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For a high-brightness electron beam with high bunch charge traversing a recirculation beam line,
coherent synchrotron radiation and space charge effects may result in microbunching instability (MBI).
Both tracking simulation and Vlasov analysis for an early design of a circulator cooler ring (CCR) for
the Jefferson Lab Electron Ion Collider (JLEIC) reveal significant MBI [Ya. Derbenev and Y. Zhang,
Proceedings of the Workshop on Beam Cooling and Related Topics, COOL’09, Lanzhou, China, 2009
(2009), FRM2MCCO01]. It is envisioned that the MBI could be substantially suppressed by using a
magnetized beam. In this paper we have generalized the existing Vlasov analysis, originally developed for a
nonmagnetized beam (or transversely uncoupled beam), to the description of transport of a magnetized
beam including relevant collective effects. The new formulation is then employed to confirm prediction of
microbunching suppression for a magnetized beam transport in the recirculation arc of a recent JLEIC
energy recovery linac (ERL) based cooler design for electron cooling. It is found that the smearing effect
in the longitudinal beam phase space originates from the large transverse beam size as a nature of the
magnetized beams and becomes effective through the x − z correlation when the correlated distance is
larger than the microbunched scale. As a comparison, MBI analysis of the early design of JLEIC CCR is
also presented in this paper.

DOI: 10.1103/PhysRevAccelBeams.20.054401

I. INTRODUCTION AND MOTIVATION

Beam quality preservation is of general concern in
delivering a high-brightness electron beam through a
transport line or recirculation arc in the design of modern
accelerators. During high-brightness beam transport, initial
small density modulations can be converted into energy
modulations due to short-ranged wakefields or high-
frequency impedances. Then, the energy modulations
can be transformed back to density counterparts down-
stream in dispersive regions. The density-energy conver-
sion, if forming a positive feedback, can result in the
enhancement of modulation amplitudes. This has been
known as the microbunching instability (MBI) (see, for
example, Refs. [1–3]). MBI has been one of the most
challenging issues associated with beam line designs such
as magnetic bunch compressor chicanes for free-electron
lasers or linear colliders. Moreover, it also poses difficulties
in the design of transport lines for recirculating or energy-
recovery-linac (ERL) machines. Any dominant source of
beam performance limitations in such a high-brightness
electron beam transport system must be carefully examined
in order to preserve beam phase-space quality. Among

those, we have already known the longitudinal space
charge force (LSC) and coherent synchrotron radiation
(CSR) can, in particular, drive MBI. The LSC effect stems
from upstream ripples on top of the longitudinal charge
density, and can generate an amount of energy modulation
when the beam traverses along a section of a beam line.
When the beam encounters bending, CSR due to electron
coherent radiation emission inside a bend can have a
significant effect upon further amplifying the induced
density modulations downstream the recirculation arc.
Even without CSR, a recirculation arc with multiple
(usually several to tens of) bending dipoles can convert
the upstream accumulated energy modulation into density
modulation, resulting in deleterious phase space degrada-
tion. A typical transport line in a recirculated machine can
have a long linac or straight section and a large number of
bending dipoles, and thus can potentially incubate such
density-energy conversion along the beam line. The suc-
cessive accumulation and conversion mechanism between
density and energy modulations can result in significant
microbunching amplification.
The motivation of this work originates from the early

design of the circulator cooler ring (CCR) [4] for the
Jefferson Lab Electron Ion Collider (JLEIC) [5]. Utilizing
the conventional electron cooling scheme, the goal of the
JLEIC cooler design is to achieve a significant reduction of
the six-dimensional ion beam emittance and to deliver the
beam with small spot size at the interaction point for high
luminosities. The cooler design thus serves as a critical
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technology element in delivering high luminosities over a
broad center-of-mass energy range in JLEIC. In addition
to the same longitudinal velocity (or Lorentz factor) of the
electron beam as that of an ion beam and satisfying the
optics matching condition in the cooling solenoid section,
general requirements of electron beams for efficient
electron cooling are (1) high bunch charge, (2) low beam
temperature (or small electron beam emittance and energy
spread), and (3) large enough transverse beam size in
order to cool the traversing ion beams. The cooling
electron beam then features a high peak bunch current
and low energy (usually ∼55 MeV to cool the proton
beam at 100 GeV). These usually set stringent require-
ments on electron beam brightness because the high peak
bunch current and low energy would enhance the collec-
tive interaction, and small beam emittance or energy
spread would weaken Landau damping or the phase-space
smearing effect.
Both tracking simulations [6,7] and Vlasov analysis

[8–10] have shown that MBI is a serious concern for the
early CCR design. The one-turn steady-state CSR micro-
bunching gain (to be defined later) is found to be up to 4000
at the modulation wavelength of 360 μm and is even higher
when CSR transient or LSC effects are included. To be
specific, this is mainly due to the high bunch charge
(∼2 nC) and relatively low energy (∼55 MeV) of the
cooling beam circulating in the CCR and because of
ineffective Landau damping due to small beam emittance
(∼3 μm, normalized) and small relative energy spread
(∼10−4). Mitigation of MBI thus becomes an issue for a
high-brightness beam transport in recirculating machines.
Several mitigation schemes have been proposed in the

literature for different machine configurations and can be in
general divided into two categories: those addressing the
transport lattice optics, and those directed at the transported
beam. For the former aspect, the optics impact of beam line
lattice designs on MBI has been recently investigated (see,
for example, Refs. [11–16]). In those beam line designs, the
beam is assumed transversely uncoupled, i.e. nonmagne-
tized. For the latter aspect, Derbenev (see, for example,
Refs. [17,18]) had proposed using a magnetized beam to
improve electron cooling performance and to mitigate
collective effects [19]. A magnetized beam in general
features nonzero canonical angular momentum, thus con-
sidered to be a transversely coupled beam. Concerning
why the JLEIC cooler design considers using a magnetized
beam for cooling, the track of thought can be clarified as
follows: the last two items of the aforementioned require-
ments (small beam emittance and large enough beam size)
for efficient electron cooling seem to be in contradiction, at
least for nonmagnetized beams. For a magnetized beam, it
can be however admitted: the key to efficient electron
cooling lies in the requirement of different descriptions of
beam emittance for a magnetized beam from that for a
nonmagnetized beam.

Through a coordinate transformation from a Cartesian
coordinate frame to a beam rotating frame, the transverse
intrinsic beam spread can be characterized by Larmor and
drift emittances, εL and εd, respectively [20]. The trans-
verse 4D emittance is evaluated as the geometric mean
ε4D ¼ ffiffiffiffiffiffiffiffiffi

εLεd
p

. In Refs. [21–23], the electron cooling
efficiency can be greatly improved by employing a mag-
netized beam. The reason is that, in a strong magnetic field,
the transverse degree of freedom of a magnetized electron
beam motion does not take part in the energy exchange,
because collisions are adiabatically slow relative to the
cyclotron oscillations. That is to say, the electron beam
temperature is indeed determined by the (smaller) Larmor
emittance εL, instead of the total emittance ε4D or the
conventional (Cartesian) emittance εx;y. The transverse
beam size during transport is then related to the drift
emittance εd. In this regard, the low temperature and large
transverse size of the beam may not conflict for a
magnetized beam. The (larger) drift emittance results in
larger transverse beam size and, together with small Larmor
emittance or low electron temperature, can effectively
enhance the cooling efficiency. This clarifies the advantage
of using a magnetized beam for electron cooling considered
in the JLEIC.
A magnetized beam cooling was found to be an

extremely useful technique in obtaining high-brightness
hadron beams with low longitudinal momentum spread
[22]. Another advantage of using magnetized beams has
also been suggested, because it was believed to mitigate
some collective effects such as space charge [24] and MBI
(our primary focus in this paper) because of its relatively
larger transverse beam size. A magnetized beam can be
generated by immersing the cathode in an axial solenoid
magnetic field and thus features a nonzero angular momen-
tum. In general, the magnetized beam is a transversely
coupled beam.
Now that the magnetized beam has a promising yet

qualitative feature of mitigating collective effects, for our
purpose we want to confirm its effectiveness on MBI using
a more quantitative model. There are many challenges in
the theoretical study of MBI for a magnetized beam. In
theory, to the best of our knowledge, there is not yet a
linear Vlasov formalism addressing the microbunching
instability for the transversely coupled beam transport
through a beam line including relevant collective effects.
In numerical simulation, particle tracking simulation (see,
for example, [2]) with inclusion of relevant collective
effects can be valuable for beam dynamics studies. It
allows realistic particle beam distribution and a general
beam line lattice, but also requires careful treatment of
various numerical parameters to ensure numerical conver-
gence before the reliable results are obtained, in particular
for the microbunched phase space dynamics. The time-
domain treatment turns out to be considerably challenging
when MBI becomes severe, e.g. for the early design of the
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JLEIC CCR (see Sec. V). Usually a large number of
simulation particles and long computation time are required
for reaching convergent results of microbunching gains,
and strenuous efforts are needed to do parametric studies
for machine designs or optimization in order to minimize
MBI. In addition to microbunching dynamics, the numeri-
cal setup needs to take care of transverse angular momen-
tum of the beam from its origination to preservation during
beam transport. In practice, many other issues remain to be
solved regarding how a magnetized beam can be generated
with both high bunch charge and low temperature and how
it can be transported while preserving outstanding beam
phase space quality with its magnetization until the cooling
section and so on. In this paper we are interested in the
aforementioned theory and simulation parts, where we have
generalized the existing linear Vlasov analysis, originally
developed for a nonmagnetized beam (or transversely
uncoupled beam) [3,4], to the description of transport of
a magnetized beam including relevant collective effects. We
also developed a new semianalytical Vlasov solver for this
particular feature of the beam.
In the remainder of this paper, we shall introduce the

single-particle beam optics transport and the concept of
beam sigma matrix in Sec. II. To characterize the general
feature of a magnetized (or transversely coupled) beam, we
use the beam sigma matrix, although a set of generalized
Twiss (or Courant-Snyder) parameters can do the same
thing in another way; see e.g. Ref. [25]. Those who have
been familiar with the transition from single-particle optics
to multi-particle optics using beam sigma matrix and its
diagonalization can skim this section. In Sec. III we derive
the integral equations, which govern microbunching for a
general transverse coupled beam in a single-pass system. In
many situations, the coasting beam model serves as an
excellent approximation to further simplify the subsequent
semianalytical calculations. We quantify the microbunch-
ing phenomena by calculating both the density and energy
modulations of a beam along a transport line. Here our
formulation of MBI for a magnetized beam is an extension
of the formulation for an uncoupled beam. For a trans-
versely uncoupled beam and linear optics transport, the
governing equation for density modulation is reduced to
that derived by Heifets, Stupakov, and Krinsky [3] and
Huang and Kim [4]. Section IV briefly summarizes the
impedance models used to simulate CSR and LSC induced
MBI. In Sec. V, we apply the results obtained in the
previous sections to a specialized recirculation arc for
magnetized beam transport in our recent ERL cooler design
for JLEIC. In the same section, as a comparison, MBI
analysis of the early design of the JLEIC CCR for a
nonmagnetized beam is also presented. In spite of the
different beam line designs and distinct natures of the
circulating beams for the CCR and ERL cooler ring, it still
serves informative comparison in view of microbunching
dynamics. The underlying physics of effective suppression

of MBI in a magnetized beam transport is discussed. We
also benchmark our semianalytical Vlasov solutions
against particle tracking by ELEGANT [26]. Both approaches
are in good agreement. In the last section, Sec. VI, the
results of the paper are summarized.

II. BEAM OPTICS OF A TRANSPORT LINE

We begin by defining the six-dimensional phase space
coordinate as

XðsÞ ¼ ðx; x0; y; y0; z; δ; sÞT ð1Þ

where x and y are transverse (horizontal/radial) and vertical
positions, x0 and y0 are the corresponding angular diver-
gences, ð 0Þ≡ d=ds, and z and δ≡ ΔE=E are the (local)
longitudinal coordinate and energy deviation (assuming
z > 0 for the bunch head). All these quantities are mea-
sured with respect to the reference particle and are a
function of the (global) longitudinal path coordinate, s.
The superscript T indicates the transpose operator. For
simplicity, we assume the beam energy is constant through-
out the analysis. For the convenience of subsequent
discussion, we also define two subsets of X as

X2DðsÞ ¼ ðx; x0; sÞT;
X4DðsÞ ¼ ðx; x0; y; y0; sÞT: ð2Þ

To study the single-particle beam optics, we introduce
the (unperturbed) Hamiltonian as [27]

H̄ ¼ −ð1þ δÞ
�
1þ x

ρx
þ y
ρy

��
1 − x02

2
− y02

2

�

− eAs

p0

�
1þ x

ρx
þ y
ρy

�
ð3Þ

where ρx and ρy are bending radii of horizontal and vertical
dipoles, respectively. p0 ¼ eBy;xρx;y is the total momentum
of the reference particle with e the unit charge and By;x are
respectively the transverse vertical and horizontal dipole
fields. As is the longitudinal component of the vector
potential. Note here that throughout the paper we use
the overline on top of a quantity to emphasize that it is an
unperturbed quantity by the beam self-fields. In an accel-
erator with typical magnetic elements, including dipoles,
quadrupoles, and sextupoles, As can be expressed as

As ¼ −ByðsÞx
�
1 − x

2ρx

�
− BxðsÞy

�
1 − y

2ρy

�

þ GnðsÞ
2

ðy2 − x2Þ þGsðsÞxyþ SðsÞ
�
1

2
xy2 − 1

6
x3
�
ð4Þ
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where the first two terms correspond to dipole components,
the third and fourth terms correspond to the normal and
skew quadrupole components respectively, where Gn and
Gs are the quadrupole gradient strengths, and the last term
acts as sextupole components with S as the sextupole
strength.
Substituting Eq. (4) into Eq. (3) leads to the specific

expression of the Hamiltonian for our study. The resultant
Hamiltonian can be separated into linear and nonlinear
parts,

H̄ ¼ H̄linear þ H̄nonlinear ð5Þ

The linear part H̄linear is

H̄linear ¼
1

2

�
Kxx2 þ x02 þ Kyy2 þ y02

þ 2Gsxy − 2
xδ
ρx

− 2
yδ
ρy

�
ð6Þ

where Kx and Ky represent the effective focusing. For
separate dipole and (horizontal focusing) quadrupole,
Kx ¼ ρ−2x þGn and Ky ¼ ρ−2y −Gn. Here we note that
the above formulation can be applicable to the cases with
focusing in combined-function dipoles and with tilt of
quadrupoles. The remainder, of which the discussion is
beyond the scope of this paper, belongs to the nonlinear
part,

H̄nonlinear ¼ − S
Byρx

�
1

2
xy2 − 1

6
x3
�
þ � � � ð7Þ

With the given unperturbed Hamiltonian, the single-
particle motion can be obtained by solving the Hamilton’s
equation of motion,

dX
ds

¼ J
∂H̄
∂X ð8Þ

with J the symplectic matrix

J ¼

0
BBBBBBBB@

0 1 0 0 0 0

−1 0 0 0 0 0

0 0 0 1 0 0

0 0 −1 0 0 0

0 0 0 0 0 1

0 0 0 0 −1 0

1
CCCCCCCCA
: ð9Þ

The general solution of X can be expressed as
XðsÞ ¼ ∘Xð0Þ, whereM is a general map and ∘ represents

the composition operator. To first order, the solution XðsÞ
can be written in matrix form as

XðsÞ ¼ RXð0Þ ð10Þ

where the six-by-six transport matrix R is

R ¼

0
BBBBBBBB@

R11 R12 R13 R14 0 R16

R21 R22 R23 R24 0 R26

R31 R32 R33 R34 0 R36

R41 R42 R43 R44 0 R46

R51 R52 R53 R54 1 R56

0 0 0 0 0 1

1
CCCCCCCCA
: ð11Þ

For a collection of particles, we use the six-dimensional
phase-space distribution function fðX; sÞ to represent the
beam. In many cases, the beam phase space distribution
function is assumed to depend on the phase space coor-
dinates through some quadratic form [28], e.g. a Gaussian
distribution in one dimension fðxÞ ¼ ð ffiffiffiffiffiffi

2π
p

σxÞ−1e−x2=2σ2x .
Disregarding the static offset of the beam core, or defining
the coordinate with respect to this offset, we have
hXðsÞi ¼ 0, where h...i takes the average on the beam,
h...i≡ R ð...ÞfðXÞdX=

R
fðXÞdX. Thus it is convenient to

characterize a beam using the sigma matrix, defined as

ΣðsÞ ¼

0
BBBBBBBBB@

hxxi hxx0i hxyi hxy0i hxzi hxδi
hx0xi hx0x0i hx0yi hx0y0i hx0zi hx0δi
hyxi hyx0i hyyi hyy0i hyzi hyδi
hy0xi hy0x0i hy0yi hy0y0i hy0zi hy0δi
hzxi hzx0i hzyi hzy0i hzzi hzδi
hδxi hδx0i hδyi hδy0i hδzi hδδi

1
CCCCCCCCCA

¼ hXXTi ð12Þ

where hxxi≡ σ2x,hxx0i≡ σxx0 , etc. While we apply the
sigma matrix to a specific beam distribution, i.e.
Gaussian, we note that Eq. (12) is generally applicable
to any type of beam distribution function. Below we shall
use the notations Σ2D ¼ hX2DXT

2Di and Σ4D ¼ hX4DXT
4Di

to specify the transverse two-by-two and four-by-four
subsets of the sigma matrix. The (rms) beam emittance
can be determined by ε6D ¼ ffiffiffiffiffiffiffiffiffiffi

detΣ6
p

for the six-dimensional
case and ε4D ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detΣ4D
4
p

and ε2D ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detΣ2D

p
for four-

and two-dimensional cases, respectively. Using the facts
that XTð0ÞΣ−1ð0ÞXð0Þ is invariant [28] and Eq. (10), the
transport of beam sigma matrix can be formulated as
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ΣðsÞ ¼ RΣð0ÞRT ð13Þ

Since the beam sigma matrix is real and symmetric, it is
diagonalizable. That is to say, there always exists a real V
such that

VΣVT ¼ D ð14Þ

with detðVÞ ¼ 1. In Eq. (14), the matrix V embodies the
eigenvectors and the diagonal matrix D accommodates
the corresponding eigenvalues. After the diagonalization,
the basis coordinate X experiences a coordinate trans-
formation to U with U ¼ VX. It is obvious that this
transformation preserves the invariant (physically, the beam
emittance is unchanged through the transformation). Thus
we have

XTΣ−1X ¼ UTD−1U ð15Þ

The above mathematical treatment is in fact equivalent
to finding a normal form from a set of coordinates. For
example, for two-dimensional subspace ðx; x0Þ, throughout
the coordinate transformation of Eq. (16) below,

V2D ¼

0
B@

1ffiffiffiffi
βx

p 0

αxffiffiffiffi
βx

p ffiffiffiffiffi
βx

p

1
CA ð16Þ

the invariant XT
2DΣ−1

2DX2D ¼ ε−1x ðγxx2 þ 2αxxx0 þ βxx02Þ
can be rewritten as ε−1x ðx̄2 þ x̄02Þ with x̄ ¼ x=

ffiffiffiffiffi
βx

p
and

x̄0 ¼ ðαxxþ βxx0Þ=
ffiffiffiffiffi
βx

p
. Here βx and αx are Twiss [29] (or

Courant-Snyder [30]) parameters and the 2D beam sigma
matrix is parametrized by

Σ2D ¼ εx

�
βx −αx
−αx γx

�
ð17Þ

where εx is the (rms) horizontal geometric emittance of the
beam and γx ¼ ð1þ α2xÞ=βx.
For the subspace ðx; x0; z; δÞ, we have similarly the

transformation given by Eq. (18) [31],

V4D ¼

0
BBBBBB@

1ffiffiffiffi
βx

p 0 0 − ηxffiffiffiffi
βx

p
αxffiffiffiffi
βx

p ffiffiffiffiffi
βx

p
0 − αxηxþβxη

0
xffiffiffiffi

βx
p

η0x −ηx 1 0

0 0 0 1

1
CCCCCCA

ð18Þ

where ηx and η0x are the dispersion function and its
derivative, or R16 and R26 in Eq. (11). In Eqs. (16)
and (18), the Twiss (or Courant-Snyder) parameters are
assumed to be of the beam’s. If a beam is said matched to a

beam line, these parameters are equal to the Twiss functions
at the entrance of the beam line.
In what follows, we shall use the results obtained in

Eqs. (10)–(15) for the development of the Vlasov formal-
ism to describe the evolution of the beam phase space
distribution along a beam line.

III. VLASOV TREATMENT AND
ITS LINEARIZATION

In this section, starting from the fundamental equations,
Eq. (8) and the Vlasov equation [32], we will derive the
governing equations for microbunching development in a
beam line. For a collection of particles, the phase-space
distribution function fðX; sÞ is often employed to describe
the beam behavior. If the collision between particles is
ignored, the evolution can be formulated by the Vlasov
equation in the six-dimensional phase space coordinate
system,

∂f
∂s þ

�∂f
∂X

�
T
J
∂H
∂X ¼ 0 ð19Þ

where H ¼ H̄ þH1 is the total Hamiltonian of the system.
Here the unperturbed Hamiltonian H̄, as given in Eq. (5), is
the pure-optics part (i.e. in the absence of beam self-fields),
and H1 accounts for the collective interactions in the beam.
For the pure optics case (H1 ¼ 0), the unperturbed or

equilibrium solution fðX; sÞ can be totally determined by
its initial condition, i.e.

f¼ f̄ðXðsÞ;sÞ ¼ f̄ðM−1∘XðsÞ; 0Þ ¼ f̄ðXð0Þ; 0Þ≡ f̄0ðX0Þ
ð20Þ

where, for the special case of linear beam transport
H̄ ¼ H̄linear, from Eq. (10), it follows

f̄ðM−1∘XðsÞ; 0Þ ¼ f̄ðR−1ðsÞXðsÞ; 0Þ: ð21Þ

This approach to solving the first-order partial differ-
ential equation is known as the method of characteristics.
To proceed, if we are interested in the onset of beam

instability, we can assume, to first order, f ¼ f̄ þ f1, where
f1 ≪ f̄. Then we substitute f ¼ f̄ þ f1 into Eq. (19) and
retain the terms up to first order. We have the equations for
zeroth order,

∂f̄
∂s þ

�∂f̄
∂X

�T

J
∂H̄
∂X ¼ 0 ð22Þ

and, for the first order,
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∂f1
∂s þ

�∂f1
∂X

�
T
J
∂H̄
∂X − ∂H1

∂z
∂f̄
∂δ ¼ 0. ð23Þ

To our interest we restrict our study to the case where
the collective energy kick is only in the longitudinal
direction. From Hamilton’s equation, ∂H1=∂z¼−dδ=ds.
The energy kick due to the collective force at s ¼ τ can be
explicitly expressed as

dδ
dτ

¼ −Nre
γ

Z
dκ
2π

Z∥
0ðκ; τÞbðκ; τÞeiκzτ ð24Þ

where N is the total number of particles in a beam, re the
classical radius of the electron, γ ≡ E=mec2 the electron
relativistic factor, Z∥

0 the impedance per unit length, κ, as a
dummy variable, representing the spatial frequency con-
tents of the beam, and bðκ; τÞ is the density modulation or
bunching factor, defined as

bðkz; sÞ ¼
1

N

Z
dXe−ikzzsf1ðX; sÞ ð25Þ

where kz is the spatial modulation frequency and λ ¼ 2π=kz
can be considered as the modulation wavelength. A
discussion is deserved here regarding an assumption made
behind Eq. (25). In Eq. (25) the coasting beam approxi-
mation has been made, i.e.

R
dXe−ikzzs f̄ðX; sÞ ¼ 0 for

nonvanishing kz. In many situations, where the character-
istic length of the microbunched structure atop the unper-
turbed distribution is small compared with the full bunch
duration, Eq. (25) can properly characterize the micro-
bunching. The coasting beam approximation here is to be
compared with the bunched-beam model. In the case when
a microbunched structure is comparable to the overall
bunch duration, the spectra of the bulk- and microbunches
can interfere. Then coupling between different spatial
frequencies kz via the finite-bunch length comes into play.
When it comes to critical bunch compression or parasitic
compression [33], the bunched-beam model has to be
considered.
Having integrated Eq. (23) over s along the unperturbed

phase space trajectory and taking advantage of the total
derivative, we have the perturbed phase space distribution
function after the energy kick

f1ðXsÞ≃ fð0Þ1 ðX0Þ −
Zs
0

dτ
∂f̄ðXτÞ

∂δ
dδ
dτ

ð26Þ

where fð0Þ1 ðX0Þ, being the small perturbed distribution
function, is evaluated before the energy kick. This expres-
sion, considered as a form of the linearized Vlasov equation
[4], will be used below and referred to as a fundamental
relation. To proceed, we first need to specify the initial
unperturbed electron phase space distribution. We assume

the Gaussian distribution in the six-dimensional phase
space coordinate,

f̄0ðX0Þ ¼
N

ð2πÞ3 ffiffiffiffiffiffiffiffiffiffiffiffi
detΣ0

p exp

�−1
2

XT
0Σ−1

0 X0

�
ð27Þ

where we remind the reader that the overline atop f0 is used
to denote the unperturbed distribution, and the subscript
“0” stands for the quantity evaluated at s ¼ 0. For an
uncoupled beam, the beam distribution can be parametrized
by the Twiss (or Courant-Snyder) parameters, as expressed
in Eq. (17). The invariant for (x, x0) is

XT
2D;0Σ−1

2DX2D;0 ¼
x20 þ ðβx0x00 þ αx0x0Þ2

εx0βx0
ð28Þ

with detðΣ2DÞ ¼ ε2x0. The invariant for (y, y0) is similar to
Eq. (28) and thus not shown here. Equation (27) becomes

f̄0ðX0Þ ¼
N

ð2πÞ3εx0εy0σz0σδ0

× e
−x2

0
þðβx0x00þαx0x0Þ2

2εx0βx0
−ŷ2

0
þðβy0y00þαy0y0Þ2

2εy0βy0
− z2

0

2σ2
z0

−ðδ2
0
−2hz0δ0Þ
2σ2

δ0

ð29Þ

Here εx0 and εy0 are the rms horizontal and vertical
geometric emittances, respectively. αx0, αy0, βx0 and βy0 are
the initial Twiss (or Courant-Snyder) parameters, σz0 for the
rms bunch length, σδ0 for the rms uncorrelated (or, slice)
relative energy spread, and h ¼ hzδi=σ2z0 for the linear chirp
parameter. When the coasting beam approximation is
made, Eq. (29) becomes

f̄0ðX0Þ≃ n0
ð2πÞ3εx0εy0σδ0

× e
−x2

0
þðβx0x00þαx0x0Þ2

2εx0βx0
−y2

0
þðβy0y00þαy0y0Þ2

2εy0βy0
−ðδ0−hz0Þ2

2σ2
δ0 ð30Þ

where n0 ≃ N=σz0 is the number density of the bunch.
Since we are interested in the MBI along a beam line,

microbunching can be quantified by the Fourier trans-
formation of the z coordinate of the perturbed phase
space distribution function as the density modulation (or,
bunching factor), i.e. Eq. (25). In addition, microbunching
can arise from or result in energy modulation, which is
quantified by the Fourier transformation of the energy-
modulated phase space distribution,

pðkz; sÞ ¼
1

N

Z
dXe−ikzzsðδ − hzÞf1ðX; sÞ: ð31Þ

Note that, in Eqs. (25) and (31), the phase space variables
are evaluated at s. For s ¼ 0, we quantify the initial density
and energy modulations as follows:
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b0ðk0Þ ¼ bðkz; 0Þ ¼
n0
N

Z
dz0

�
Δnðz0Þ
n0

�
e−ik0z0 ð32Þ

and

p0ðk0Þ ¼ pðkz; 0Þ ¼
n0
N

Z
dz0Δδðz0Þe−ik0z0 ð33Þ

where Δδðz0Þ ¼ δ0 − hz0.
Having discussed all the necessary information, our next

goal is to derive the governing equations for bðkz; sÞ and
pðkz; sÞ. By multiplying on both sides of Eq. (26)
with N−1 expð−ikzðsÞzsÞ, and integrating over the six-
dimensional phase space X, we have

bðkz;sÞ¼bð0Þðkz;sÞþ
1

N

Zs
0

dτikzðsÞ
IbðτÞ
γIA

R56ðτ→ sÞ

×
Z

dκ
2π

Z∥
0ðκ;τÞbðκ;τÞ

Z
dXτf̄ðXτÞe−ikzzsðXτÞþiκzτ

ð34Þ

where IbðτÞ ¼ ecn0=CðτÞ is the instantaneous bunch cur-
rent at s ¼ τ with CðτÞ ¼ ½1 − hR56ðτÞ�−1 the bunch
compression factor, and IA is the Alfven current
(∼17 kA). R56ðτ → sÞ ¼ ½RðsÞR−1ðτÞ�56 is the relative
momentum compaction function from τ to s. The first
term on the right–hand side of Eq. (34) is evaluated by

Eq. (25) using f1ðX; sÞ ¼ fð0Þ1 ðXsÞ [an explicit form of

fð0Þ1 ðXsÞ shall be specified later in either Eq. (48) or (49)].
This term corresponds to the bunching evolution in the
absence of collective effects. We want to work out the
second term on the right-hand side of Eq. (34) by tracing
the relevant phase space coordinates at s ¼ τ back to the
initial location (s ¼ 0) with the help of Eqs. (10) and (20).
zs in the exponent of the second term on the right-hand side
of Eq. (34) can be expressed as

zs ¼
X6
j¼1

R5jðτ → sÞXj
τ ¼

X6
j¼1

R5jðsÞXj
0 ð35Þ

where the superscript j indicates the jth component of
the phase space coordinate vector X. Similarly, for zτ, we
have zτ ¼

P
6
j¼1 R5jðτÞXj

0.
Now, in the second term of the right-hand side of

Eq. (34), the integration over X0 (originally over Xτ)
involves the term in the exponent,

− 1

2
XT

0Σ−1
0 X0 − ikzzsðX0Þ þ iκzτðX0Þ

¼ − 1

2
XT

0Σ−1
0 X0 − i

X6
j¼1

ℜ5jðs; τÞXj
0 ð36Þ

where we have defined

ℜ5jðs; τÞ ¼ kzðsÞR5jðsÞ − κðτÞR5jðτÞ;
j ¼ 1; 2; ...; 6. ð37Þ

For a coupled beam, the term XT
0Σ−1

0 X0 in Eq. (36)
usually consists of the mixed terms, such as xx0, xy, xy0, etc.
These mixed terms can very much complicate the integra-
tion. As discussed in Sec. II [see Eq. (15)], the term
XT

0Σ−1
0 X0 can be always diagonalized. We are particularly

interested in the case of transversely coupled beams, i.e.

XT
0Σ−1

0 X0 ¼ XT
4D;0Σ−1

4D;0X4D;0 þ ðδ0−hz0Þ2
σ2δ0

, where X4D;0 ¼
ðx0; x00; y0; y00ÞT . Following Eqs. (14) and (15), the
integration over X4D;0 now becomes that over
U4D ¼ ðu1; u2; u3; u4ÞT , and we have

Z
dX4D;0 exp

�
−1

2
XT

4D;0Σ−1
4D;0X4D;0 − i

X4
j¼1

ℜ5jðs; τÞXj;0

�

¼
Y4
m¼1

Z
dum exp

�
−1

2
D−1

mmu2m − i
X4
j¼1

ℜ5jðs; τÞV−1
jmum

�

¼
Y4
m¼1

ffiffiffiffiffiffiffiffiffiffi
2π

D−1
mm

s
exp

�
− 1

2D−1
mm

�X4
j¼1

ℜ5jðs; τÞV−1
jm

�2�

ð38Þ

where D−1
mm for m ¼ 1 to 4 are diagonal terms of D−1. The

positive definiteness of XT
4D;0Σ−1

4D;0X4D;0 assures that of
UT

4DD
−1U4D, and thus D−1

mm > 0. From Eqs. (34) and (38),
we have

Z
dκ
2π

Z∥
0ðκ; τÞbðκ; τÞ

Z
dX0f̄0ðX0Þe−ikzzsðX0ÞþiκzτðX0Þ

¼ Z∥
0ðkzðτÞ; τÞbðkzðτÞ; τÞfL:D:; s; τg ð39Þ

where the term fL:D:; s; τg characterizes the smearing
effect or Landau damping,

fL:D:; s; τg ¼ exp

�
− 1

2

X4
m¼1

1

D−1
mm

�X4
j¼1

ℜ5jðs; τÞV−1
jm

�2

− 1

2
σ2δ0ℜ56ðs; τÞ

�
ð40Þ

and

ℜ5jðs; τÞ ¼ kzðsÞR5jðsÞ − kzðτÞR5jðτÞ
¼ k0½CðsÞR5jðsÞ − CðτÞR5jðτÞ�;

j ¼ 1; 2; 3; 4; 6 ð41Þ
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where use has been made of the coasting beam approxi-
mation. Note that in Eq. (39),

R
dκ
2π

R
dz0 expf−i½kzðsÞ=

CðsÞ − κðτÞ=CðτÞ�z0g ¼ 1 when κðτÞ ¼ kzðsÞCðτÞ=CðsÞ
and CðτÞ is the bunch compression factor at s ¼ τ.

Note that the matrix V in Eq. (40) has been obtained
when we diagonalize Σ0 (or Σ−1

0 ) [see Eq. (14)]. For the
case of an uncoupled beam, Eq. (40) is reduced to [4]

fL:D:; s; τg ¼ exp

�−1
2

� εx0βx0ðℜ51ðs; τÞ − αx0
βx0

ℜ52ðs; τÞÞ2 þ εx0
βx0

ℜ2
52ðs; τÞþ

εy0βy0ðℜ53ðs; τÞ − αy0
βy0

ℜ54ðs; τÞÞ2 þ εy0
βy0

ℜ2
54ðs; τÞ þ σ2δ0ℜ

2
56ðs; τÞ

��
: ð42Þ

Putting it all together, we arrive at the governing
equation, Eq. (34), for density modulation (or bunching
factor) as a compact integral equation,

bðkz; sÞ ¼ bð0Þðkz; sÞ þ
Zs
0

dτKðτ; sÞbðkz; τÞ ð43Þ

where the kernel function is

Kðτ; sÞ ¼ ikzðsÞ
IbðτÞ
γIA

R56ðτ → sÞZ∥
0ðkz; τÞfL:D:; s; τg

ð44Þ
Similar to the case of density modulation, we can also

obtain the equation for energy modulation from the
fundamental relation, Eq. (26). Multiplying both sides
of Eq. (26) by ðδs − hzsÞ × expð−ikzðsÞzsÞ and integrating
over the six-dimensional phase space X, the resultant
governing equation can be expressed in terms of
Eqs. (25) and (31),

pðkz; sÞ ¼ pð0Þðkz; sÞ þ
Zs
0

dτ½Mðτ; sÞ − Lðτ; sÞ�bðkz; τÞ

ð45Þ

where the kernel functions are

Mðτ; sÞ ¼ ikzðsÞ
IbðτÞ
γIA

σ2δ0R56ðτ → sÞℜ56ðs; τÞZ∥
0ðkz; τÞ

¼ σ2δ0ℜ56ðs; τÞKðτ; sÞ ð46Þ
and

Lðτ; sÞ ¼ IbðτÞ
γIA

Z
∥
0ðkz; τÞ: ð47Þ

Now we have derived two integral equations that govern
the evolution of both density and energy modulations along
a beam line. However we have not yet obtained bð0Þðkz; sÞ
and pð0Þðkz; sÞ. This requires the explicit expressions of the
initial density- and energy-perturbed phase-space distribu-
tion functions. They can be respectively formulated as [see

also Eqs. (30), (32) and (33)]

fð0;dÞ1 ðX0Þ ¼
Δnðz0Þ
n0

f̄0ðX0Þ ð48Þ

and

fð0;eÞ1 ðX0Þ ¼
ðδ0 − hz0ÞΔδðz0Þ

σ2δ0
f̄0ðX0Þ ð49Þ

where a second superscript, (d) or (e), is used to denote
either the density or energy modulation.
Substituting Eqs. (48) and (49) into Eqs. (25) and (31),

we have a total of four combinations,

bð0;dÞðkz; sÞ ¼ b0ðk0ÞfL:D:; s; 0g ð50Þ
bð0;eÞðkz; sÞ ¼ −ikzðsÞR56ðsÞp0ðk0ÞfL:D:; s; 0g ð51Þ

pð0;dÞðkz; sÞ ¼ −ikzðsÞR56ðsÞσ2δ0b0ðk0ÞfL:D:; s; 0g ð52Þ

pð0;eÞðkz; sÞ ¼ ð1 − k2zðsÞR2
56ðsÞσ2δ0Þp0ðk0ÞfL:D:; s; 0g

ð53Þ

which are, respectively, the density modulations due to
initial density [Eq. (50)] and energy [Eq. (51)] modulations,
and energy modulations due to initial density [Eq. (52)] and
energy [Eq. (53)] modulations. Note that Eqs. (50)–(53)
determine the pure-optics evolution of density and energy
modulations. One can see, in the absence of collective
effects, a (downstream) resultant density modulation can
be either inherent, i.e. from Eq. (50), or transformed from
energy modulation via the momentum compaction function
R56 upstream a beam line, i.e. Eq. (51). Similarly, for a
(downstream) energy modulation, it can be either inherent,
Eq. (53), or resulted from finite energy spread in a density-
modulated beam, Eq. (52). In the presence of collective
effects, such as CSR and LSC, they will complicate the
conversion between density and energy modulations. In
total, we have four different combinations, each of
which corresponds to an integral equation derived in
Eqs. (43)–(47). By dividing a beam line into grids, these
four integral equations can be cast into vector/matrix
form as
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2
666664
bðdÞ

bðeÞ

pðdÞ

pðeÞ

3
777775 ¼

0
BBBBB@

ð1 −KÞ−1 0 0 0

0 ð1 −KÞ−1 0 0

ðM −LÞð1 −KÞ−1 0 1 0

0 ðM −LÞð1 −KÞ−1 0 1

1
CCCCCA

4M×4M

2
666664

bð0;dÞ

bð0;eÞ
0

pð0;dÞ
0

pð0;eÞ
0

3
777775 ð54Þ

where b≡ ½bðs1Þ; bðs2Þ; ...; bðsMÞ�T and p≡ ½pðs1Þ;
pðs2Þ; ...; pðsMÞ�T , and siði ¼ 1; 2; ...;MÞ represents the
grid along a beam line (s1 ¼ 0 and sM ¼ sf denote the
entrance and the exit of a beam line). 1 is the M-by-M
identity matrix, 0 is the zero matrix, and K, L, and M are
the matrix representations of Eqs. (44), (46), and (47). By
virtue of the matrix language, Eq. (43) has been expressed
as b ¼ bð0Þ þKb and Eq. (45) as p ¼ pð0Þ þ ðM −LÞb.
The existence of the inverse matrix is assumed. Equa-
tion (54) can be expressed in a more compact form as

�
b

p

�
¼

� ð1 −KÞ−1 0

ðM −LÞð1 −KÞ−1 1

��
bð0Þ

pð0Þ

�
ð55Þ

where b≡ bðdÞ þ bðeÞ and p≡ pðdÞ þ pðeÞ.
The quantity of particular interest is the microbunching

gain, defined as the modular ratio of density modulations at
a certain location s to the initial location s ¼ 0,

GðsÞ≡
				 bðkz; sÞ
bð0Þðk0; 0Þ

				: ð56Þ

When it comes to different types of modulations, e.g. the
density-to-energy or energy-to-density microbunching, we
directly refer to values of bðkz; sÞ and pðkz; sÞ, evaluated in
units of bð0Þðk0; 0Þ or pð0Þðk0; 0Þ.
To facilitate the discussion, in what follows we callGðsÞ,

the gain function, which is a function of s for a given
modulation wave number, and refer to GfðλÞ ¼ Gðs ¼ sf;
λ ¼ 2π=kzÞ as the gain spectrum, a function of modulation
wavelength at the exit (the subscript “f” indicates the exit
of a beam line).

IV. IMPEDANCE MODELS

In this section we summarize relevant collective effects
considered in this paper, which include CSR and LSC
effects. For an electron beam traversing a finite-length
dipole, CSR can have both steady-state and transient effects.
In addition, when a beam goes through a long transport line,
LSC can have a significant effect on accumulating energy
modulations. Here we quote the relevant impedance expres-
sions in cgs units without derivation:

A. 1D Free-space CSR

For a relativistic electron beam (β → 1, but γ < ∞)
traversing a bending dipole, the 1D free-space steady-
state CSR impedance per unit length can be expressed
as [34]

Re½Zs:s:NUR
CSR ðkzðsÞ;sÞ�

¼−2πk1=3z ðsÞ
jρðsÞj2=3 Ai0ðxÞþkzðsÞπ

γ2

�Zx
0

AiðςÞdς−1

3

�

Im½Zs:s:NUR
CSR ðkzðsÞ;sÞ�

≃2πk1=3z ðsÞ
jρðsÞj2=3

�
1

3
Bi0ðxÞþ

Zx
0

½Ai0ðxÞBiðtÞ−AiðtÞBi0ðxÞ�dt
�

ð57Þ

where x ¼ ðkzðsÞjρðsÞjÞ2=3=γ2, kz ¼ 2π=λ is the modula-
tion wave number, ρðsÞ is the bending radius, and Ai and Bi
are Airy functions. Under ultrarelativistic approximation
(β → 1; γ → ∞), Eq. (57) is reduced to the well-known
expression [35,36]

Zs:s:UR
CSR ½kzðsÞ; s� ¼

−ik1=3z ðsÞA
jρðsÞj2=3 ð58Þ

where A ¼ −2π½Bi0ð0Þ=3þ iAi0ð0Þ� ≈ −0.94þ 1.63i.
Prior to reaching the steady state, the beam entering a

bend from a straight section would experience the so-called
entrance transient state, where the impedance per unit
length can be obtained by Laplace transformation of the
corresponding wake field [37–39]:

Zent
CSR½kzðsÞ; s� ¼

−4
s�

e−4iμðsÞ þ 4

3s�
½iμðsÞ�1=3Γ

�−1
3

; iμðsÞ
�

ð59Þ

where μðsÞ ¼ kzðsÞzLðsÞ, s� is the longitudinal coordinate
measured from the dipole entrance, zL ¼ ðs�Þ3=24ρðsÞ2,
and Γ is the upper incomplete Gamma function.
There are also CSR exit transient effects when a beam

exits from a dipole. For the case with CSR fields generated
from an upstream electron (at retarded time, traveling along
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the upstream straight section) propagating across the dipole
to downstream straight section, the corresponding imped-
ance per unit length can be similarly obtained as Eq. (59)
by Laplace transformation of the corresponding wake field
(Case C in Ref. [39]):

ZC
CSR½kzðsÞ; s� ¼

−4
Lb þ 2s�

e
−ikzðsÞL2b
6jρðsÞj2 ðLbþ3s�Þ ð60Þ

where s� is the longitudinal coordinate measured from the
dipole exit and Lb is the dipole length. Other quantities are
defined the same as above.
For the impedance expression of the case where CSR

fields are generated from an electron (at retarded time)
within a dipole propagating downstream the straight
section, we adopt the following expression for the CSR
drift impedance [40]:

Zdrif
CSR½kzðsÞ; s� ¼

4

ρ

Zθm
0

dϑ
dfðs�; ϑÞ

dϑ
e−ikzðsÞΔzðs�;ϑÞ ð61Þ

where

fðs�; ϑÞ ¼
2
γ2
ðs�ρ þ ϑÞ þ ϑ2ð2s�ρ þ ϑÞ

4
γ2
ðs�ρ þ ϑÞ2 þ ϑ2ð2s�ρ þ ϑÞ2 ð62Þ

and

Δzðs�; ϑÞ ¼ s� þ ρϑ

2γ2
þ β

ρϑ3

24

4s� þ ρϑ

s� þ ρϑ
ð63Þ

where s� is again the longitudinal coordinate measured
from the exit of the dipole and θm is the angle of a bending
dipole with radius ρ:β and γ are relativistic Lorentz factors.
Equation (61) is valid for nonultrarelativistic beam energy.
The reader is referred to Ref. [40] for the detailed derivation
and analysis. Moreover, in the subsequent Vlasov calcu-
lation we only include the exit transient effects [Eqs. (60)
and (61)] at a nearby upstream bend.
In the above impedance expressions, the impedance

depends on the beam line coordinate s and the wave number
kz. Also the wave number depends again on the beam line
coordinate, e.g. if bunch compression is involved, and the
impedance is evaluated for a fixed wave number.

B. LSC in Free Space

Below we adopt the LSC impedance expression derived
in Ref. [41]. The beam is assumed transversely uniform
with a circular cross section of radius rb [41],

Zon-axis
LSC ½kzðsÞ; s� ¼

4i
γrbðsÞ

1 − ξK1ðξÞ
ξ

ð64Þ

where ξ ¼ kzðsÞrbðsÞ=γ and rbðsÞ ≈ 1.747
2

ðσxðsÞ þ σyðsÞÞ
[42].
In Eq. (64), the longitudinal field does neither take into

account the offset of the bunch centroid nor the transverse
dependence of the field along the bunch. We note that this
expression is approximate and may not reflect the most
general case.
The numerical algorithm of implementing Eq. (54) for

density-to-density modulation with inclusion of the above
analytical impedance models is detailed in Ref. [43]. The
remaining three aspects are similar and we do not repeat
them here. The only difference from those described in
Ref. [43] is that the initial conditions for the beam are no
longer Twiss parameters but the beam sigma matrix Σ0.
Diagonalization of the beam sigma matrix, Eqs. (14)–(15),
can be done using standard matrix manipulation tools, e.g.
available in matlab.

V. EXAMPLES

In this section we apply the results obtained in the
previous sections to two example lattices. The first example
is the early design of JLEIC CCR [44], and the second
one is our recent ERL cooler ring design [45]. The two
examples have different beam line designs and distinct
natures of the circulating electron beams. For CCR, the
beam is nonmagnetized and MBI was not much taken care
of in the early design. For the ERL cooler ring, the beam is
magnetized and the steering magnets are designed accord-
ing to Ref. [46]. Presenting the first example here serves
two informative purposes. In view of microbunching
dynamics, the CCR features an ultrahigh gain, with
maximum steady-state CSR gain up to 4000 at λ ≈
360 μm and even higher when LSC is included, as well
as significant longitudinal phase space fragmentation [6,7].
In contrast, the arc design of the ERL cooler ring is free
from MBI, with maximum gain around unity. From the
viewpoint of a sanity test in our newly developed semi-
analytical Vlasov solver, we use this CCR lattice to confirm
that our newly developed solver based on Eq. (54) indeed
gives identical results to those obtained by our previous one
[43], specialized for nonmagnetized beam transport. The
underlying physics of effective suppression of MBI in a
magnetized beam transport is then discussed. We also
carefully benchmark our semianalytical Vlasov solutions
against particle tracking by ELEGANT [26]. Both approaches
are found in good agreement.

A. Previous CCR design for nonmagnetized cooling

The linear optics design was completed as the circulating
cooler ring for electron cooling in the ion collider ring at the
Medium-energy Electron-Ion Collider (MEIC) project [44]
at JLab (now JLEIC [5]). It has been known that main-
taining excellent phase space quality for the electron beam
is crucial to the electron cooling efficiency. This

TSAI, DERBENEV, DOUGLAS, LI, and TENNANT PHYS. REV. ACCEL. BEAMS 20, 054401 (2017)

054401-10



preliminary design is based upon the topological structure
of the figure-8 collider ring, as illustrated in Fig. 1[44].
Such design of an electron cooler ring is characteristic of
two 30-m cooling solenoids across the center of the
electron collider ring (not shown here) and composed of
horizontal dipoles around the four corners and vertical
bending dipoles around the two diagonal corners to meet
the requirement of vertically stacked figure-8 rings [44].
The circulating electron beam was initially assumed
uncoupled in transverse planes. Note that the transverse
beam dynamics of horizontal and vertical planes are
coupled inside and decoupled outside the cooling sole-
noids. In the case with a mere CSR effect, which only
occurs within bending dipoles, we can artificially take out
the solenoid sections in the simulations without affecting
the microbunching dynamics. If LSC is to be considered,
the two 30-m cooling solenoids should be included.
Table I lists the initial beam and Twiss parameters for the

CCR beam line design. The steady-state CSR gain func-
tions GðsÞ for three different modulation wavelengths are
shown in Fig. 2 where we found the microbunching gain
with λ ¼ 350 μm is much larger compared with the other
two cases λ ¼ 100 and 1000 μm, particularly at the last
several bends. Because of the frequency dependence of the
impedances [see Eqs. (57)–(64)], a more thorough consid-
eration would be to scan a spectral range of modulation
wavelengths. Figure 3 shows the steady-state CSR gain
spectrum GfðλÞ as a function of initial modulation wave-
lengths at the exit of the lattice. In this figure, the same
result with two different theoretical formulations is
obtained; the red curve, obtained by the formulation
derived in Sec. III, and the blue curve, from our previously
developed semianalytical Vlasov solver [43] for nonmag-
netized beams. This numerically verifies the equivalence
of the generalized formulation to the existing one for the
special case of transversely uncoupled beams. One can see

in Figs. 2 and 3 that the shorter wavelengths enhance the
Landau damping or smearing in phase space [through
Eq. (40) or (42)] while the longer wavelengths feature
negligible CSR effect [see Eqs. (57) and (58)]. Though not
shown here, our Vlasov analysis indicates that, with
inclusion of CSR transient effects [Eqs. (59)–(63)], the
maximum gain can be at least two orders of magnitude
larger than the steady-state CSR gain. We notice that with
the huge gain shown in Figs. 2 and 3 the microbunching
mechanism may enter a nonlinear regime where the
linearized Vlasov solutions are no longer valid from a
practical point of view. This situation is however beyond
the scope of this paper. Here we note that, due to the
ultrahigh gain for JLEIC CCR, particle tracking simulation
by ELEGANT imposes a significant challenge to obtain
convergent results. To compare with the linear theory (or
at the onset of MBI), the numerically imposed density
modulation needs to be small enough to remain in the linear
regimewhile such modulation requires it to be large enough
to rise above the numerical noise originated from the
limited number of simulation particles. This implies that
a large number of simulation particles and long

TABLE I. Initial beam parameters for CCR used in the
simulation.

Name Value Unit

Beam energy 54 MeV
Bunch charge 2 nC
Initial peak bunch current 60 A
Transverse normalized emittance 3 μm
Compression factor 1
Chirp 0 m−1
Energy spread (uncorrelated) 1.0 × 10−4

FIG. 1. Schematic layout of the early CCR design for the JLEIC [44].
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computation time are required for reaching convergent
results of microbunching gain. Thus, to validate our
semianalytical results against ELEGANT, and to ease the
numerical difficulties with ELEGANT tracking, we inten-
tionally increase the transverse beam emittances ten times
larger than the nominal values shown in Table I (i.e.
εnx ¼ εny ¼ 30 μm) because larger emittance is known
to induce more Landau damping, resulting in lower micro-
bunching gain. Lower gain can thus relieve the stringent
requirement of imposing small initial density modulation as
well as large number of simulation particles, thus relaxing

numerical difficulties. The benchmark results of CCR for
the case with εnx ¼ εny ¼ 30 μm are shown in the
Appendix. We remind the reader that in both our semi-
analytical Vlasov analysis and ELEGANT tracking, we only
consider the CSR microbunching instability in a single turn
for the CCR. Our study indicates that the preliminary
design of CCR for high-energy electron cooling is at risk of
microbunching instability; an improved design is required
to suppress such instability and/or alternative beam trans-
port schemes should be considered in order to compensate
and to circulate the electron beam as many turns as possible
while maintaining the high phase space quality of the
electron beam required by electron cooling efficiency.
Out investigation shows that, for JLEIC CCR, due to the

high bunch charge (∼2 nC) and small beam emittance as
well as low energy spread (∼10−4), the CSR-induced
microbunching quickly accumulates and reaches a maxi-
mum gain ∼4000 at λ ≈ 360 μm in the design. Figure 4
illustrates the longitudinal phase space fragmentation due
to CSR using ELEGANT. In the ELEGANT tracking simu-
lation, we use 3 × 106 macroparticles with quiet start. The
numerical setting to properly simulate CSR effects within
bending dipoles follows that described in Ref. [46]. The
number of macroparticles employed here is far from
enough to produce the quantitatively converged results.
Nevertheless, Fig. 4 serves an informative purpose to
qualitatively demonstrate the phase space modulation
due to severe CSR effects on microbunching.

B. ERL cooler design for magnetized cooling

In this subsection we perform the microbunching analy-
ses by considering our recent arc design of the JLEIC ERL
cooler ring for magnetized beam cooling. Figure 5 shows
the schematic layout of the recent ERL cooler ring design
for JLEIC [45]. This design is different from the previous
CCR design [1,44], in which the beam was nonmagnetized
and the electron beam (∼2 nC with peak current 60 A) was
targeted for strong cooling. This current ERL cooler ring
design is however to transport magnetized beams and so far
designed for weak cooling [21]. A beam with magnetiza-
tion is generated in the magnetized gun, immersed in a
solenoid. Then the beam is injected in the energy-recovered
linac and accelerated to about 55 MeV. The choice of the

FIG. 4. Longitudinal phase space distributions for the JLEIC CCR: left: initial quiet beam; right: when the beam circulates one turn.
Note that z > 0 is for bunch head.
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FIG. 3. CSR gain spectra as a function of initial modulation
wavelengths for the JLEIC CCR lattice. Gf is evaluated as one-
turn microbunching gain. The red curve is obtained by the
formulation developed in this paper, while the blue curve is from
our previously developed semianalytical Vlasov solver [43] for
nonmagnetized beams.
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FIG. 2. CSR gain functions GðsÞ for MEIC CCR lattice: (red)
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energy is for the purpose of downstream electron cooling of
ion beams. The two arcs, presumed identical, are designed
to transport and decompress/compress the beam bunch
before/after the cooling section. Table II summarizes the
beam parameters at the entrance of the first arc for our
simulation. This achromatic arc is composed of eight cells,
and each cell is constructed by two inward and one outward
bend. The total bending angle is 180°. Each bending dipole
is designed as a half-indexed [47] and combined-function
dipole. The arc lattice serves to transport the beam, to
match toward the downstream solenoid entrance, as well as
to preserve the axial symmetry [48].
Figure 6 shows the simulation results for this example

arc. An initial nonzero chirp is imposed on the beam so that
the bunch is decompressed while it traverses through the
arc. The evolution of bunch current is shown in Fig. 6(a).
The microbunching gain function, defined in Eq. (56), is
illustrated in Fig. 6(b) for λ ¼ 300 μm. In this figure, the
dots are obtained from ELEGANT tracking with inclusion of
1D steady-state CSR effect. In ELEGANT, a total of 16 × 106

simulation particles are used and 700 bins are set to ensure
the convergence of the results and the minimum resolved
modulation wavelength down to 50 μm. The input beam
phase-space distribution for particle tracking is prepared
according to Ref. [49]. The data postprocessing follows that
described in Ref. [50] and for detailed procedures we refer
the reader to Ref. [51]. The overall amplification ratio
smaller or around unity indicates that the beam during
transport is free from MBI. Figure 6(c) shows the micro-
bunching gain spectra at the exit of the arc as a function of

initial modulation wavelength. This figure shows nearly
absence of microbunching in the beam transport even with
inclusion of both CSR and LSC. From Figs. 6(b) and 6(c),
we find both our newly developed semianalytical Vlasov
solutions and particle tracking simulations agree with each
other. The analysis shows that there is basically no gain
growth along the arc. That is, the phase space quality of the
beam is well preserved in the transport arc. As a reference,
Fig. 6(d) indicates the validity of the 1-D CSR model [36]
used in the simulation, where the so-called Derbenev ratio
is defined as κ ¼ σx=λ2=3ρ1=3 [not to be confused with the
dummy variable used in Eq. (24)]. This ratio is assumed to
be small when the 1D model is valid. When the ratio is no
longer small, the transverse variation of the CSR field needs
to be taken into account, and a 2D CSR analysis shall be
required [52,53].
Compared to a nonmagnetized beam, for example the

beam in the JLEIC CCR, a general feature of a magnetized
beam is the (much) larger transverse beam size because
of its intrinsic angular momentum. This larger beam size
can have an effective smearing effect at locations where
R51ðsÞσxðsÞ > λðsÞ. In this magnetized beam transport arc
example, the maximum correlated length R51σx ≈ 2 mm, is
much longer than the modulation wavelength of interest.
The smearing mechanism is similar to that due to the
finite energy spread, which becomes effective when
R56ðsÞσδðsÞ > λðsÞ. In the example of the magnetized
ERL cooler arc design, it is found that the effect of
smearing in the longitudinal plane, R56σδ ≈ 80 μm, is
negligible, compared with several to tens μm [Fig. 6(c)].
Therefore, it is the larger transverse beam size that helps
mitigate the MBI in this arc. Compared with the first
example of CCR, the smearing distances R51σx ≈ 10 μm
and R56σδ ≈ 30 μm are found to be much shorter than the
typical microbunched structure at λ ≈ 360 μm, where the
maximal gain of CCR occurs. Thus, the absence of
effective Landau damping or smearing may be expected
and can lead to MBI.
As discussed in Sec. III, the microbunching can be

seeded by either initial density or energy modulation. The
resultant microbunched structure can reside in the forms of
density and energy modulations. Thus the full consider-
ation should be given to the total four types of conversion

TABLE II. Initial beam parameters for JLEIC ERL magnetized
beam transport.

Name Value Unit

Beam energy 55 MeV
Bunch charge 420 pC
Initial peak bunch current 22.5 A
4D geometric emittance 0.11 μm
Compression factor 0.28
Chirp 4.465 m−1
Energy spread (uncorrelated) 1.5 × 10−4

FIG. 5. Schematic layout of the JLEIC ERL cooler design [45].
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mechanisms. Shown in Fig. 7, we found the spectral
behavior of the modulations is largely from the pure optics
of the beam transport. The seemingly large number shown
in Fig. 7(c) as energy-to-density ratio may not really cause
significant microbunching because the initial energy modu-
lation can be small. Let us presume the energy modulation
is of the same order as the uncorrelated energy spread 10−4
at 150 μm; the resultant density modulation due to energy-
to-density conversion at the exit of the arc is 0.4, which is
considered negligible. Our preliminary particle tracking
simulation with inclusion of space charge and relevant
collective effects shows no evidence of energy modulation
in the beam phase space. This better situation, however,

requires further start-to-end investigation once a full ring
lattice is available.
To end this section, we evaluate the beam current

dependence of the maximal microbunching gain for the
magnetized beam transport arc of the JLEIC ERL cooler
design. For the moment, let us neglect the state-of-art
technology that thus far can be achieved in the upstream
magnetized gun system and ignore other types of collective
effects, and only focus on MBI due to CSR and LSC
[Eqs. (57)–(64)]. Figure 8 shows the current dependence
of maximum microbunching gain, in which we find the
overall gain smaller than two can be retained up to the
(peak) bunch current ∼100 A, five times higher than

FIG. 7. Microbunching gain spectra for (a) density-to-density; (b) density-to-energy; (c) energy-to-density; and (d) energy-to-energy
modulation. Note that in the figures the resultant modulations are evaluated in units of initial modulations.

FIG. 6. (a) Bunch decompression along the arc; (b) microbunching gain function GðsÞ for λ ¼ 300 μm; (c) gain spectrum;
(d) Derbenev ratio as a function of s. Red dots represent ELEGANT tracking with steady-state (ss) CSR effect.
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the nominal value summarized in Table II. This, to some
extent, demonstrates the effectiveness of utilizing the
magnetized beam for mitigation of MBI. The advantage
of using beam magnetization on microbunching suppres-
sion can be seen much more prominently for the strong
cooling in next-iterative cooler ring design when the bunch
charge is increased.

VI. SUMMARY

In this paper we have reviewed the single-particle beam
optics and applied the concept of sigma matrix to character-
ize a beam with correlation between any dimensions.
Dodging the usage of Twiss (or Courant-Snyder) para-
metrization in a coupled beam, we take advantage of
diagonalizing the beam sigma matrix and find it can greatly
simplify the formulation for Vlasov analysis of micro-
bunching for a magnetized beam. A set of governing
equations for microbunching analysis of general coupled
beams was derived. The theoretical treatment we followed
is still largely in the spirit of Refs. [3,4]. Solutions to the
integral equations have been found to reduce to the existing
well-known formulas for nonmagnetized beams and have
been benchmarked against particle tracking simulation. The
results all show good agreement. An arc lattice, designed to
transport a magnetized beam for downstream ERL electron
cooling of the JLEIC, is shown to have nearly no MBI.
As a comparison, MBI analysis of the early CCR design is
also presented. Suppression of microbunching is found
due to effective smearing of relatively large transverse
beam size via the transverse-longitudinal correlation R51

along the beam line. This smearing takes advantage of a
typical feature of beam magnetization. Then a more
thorough consideration is taken for both density and energy
modulations. More complete analysis will be carried out
when a full-ring lattice is available.
Finally we note that our semianalytical Vlasov solver can

be used for quick estimates of microbunching in a general
coupled beam transport, and for subsequent optimization
of beam line design when MBI is a concern. This can be

done without tracking a large number of simulation
particles [43,54].
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APPENDIX: GAIN FUNCTION AND SPECTRUM
FOR JLEIC CCR WITH εnx = εny = 30 μm

Because of the ultrahigh gain for the JLEIC CCR with
nominal beam parameters (see Table I), to validate our
semianalytical solutions against ELEGANT tracking results,
we increase the transverse beam emittances to ten times the
nominal values, i.e. εnx ¼ εny ¼ 30 μm, so that we can ease
the numerical requirements of the number of macropar-
ticles for preparing the initial (modulated) phase-space
distributions.
With the increased transverse emittances while keeping

other beam and lattice parameters the same, we plot the
steady-state CSR gain function GðsÞ and spectrum GfðλÞ
together with ELEGANT tracking results shown in Figs. 9
and 10. In ELEGANT, 50 × 106 macroparticles were used
and 10000 bins employed in simulating CSR effects within
dipoles. Both our semianalytical Vlasov results and
ELEGANT tracking are in excellent agreement. This vali-
dates our semianalytical Vlasov calculation.
Here we have an interesting observation that, in almost-

no-gain regions, the bunching factors (or, microbunching
gains) extracted from particle tracking simulation exhibit
some fluctuations. These regions happen to be located at
larger dispersive locations; thus transverse coordinates
(e.g. x and x0) can be coupled to the longitudinal coordinate
z by nonzero energy displacement (via R16 and R26,
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FIG. 8. Initial current dependence of the maximal microbunch-
ing gains for the example arc. In the simulation we have included
CSR and LSC effects.

FIG. 9. Steady-state CSR gain functions GðsÞ for the JLEIC
CCR lattice. Note here that λ ¼ 300 μm for both the semi-
analytical solution and ELEGANT tracking. In elegant tracking we
impose an initial density modulation amplitude 0.2% on a flattop
density distribution.
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or R51 and R52). In general, zs ¼ R51x0 þ R52x00 þ R53y0þ
R54y00 þ z0 þ R56δ0, the nonzero dispersion thus smears
out the z coordinate and causes the (projected) bunch
distribution to be not as smooth as those at other locations.
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