic fields,

Eq. (27), into Eqs. (17) and (19) (again divided by 2,
since there is only one plate) and numerically integrate to
find the Joule heating impedance for a beam passing by a
single plate with finite width w ¼ 12 mm. The results are
shown in Fig. 8. This time the area under the ReðZhzÞ

[ReðZhxÞ] curve is 0.9% [2.4%] of that under the imped-
ance curve ReðZÞ. Thus, uh=uw ¼ 0.033.
The short-range, point charge wake of a beam passing by

a single plate of a flat dechirper at offset b is [11]

wzðsÞ ¼
1

b2
e−

ffiffiffiffiffiffiffi
s=s0l

p
; ð30Þ

with s0l ¼ 2b2t=ðπα2p2Þ and α ¼ 1 − 0.465
ffiffiffiffiffiffiffi
t=p

p
−

0.070ðt=pÞ. For corrugation parameters of Table I,
α ¼ 0.636. With distance from wall b ¼ 250 μm,
s0l ¼ 98 μm. For the uniform bunch distribution of
Table I, using Eq. (26), we find that ϰ¼ 48 kV=ðpC�mÞ.
The loss of a point charge beam is ϰð0Þ ¼ 1=ð2b2Þ; thus,
ϰ=ϰð0Þ ¼ 0.67. The power lost by the beam is
Pw ¼ Q2ϰfrep ¼ 434 W=m. Thus our analytical estimate
of the Joule losses for the 12 mm-wide dechirper plate is the
fraction ðuh=uwÞ ¼ 0.033 of this, or Ph ¼ 14 W=m.

V. NUMERICAL TIME-DOMAIN COMPARISONS

The analytical model for the short-range wakes of an
LCLS-type beam passing between two jaws of the
RadiaBeam/LCLS dechirper has been verified in
Ref. [10] using the finite difference, time-domain, wake-
field solving program ECHO(2D) [16]. However, in our
analytical Joule heating calculations, for the case of finite-
width plates, we assumed that reflections from the side-
walls (in x for a vertical dechirper) are negligible. To see
how good this approximation is, we have performed
numerical, time-domain calculations using the program
CST PS, both for an example with the beam on axis
between two dechirper plates, and for an example with the
beam passing by a single plate. For the case of two
dechirper plates, the accuracy of CST PS simulations
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FIG. 7. The real part of the Joule heating impedance ReðZhÞ ¼
ReðZhzÞ þ ReðZhxÞ for the beam passing by a single dechirper
plate, for the case of plate width w → ∞ (blue curve), with the
constituent parts given in dashes. The beam passes by at offset
b ¼ 0.25 mm from the plate. The area under ReðZhzÞ [ReðZhxÞ]
is 42% [58%] that under ReðZÞ.
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FIG. 8. The real part of the Joule heating impedance ReðZhÞ ¼
ReðZhzÞ þ ReðZhxÞ for the beam passing by a single dechirper
plate, for the case of plate width w ¼ 12 mm (blue curve), with
the constituent parts given in dashes. The beam passes by at offset
b ¼ 0.25 mm from the plate. The area under ReðZhzÞ [ReðZhxÞ]
is 0.9% [2.4%] that under ReðZÞ, the beam impedance curve
given in Fig. 6.
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was verified by cross-checking with results using the
wakefield code PBCI [14]. Since the bunches are short
(zrms ∼ 20 μm), the catch-up distance [zcu ∼ a2=ð2σzÞ] is
large (on the order of cm’s). However, the most challenging
simulation issue is the long damping time of the fields that
need to be followed for the Joule loss calculation. In the
double plate case this time is on the order of cm’s=c.
Figure 9 shows the geometry of the single corrugated

plate and the (nominal) beam path used in the simulations.
For modeling the lossy metal, a resistive wall impedance
boundary condition for aluminum is applied. The corru-
gated plate structure is enclosed within a larger computa-
tional box that has free-space boundary conditions applied
on all sides. This is necessary for modeling field radiation
and thus, for the proper computation of the Joule losses.
Such boundary conditions are provided by CST PS. This is
why all Joule loss results in the following were obtained
using this program. To confirm that the choice of bounding
box does not affect the results, we performed one calcu-
lation with changed bounding box dimensions and found
that the wake obtained was left unchanged.
The simulations are performed in the time domain by

tracking a single bunch along the beam path until the wake
potential and Joule loss per unit length saturate to steady
state. Typical plate lengths considered in the simulations
are some tens of cm’s. To make the calculations manage-
able, for both double- and single-plate cases, we use
Gaussian bunches with σz ¼ 100 μm, i.e. significantly
longer than our nominal bunch length. The resulting mesh
with the necessary numerical resolution consists of up to
1.5 × 109 mesh points, and it typically takes several days to
complete just one simulation. Since the typical bunch
frequency is much higher than the structure frequency,
the ratio (uh=uw) will be about the same for this bunch
length as for the target rms bunch length (see Table I),
σz ¼ 17 μm.

A. Beam on axis between two dechirper plates

For the two-plate case, the nominal half aperture is
a ¼ 0.7 mm. The numerically obtained, steady-state bunch
wake, for the Gaussian bunch, w̄zðsÞ is given in Fig. 10. We

see that the wake damps away on a scale of s ∼ 150 mm.
Fourier transforming the wake, we obtain the impedance
(see Fig. 11). We find that ReðZÞ is given by a collection of
spikes (dominated by the first one) beginning with
ka ¼ 1.36, 1.53, 1.77; note that these values agree with
results of mode matching calculations, applied to the same
geometry [8]. This behavior is quite different than our
analytical, perturbative solution, with its one spike at
ka ¼ 1.67 (see Fig. 3). This mismatch was expected.
For the numerical Joule loss calculations, the beam passed

by a two-plate dechirper of length L ¼ 135 mm. From the
magnetic fields at the plate surfaces, the Joule heating power
at each time step was obtained. Figure 12 shows the results
for the nominal a ¼ 0.7 mm case (blue, solid curve); the
steady state was obtained by extrapolation using a double
exponential fitting function (the dashes). The final result is
Ph ¼ 13.5 W=m. Thewake power loss for the σz ¼ 100 μm
Gaussian bunch Pw ¼ 108 W=m. Thus, the ratio of Joule
heating and wake energy, according to the numerical
calculation, is ðuh=uwÞnum ¼ Ph=Pw ¼ 0.125, which is a
factor of 4 larger than the analytical result obtained above,

FIG. 9. Model used in the single-plate, numerical (CST STUDIO) calculations. The line and symbols indicate the beam trajectory.
The plate width is w ¼ 12 mm, and, nominally, the beam offset is b ¼ 0.25 mm.
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FIG. 10. The numerically obtained, longitudinal wake for the
beam moving on axis of a double plate dechirper. Here half
aperture a ¼ 0.7 mm and dechirper length L ¼ 135 mm; the
driving bunch is Gaussian with σz ¼ 100 μm. Note that the wake
is normalized to structure length.
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ðuh=uwÞana ¼ 0.030. Our best estimate for the Joule power
loss for theLCLS-II beam, P̄h, is obtained taking ðuh=uwÞnum
and multiplying it with the wake power (analytically
obtained above) for the short, uniformLCLS-II bunch shape,
ðPwÞana; i.e.

P̄h ¼ ðuh=uwÞnumðPwÞana: ð31Þ

For the nominal case we obtain P̄h ¼ ð0.125Þð170 W=mÞ ¼
21.0 W=m.
As a final word on the two-plate calculation, note that a

second case was also simulated, with a ¼ 1.4 mm. In this
case, ðh=aÞ ¼ 0.35 is half the size of before, and we find
that the impedance (not shown) is closer to the analytical one.
The simulation finds that the Joule power Ph ¼ 2.64 W=m

(see Fig. 12, the red curve). The energy ratio ðuh=uwÞnum ¼
0.065, which is a factor of 2.5 larger than the analytical
value ðuh=uwÞana ¼ 0.025, rather than the factor of 4
we had before. For a ¼ 1.4 mm, ðPwÞana ¼ 46 W=m,
and our best estimate of Joule power loss becomes
P̄h ¼ ð0.065Þð46 W=mÞ ¼ 3.0 W=m.

B. Beam passing by a single corrugated plate

The numerically obtained wake for a 100 μm Gaussian
bunch passing at distance b ¼ 0.25 mm from the plate is
shown in Fig. 13. Here we see that the wake dies out after
s ∼ 120 mm and that there are reflections from the sides of
the plate. Note that since the period in the reflections is
∼13.5 mm (and not equal to the plate width, w ¼ 12 mm),
we infer that the average group velocity of the waves
moving sideways is vg ¼ ð12=13.5Þc ¼ 0.89c.

a = 0.7 mm

a = 1.4 mm
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FIG. 12. Beam on axis between two plates: Joule power
calculations obtained by time-domain simulation, for plate half
aperture a ¼ 0.7 mm (blue) and a ¼ 1.4 mm (blue). The beam
traverses the plate from its beginning, at z ¼ 0, to its end, at
z ¼ 0.135 m. The dashed lines give extrapolation to steady
state. Here Q ¼ 300 pC, frep ¼ 300 kHz; the driving charge is
Gaussian with σz ¼ 100 μm.
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FIG. 13. The numerically obtained, longitudinal wake for a
beam moving past a single-plate dechirper. Here the beam offset
b ¼ 0.25 mm and dechirper length L ¼ 115 mm; the driving
bunch is Gaussian with σz ¼ 100 μm. Note that the wake is
normalized to structure length.
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FIG. 11. The real part of the longitudinal impedance for the
beam moving on axis of a double plate dechirper with half
aperture a ¼ 0.7 mm, obtained by taking the Fourier transform of
the numerically obtained wake of Fig. 10.
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FIG. 14. The real value of the impedance ReðZÞ for the single-
plate example (blue curve). The broadband impedance obtained
from the same wake is given by green dashes. The analytical
perturbation result (Fig. 6) is given by red dashes.
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The real part of the impedance ReðZÞ for the single-plate
example is given in Fig. 14 (blue curve). To obtain this, the
longitudinal wake (Fig. 13) was Fourier transformed and
multiplied by ek

2σ2z=2. The narrow, evenly spaced spikes in
the impedance [with spacing Δf ≈ c=ð13.5 cmÞ] are due to
the reflections in the wake. A short bunch, however, cannot
resolve these spikes. To generate a “broadband impedance,”
one that is easier to compare with our analytical result, we
multiplied the wake by a Gaussian form factor, with rms
length σ ¼ 5 mm, before Fourier transforming. The result-
ing impedance is given by green dashes in the figure. Our
analytical result (Fig. 6) is given in red dashes. Although
the low and higher frequency behaviors of the red and green
curves agree well, the numerical peak is narrower and the
frequency of the peak is lower than the analytical one. This
disagreement appears to be a consequence of the corruga-
tion parameters not being in the perturbative regime: here
ðh=bÞ ¼ 2, which is not small compared to 1.
For Joule loss simulations, the beam was passed by a

single-plate dechirper of length L ¼ 115 mm. Figure 15
shows the results for the nominal b ¼ 0.25 mm case (blue,
solid curve), and the extrapolation to steady state
(the dashes). The steady-state result is Ph ¼ 14.5 W=m.

The wake power loss for the σz ¼ 100 μm Gaussian bunch
Pw ¼ 264 W=m. Thus, the ratio of Joule heating and
wake energy according to the numerical calculation is
ðuh=uwÞnum ¼ Ph=Pw ¼ 0.055; this is a factor of 1.67
larger than the analytical result obtained above,
ðuh=uwÞana ¼ 0.033. This is due to the multiple reflections
of the wakefield from the sides of the plate that are not
considered in the analytical model. Our best estimate
of the Joule power loss for the LCLS-II beam, P̄h ¼
ðPwÞanaðuh=uwÞnum ¼ 24.0 W=m.
More single-plate simulations were performed for larger

beam offsets: b ¼ 0.5, 1.0, 1.5 mm. As we move to ever
smaller values of (h=b), the numerically obtained (broad-
band) impedance (not shown) agrees better with the
analytical one. The numerical energy ratio (uh=uw), how-
ever, remains about a factor of 2 larger than the analytical
one. For b ¼ 0.5 mm, the simulations find that the Joule
power Ph ¼ 4.0 W=m (see Fig. 15, the red curves). The
energy ratio ðuh=uwÞnum ¼ 0.035, and our best estimate of
Joule power loss becomes P̄h ¼ 4.6 W=m. Finally, note
that our nominal, two-plate and single-plate results are
summarized in Table II.

VI. CONCLUSIONS

We have performed Joule power loss calculations for the
new RadiaBeam/LCLS-II dechirper, whose engineering
details—for example concerning the cooling required—
are still being finalized. We have investigated the configu-
rations of the beam on axis between the two plates, for
chirp control, and for the beam especially close to one plate,
for use as a fast kicker. Our calculations involve an
analytical model that uses a surface impedance approach,
valid for perturbatively small dechirper parameters. In
addition, our model ignores effects of field reflections at
the sides of the dechirper plates, and is thus expected to
underestimate the Joule losses. The analytical results were
also tested by numerical, time-domain simulations using
computer programs in CST STUDIO and PBCI. We find that
most of the wake power lost by the beam is radiated out to
the sides of the plates. While our theory can be applied to
the LCLS-II dechirper with large gaps, for the nominal
apertures we are not in the perturbative regime and the
reflection contribution to Joule losses is not negligible.
With input from computer simulations, we estimate the
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FIG. 15. Single plate: numerically obtained, Joule power
calculations for beam offsets b ¼ 0.25 mm (blue) and b ¼
0.5 mm (red). The beam traverses the plate from its beginning,
at z ¼ 0, to its end, at z ¼ 0.115 m. The dashed lines give
extrapolation to steady state. Here Q ¼ 300 pC, frep ¼ 300 kHz;
the driving charge is Gaussian with σz ¼ 100 μm.

TABLE II. Summary of Joule heating calculations for the LCLS-II dechirper, giving case; wake power lost by
beam, ðPwÞana; ratio of energy in Joule heating and beam energy loss, analytical calculation, ðuh=uwÞana; Joule
power loss, analytical calculation, ðPhÞana; energy ratio, according to numerical calculation, ðuh=uwÞnum; and our
best estimate of Joule losses, P̄h ¼ ðuh=uwÞnumðPwÞana. Both cases assume the high charge scenario, with Q ¼
300 pC and frep ¼ 100 kHz; the bunch shape is taken as uniform, with total length l ¼ 60 μm.

Case ðPwÞana [W=m] ðuh=uwÞana ðPhÞana [W=m] ðuh=uwÞnum P̄h [W=m]

Two plates, a ¼ 0.7 mm 170 0.030 5 0.125 21.0
Single plate, b ¼ 0.25 mm 435 0.033 14 0.055 24.0
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Joule power loss (assuming bunch charge of 300 pC,
repetition rate of 100 kHz) is 21 W=m for the case of
two plates, and 24 W=m for the case of a single plate.
The single-plate configuration of a dechirper has, until

now, received little attention in the literature. In this report
we have presented also the impedance of a beam passing by
a single corrugated plate.
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APPENDIX: DERIVATION OF ReðZÞ FOR BEAM
PASSING BY A SINGLE DECHIRPER PLATE

The impedance is

ZðωÞ ¼ −
1

2πQ

Z
∞

−∞
dqÊzðq; 0;ωÞ; ðA1Þ

where [see Eq. (28)]

Êzðq;0;ωÞ ¼−
4πQ
c

ζzkjqje−2bjqj
kjqjð1þ ζzζxÞþ iζzðq2− k2Þ : ðA2Þ

We need to calculate the following integral:

ZðωÞ ¼ 4

c
ζzk

Z
∞

0

dq
qe−2bq

kqð1þ ζzζxÞ þ iζzðq2 − k2Þ ðA3Þ

(where we have used the fact that the integrand is
symmetric with respect to q). In the limit when the resistive
term ζrw → 0, we have ζx ¼ 0 and ζz ¼ − 1

2
ihk and the

integral reduces to

ZðωÞ ¼ −
4i
c
hk2

Z
∞

0

dq
qe−2bq

2kqþ hkðq2 − k2Þ : ðA4Þ

It is easy to see that the denominator of the integrand
vanishes at

q ¼ qr ¼
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2k2

p

h
; ðA5Þ

and the integrand has a pole at this point. This pole has to be
bypassed in the complex plane (of variable q) or, equiv-
alently, the integration path needs to be shifted from the real
axis. The direction of the shift can be found by analyzing
the position of the pole when ζrw is small, but not equal to
zero. This analysis shows that for nonzero ζrw the pole has a
positive imaginary part, which means that in the limit

ζrw → 0 the integration path should be modified as shown
in Fig. 16.
We are interested in calculating the real part of the

impedance, ReðZÞ. Because of the imaginary factor in front
of the integral (A4), the real part of Z is equal to the half
residue of the integrand at q ¼ qr. A straightforward
calculation of the residue yields

ReðZÞ ¼ 2π

c
kξ

1þ ξ
e−2ξb=h

����
ξ¼−1þ

ffiffiffiffiffiffiffiffiffiffiffi
1þk2h2

p : ðA6Þ
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