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Sector magnets or transverse electromagnetic fields
in cylindrical coordinates
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Laplace’s equation is considered for scalar and vector potentials describing electric or magnetic fields in
cylindrical coordinates, with invariance along the azimuthal coordinate. A series of special functions are
found which, when expanded to lowest order in power series in radial and vertical coordinates, replicate
harmonic polynomials in two variables. These functions are based on radial harmonics found by Edwin M.
McMillan forty years ago. In addition to McMillan’s harmonics, a second family of radial harmonics is
introduced to provide a symmetric description between electric and magnetic fields and to describe fields
and potentials in terms of the same functions. Formulas are provided which relate any transverse fields
specified by the coefficients in the power series expansion in radial or vertical planes in cylindrical
coordinates with the set of new functions. This result is important for potential theory and for theoretical
study, design and proper modeling of sector dipoles, combined function dipoles and any general sector
element for accelerator physics. All results are presented in connection with these problems.
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I. INTRODUCTION

The description of sector magnets, any curved magnet
symmetric along its azimuthal cylindrical coordinate (longi-
tudinal coordinate in accelerator physics) is an important
issue. Every modern accelerator code includes such ele-
ments, the most important being combined function dipoles.
A widely used method, which goes back to Karl Brown’s
1968 paper [1], is based on a solution of Laplace’s equation
for a scalar potential using a power series in cylindrical
coordinates. A similar approach applied to Laplace’s equa-
tion for the longitudinal component of a vector potential
can be found for example in [2]. The same approach appears
in more recent books, e.g. in great detail in [3].

Two major bottlenecks should be noticed. First, if one
looks for a solution in the form of a series, then these series
must be truncated. In our case truncation means that
potentials no longer satisfy Laplace’s equation. (Of course
potentials can “satisfy” Laplace’s equation up to any
desired order by keeping more and more terms in the
expansion.) More importantly, the recurrence equation is
undetermined. In every new order of recurrence one has to
assign an arbitrary constant, which will affect all other
higher order terms. This ambiguity leads to the fact that
there is no preferred, unique choice of basis functions; it
makes it difficult to compare accelerator codes, since
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different assumptions might be used for representations
of basis functions.

This indeterminacy has a simple geometrical illustration.
Looking for a field with a pure normal dipole component
on a circular equilibrium orbit in lowest order, one can
come up with an almost arbitrary shape of the magnet’s
north pole if its south pole is symmetric with respect to the
midplane. In the case of a dipole, the series can be truncated
by keeping only its dipole component. For higher order
multipoles in cylindrical coordinates truncation without
violation of Laplace’s equation is not possible.

While working on an implementation of sector magnets
for Synergia, I found assumptions which let me sum series
for pure electric and magnetic skew and normal multipoles.
Looking further for symmetry in the description allowed
me to generate a family of solutions in which all the series
could be summed, so that no truncation was required.
While discussing my results with Sergei Nagaitsev, he
brought my attention to an article by McMillan written in
1975 [4]. As I found later, the same result was independ-
ently obtained by Mane and published in the same journal
about 20 years later [5] without citing McMillan’s original
work. It made me want to write this article in order to bring
attention back to these forgotten results.

Joining my results to McMillan’s, I would like to present a
new representation for multipole expansions in cylindrical
coordinates. Any transverse field can be expanded in terms
of these functions and related to power series expansions
in horizontal or vertical planes. The new approach does not
contradict previous results but embraces them. The ambi-
guity in choice of coefficients and the problem of truncation
are resolved. Thus it can be employed for theoretical studies,
design and simulation of sector magnets.

Published by the American Physical Society
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The paper is structured as follows. Section II provides
the expansion of fields in multipoles for cases with zero and
constant curvatures. The connection between this approach
and Taylor expansion is provided at the end of this section.
Appendices A and B describe global and curvilinear
Frenet-Serret coordinate systems including general equa-
tions of motion for a particle in it. The case of pure
transverse electric or magnetic fields is described in
Secs. B1 and B 2. Appendix C contains the main differ-
ential relations used in this article. Finally, Appendixes D-F
are supplementary materials with harmonics, fields, poten-
tials and Taylor series.

II. EXPANSION OF TRANSVERSE
ELECTROMAGNETIC FIELDS

In appendixes A and B we provided dynamical equations
of motion without specifying how to represent electromag-
netic fields. In the next two subsections we will discuss the
multipole field expansion for the two most important types
of elements: R-element for « = 0 and S-element defined for
k = const = 1/Ry, see Fig. 1.

“R-" stands for “rectangular.” This element is the one
with (g, g2, q3) simply being a right-handed Cartesian
coordinate system, which we will denote as (x, y, z). Fields
in such elements are invariant along the z axis, and the
elements usually serve as quadrupoles, sextupoles, octu-
poles or combined function correctors. In addition one can
design pure R-dipoles, while combined function bending

Global R—element
coordinates q,=x
! n
Cylindrical
coordinates
e
Frenet—Serret 9,7y @ B R S Y . .
frame q;TZ b t
E—
Equilibrium
orbit
i S—element

FIG. 1. TIllustration of R- and S-elements. Elements are shown
in brown. Global curvilinear coordinates with associated grid
lines are shown in black. Black dashed line represents an
equilibrium orbit. An example of the Frenet-Serret frame attached
to an equilibrium orbit is drawn in blue colors. For S-element, an
additional right-handed normalized cylindrical system is added
and shown in cyan.

magnets are exotic and very complicated since the equi-
librium orbit will not coincide with the axis of symmetry.

S-element is the element defined with the natural sector
coordinate system. Defining the set of normalized coor-
dinates (x = ¢;/Ro, ¥ = ¢»/Ro, 2 = g3/Rp), one can see
that it simply can be related to normalized right-handed
cylindrical coordinates (p = 1 + x, y, 8 = z/R;) and thus
all fields are invariant along azimuthal coordinate 6.
S-elements are suitable for the design of combined function
bending magnets, since in contrast to R-elements, the
equilibrium orbit follows along 6.

A. Multipoles in Cartesian coordinates

In Cartesian coordinates, Laplace’s equations for trans-
verse electro- and magnetostatic fields are in the same form
which significantly simplifies the problem:

PA, PA\ .
ALA = (W—l_a—yz)ez =0.

Introduction of complex variables allows a very compact
description of this problem with a unified description of
electric and magnetic fields [6]. Suppose we have a hol-
omorphic function of complex variable Z = x + iy, which
we will call a complex scalar potential, whose real part is
defined to be the longitudinal component of a vector potential
and whose imaginary part is the electric scalar potential,

Q(Z2) =A,(x,y) +iD(x,y).

Since the real and imaginary parts of any holomorphic
function are harmonic functions, A, and @ automatically
satisfy Laplace’s equation. Indeed, suppose we have a vector
field F = (F,, F,). Introducing the Wirtinger derivatives,

o _1(o oy o0 1(0 .0
0Z 2\ox Oy 0z 2\ox  9y)’

one can write

%o,
0z

0Q

oz~ %)

where the first equation is the Cauchy-Riemann condition
for Q, which guarantees that this field can be implemented
via either magnetic or electric potentials:

o® 0A
F = —_—- = <
* ox Oy’
0D 0A
== %%
Y dy Ox
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TABLE 1. Formulas for the scalar potential, longitudinal
component of the vector potential and field components for pure
normal and skew 2n-poles in Cartesian coordinates.

Normal Skew

o = —C, Br; oM =-C, %

Al = T, A A" =G

—)((n) _ 6” (fiil])l E}((n) = Qn %
W~ A (n) _ B,_

Fy' =C, (n—ll); £y =-C, (”_11)!

The second equation defines the complex function of field
components such that

F,=-3F(Z) and F,=-NF(Z),

which all together are equivalent to F = —V® =V x A.
The complex function F(Z) is the holomorphic function
again and the Cauchy-Riemann equation gives

oF
0Z
which asserts that field F is irrotational and divergence free

which is equivalent to time-independent free of electric
charge and current density Maxwell’s equations

’

V.- F=0 and VxF=0.

For accelerator physics purposes the expansion of fields
usually represented in terms of homogeneous harmonic
polynomials of two variables, which are defined through
the complex power function,

Normal R-Dipole Normal R-Quadrupole

|
l
l
|
!
l
l
|

Normal R-Sextupole

, 1 ; .
An(x.y) = 02" =[x +iy)" + (v~ iy)"]
= ZO<Z>x"‘kykcosk—2”,

n k
= < >x”"‘yk sin~= .
Do \k 2

Explicit expressions are well known and up to tenth order
are listed in Table VII of Appendix D. These functions
satisfy the transverse Laplace’s equation and are related to
each other through the Cauchy-Riemann equation as

9A, 0B, 0A, 0B,
ox Oy dy  Ox’

In addition one can introduce “ladder-like” lowering and
raising integro-differential operators which relate functions
of different order to each other:

HAB) =5 (AB), =25

o (B.4),

and
(A,B), = n/x dx(A, B),_; + y"(cos,sin) %
0

with 4y =1 and B, = 0.
Thus one can define two independent sets of solutions:
normal (sometimes called upright or straight) and skew

pure multipoles, which we will denote with overline (...)

Normal R-Octupole Normal R-Decapole

FIG.2. Normal and skew 2n-pole magnets in Cartesian coordinates. Each figure shows magnetic (electric) field streamlines and poles’
shape in transverse cross section. North (positive electrostatic potential) and south (negative electrostatic potential) poles are shown in
red and blue and are given by (B,.A), =F R}, respectively, where R), is the distance to the pole’s tip.
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and underline ( .) respectively. The complex scalar poten-

tials of pure multipoles are
o _ zZn zZn
QW =-C,~ and Q" =—-iCc,~,
n! n!
where C, and C,, are coefficients determining the strength
of magnets. Corresponding vector fields are defined to have
odd and even midplane symmetries:

Fy (x,y)

F(x,y) =

Formulas for potentials and fields are listed in Table I and
exact expressions are provided in Appendix E. Figure 2
shows the cross section of idealized multipole magnets.

F(x,0) =0,
FiV(x,0) = 0.

=F"(x.—y) and
F(x.~y) and

B. Multipoles in cylindrical coordinates
In the normalized right-handed cylindrical coordinate
system, when cylindrical symmetry (9/060 =0) is
imposed, the Laplace’s equations reduce to
1 0P
pdp
00 109 PP
T o o
A A= (AWAg - 2—5) &
2 2
Compared to the case with Cartesian coordinates these

equations look quite different from each other. In order to
retain the symmetry one can note that

1{82 1o &

A D=7 D+

:0,

AA)y=- |2 -2y ]A

Thus looking for the solution in a form similar to harmonic
homogeneous polynomials

- fn—k(p)yk kn kn
q):_;(n—k o C,s 1—+C,1<:os2
) ¥*

)!
1 kn k
Ag=-— —gn_k( <C co S——C sin ﬂ)
s p(n—k) k! 2 2

where F,(p) and G, (p) are the functions to be determined,
one can find two recurrence equations:

PF,(p) | 10F,(p)
8/)2 .; 3p n(n - 1)‘7:11 2(p)’

9*G,(p) 10G,(p)
2 » op =n(n—-1)G,(p).

F, and G, are related to each other through

1 o7, 1106,
~af Op np dp

This allows us to construct lowering operators,

ﬁFw+&mmE§@§ﬂﬂ%

%‘Gﬁ%ﬁakéG%ﬂ%%

and corresponding raising operators

1 [r
Fo=nln=1) "2 " o7, 200,
1 PJ1
P 1
n=n(n— 1)/ p/ —G,_»dpdp,
1 1P

where the lower limits take care of two arbitrary constants
of integration. These operators can be used to recursively
calculate all members of F- and G-functions. An additional
constraint to terminate recurrences defines lowest orders
n=20,1as

gn_l and fn 1=

f0:17 Flzlnp’ g0:1’ glz(p2_1)/2

The first ten members of F, and G, are listed in Tables 11
and III and are shown in Fig. 3; in Appendix F one can find
Taylor series of these functions at p = 1. The difference
relation for F, including first members has been found by
Edwin M. McMillan and I would like to acknowledge his
result by giving them a name of McMillan radial harmonics.
In addition to his results, adjoint McMillan radial harmon-
ics, G,, are introduced in order to provide the symmetry in
the description between electric and magnetic fields.

Finally, in order to define the set of functions for pure
S-multipoles (Table 1V) we will define sector harmonics:

. " (n k.
A =3 k)fn_k@)yk cos”.

k=0

& kzr
; k p 2"

e n . km
5960 =3 k)ﬂ_k@)yk sin'Z

=0
m (1 Gui(p) 4 . Kk
B (p,y) = < )Ly"sm—,
=321 ) Sty
obeying the differential relations

g L OB.AY  10(p(AB)M)
AB)Y, ==+ =- :
n( Jnt1 dy P dp
(m) (e)
WA B)™ — L 10 (B.A)n) _ I(AB)x
ff Qy Ip

Figure 4 shows the cross section of idealized magnetic
multipoles poles and their corresponding fields. The first
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TABLE II.  First ten members of J-functions.
n -7:,1([))
0 1
1 Inp
2 %(pz—l)—lnp
3 5= = 1)+ (p* + 1) Inp]
4 3t = 1) +5(0° = 1) = (p* +3) Inp]
5 Bl=3(* =1+ Gp* +p* +3)Inp)]
6 s 0° 1)+§(p 1) =3(* = 1) = 3p* +p* + ) Inp]
7 T l=5 (0 =1) =30 =)+ {5(p° +1) +p*(p* + 1)} Inp]
8 Pl (P = 1) +5(0° —1)+§(p4—1)—%(1)2—1)—(%p6+%p4+p2+é)lnﬂ]
? BFE-1) =220 - 1)+ {+ & + DG +3p + D} Inp]
TABLE III. First ten members of G-functions.
n gn(p)
0 1
1 3PP =1)
2 1[=5(p* =1) +p*Inp|
3 3Gt =1) = p*Inp
4 3-30* = 1) +1 (> = 1) + 92§ + Dnp]
5 B0 =1 +302(0* = 1) = p*(p* + 1) Inp]
6 T30 =1) =3 = 1)+ (p* = 1) + p*(p* + 20> + 1) Inp]
7 Bha(® =1+ (" = 1) = (0° +3p* +p?) Inp]
8 PG =1 =200 = 1) +5(p* = 1) +5(0* = 1) +p*(5p° +3p* +3p* + 1) Inp]
9 Bl (0" = 1) + 307 (0° = 1) +3p*(p* = 1) = (p* + 6p° + 6p* + p?) Inp]
2 1(p) Fnlp) Gn(P)p Gn(p)
2 2 ; 2 : 2 ;
- “\ V : : :
o 1 1 L 1 1] !
ﬁ: 1 1 1
o~ 1 1 1
= & 4 I I I
,Ll -1 0 1 p ) i1 2 p ) 11 2 p 0 i1 2 p
a1 . | -1 | -1 |
2
o
= 1
"1
“
[ _
= 0
-1
FIG. 3. First five even (top row) and odd (bottom row) members of regular polynomials P, = p", F,(p), g” ) and G,(p) functions

from the left to the right, respectively.
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Normal S-Dipole Normal S-Quadrupole Normal S-Sextupole Normal S-Octupole Normal S-Decapole

FIG. 4. Normal and skew 2n-pole magnets in cylindrical coordinates. Each figure shows magnetic (electric) field streamlines
and poles’ shape in the transverse cross section. North (positive electrostatic potential) and south (negative electrostatic potential)
poles are shown in red and blue and given by constant levels of (B, A),(,e) = const respectively, const = 1 for this example.
The bottom plot shows 3D models of sector magnets with 6 = 3z/2: normal and skew S-dipoles, normal and skew S-

quadrupoles and skew S-sextupole from the left to the right and the top to the bottom respectively. The equilibrium orbit is
shown in green color.
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TABLE IV. Formulas for the scalar potential, azimuthal com-
ponent of the vector potential and field components for “pure”
normal and skew 2n-poles in cylindrical coordinates.

Normal Skew

_(I‘l) — B(é) ) .A(é)
o =-C, % oM =-C, %
_ . m (m)
A ==C% Ay = €
—(n _ B(m) n A(m)
F;’ ) = Cn (,11_1]| E/(7 ) — X=n (ni_l)v
— _ A(ﬂ) B(e)
Fg’w =G, (n_”_ll)u E§’n> =-C, (,,l_ll)g

six members of sector harmonics are listed in Table VIII of
Appendix D and exact expressions for potentials and fields
in Appendix E.

Finally, one can relate experimental data on the power
series expansions of the fields at the reference orbit:

B y anyy y2 62Fx,y
Fx»}'|x:0_Fxsy|eq+ﬁ ay eq“—j ayz eq+-..
or
e o x OF,, X2 0%F,,
wheo =Fula 379, Yarae | T

to strength coefficients, which allows the expansion of a
general S-element in terms of harmonics (see Table V).

C. Recurrence equations in sector coordinates

An alternative approach to finding expansions for
potentials is to use a power series ansatz. In Cartesian
coordinates the use of

B S xm yn
D =- Z Vm.n %;

m,n>0
gives the recurrence relation
Virzn + Vinnia = 0.

This equation immediately defines all coefficients. It is easy
to see that, up to a common factor, the solutions coincide
with harmonic homogeneous polynomials (A, B3),,.

In sector coordinates, the same substitution for ® and the
substitution

o 1 X" yn
Aé) = - Z mvm,nﬁa

m,n>0

for the longitudinal component of the vector potential gives
two new recurrences, respectively:

TABLE V. Relationship between coefficients determining the strength of pure normal and skew S-multipoles and power series
expansion of field in radial and vertical planes on equilibrium orbit.

n x=0 y=0
6n 1 Fy Fy

2 O,F, O.F,

3 —-2F, OZFy + OcF,

4 -03F, OVF, + OYF, — O,F,

5 OF, ONF, +207F, — O3F, + O,F,

6 OF, RF, +204F, — 303F, + 307F, — 30,F,

7 —F, NF, +303F, —304F, 4+ 603F, — 90%F, + 90,F,

8 —9F, OIF, +30°F, — 603F, 4+ 120%F, — 2103F , 4+ 450%F , — 450, F,

9 RF, OF, +40LF, — 605F, + 1805F, — 5S10%F, + 12603 F, — 2250%F, + 2250,.F,
C, 1 F, F,

2 —0,F, O.F,+F,

3 -0%F, O*F, + O, F,—F,

4 O3F, O3F, +20%F, — 0, F,+ F,

5 NF, OtF 4+ 20}F, —30%F, +30,F, - 3F,

6 —0yF, OIF, +30%F, —303F, + 60°F, — 90..F, + 9F

7 —F, OF 4+ 303F, —60%F, + 1203F, — 270%F , 4 450, F, — 45F ,

8 OlF, OlF, + 40°F . — 603F . + 180*F, — 5103F, 4 1260°F, — 2250,.F , + 225F,,

9 BF, BF, + 40lF, — 100%F, + 3003F, — 1050*F, + 33003 F, — 8550%F , + 15750, F, — 1575F
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V;n+2,n + Vm,n+2 = _(m + 1)Vm-'rl.n - me—l,n+2-

The detailed approach on how to treat these equations
can be found for example in [3]. In order to solve these
recurrences, one can look for a solution where each term
can be expressed in the form

V= Vi + VI Lyl i)y

where starred variables are the “design” terms given by
pure multipole fields and thus satisfying

V*

m+2,n + v,

m,n+

, =0.

Other coefficients V§f}> are terms induced by lower kth order

pure multipoles due to recurrence. Thus, in order to find
an expression for a particular 2n-pole we will start the
recurrence from the nth order assuming that

Vio==Vypo=- or V, 11 ==V, 33=""-

for normal and skew elements. Then we will start exploiting

(n)

the recurrence where all terms in the form V;; for

i + j > n are subject to be determined.

This approach has two major disadvantages. First, in
order to use the result, one will have to truncate a
recurrence. As a result the potentials representing magnets
no longer satisfy Laplace’s equation. This violates the
“physics” and should be avoided. While potentials can be
approximated with any precision by keeping an appro-
priate number of terms, there is another issue. When
solving the recurrence, at each new order one will find
that an arbitrary constant a; € (0; 1) should be introduced
since the system is undetermined. An additional
assumption, (A, ®)|,_, « y", allows us to terminate or
sum the series. The resulting solutions would then coincide
with the ones obtained above.

III. SUMMARY

The scalar and vector Laplace’s equations for static
transverse electromagnetic fields in curvilinear orthogo-
nal coordinates with zero and constant curvature are
solved. In Cartesian coordinates these solutions are well-
known harmonic polynomials in two variables. The set
of solutions in cylindrical coordinates, named sector
harmonics, should not be confused with cylindrical
harmonics where p-dependent terms are given by
Bessel functions (which occasionally are also called
cylindrical harmonics). In contrast, the radial part is
given by a set of harmonics, independently introduced
by Edwin M. McMillan in a “forgotten” article, and
adjoint radial harmonics described in this work (in

addition it was rediscovered by Mane in the beginning
of the 1990s). When expanded around a circular design
orbit, the sector harmonics resemble the solutions in
Cartesian geometry. This set of functions has two major
advantages over the traditional approach, widely used in
the accelerator community, of using recurrences based on
a power series ansatz. They do not require truncation and
satisfy Laplace’s equation exactly, and they provide a
well-defined full basis of functions which can be related
to any field by expansion in radial or vertical planes, see
Table V. Including the model Hamiltonians for #- and s-
representations, where no assumptions but the field
symmetry has been used, one can construct a numerical
scheme to integrate the equations of motion. Thus, I
would like to suggest the set of sector harmonics as a
new basis for the description and design of sector
magnets with translational symmetry along the azimuthal
coordinate.
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APPENDIX A: GENERAL EQUATIONS
OF MOTION IN GLOBAL LAB FRAME

The Lagrangian of a relativistic particle of mass m with
an electric charge ¢ in most general static electromagnetic
field is given by

mc?

r(V)

LR, R;1] = - —e®(R) 4 ¢(V-A(R)),

where R = (Q, 05, Q3) is a position vector in the con-
figuration space of coordinates spanned by a right-handed
Cartesian coordinate system, {E;, E,, E;}, V= dR/dt =
R is a vector of matching generalized velocities, ®(R) and
A(R) are the electric scalar and magnetic vector potentials
respectively, and

1
V1-B(V)?

is the relativistic Lorentz factor, with (V) = |V|/c.
Substituting the Lagrangian into the Euler-Lagrange
equations (Lagrange’s equations of the second kind)

r(V) =

043501-8
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doL_oL
dtgR OR

with shorthand notation

o (o0 0 0
Oa N aal ’ 8612 ’ 8a3
representing a vector of partial derivatives with respect to

the indicated variables, gives the equation of motion which
is the relativistic form of the Lorentz force

F = ¢[E + (V x B)]

or explicitly

d . .
&(Vin) = e(E; +¢€;jQ;By).
Electric and magnetic fields are related to the scalar electric
and vector magnetic potentials through the usual gradient
and curl operators:

E = (E|.E,. E;)
B = (B,.B;. Bs)

Vo,
V x A.

The corresponding Hamiltonian formulation employs
phase space coordinates (P, Q), where P is the particle’s
canonical (total) momentum,

E%ZH—F(ZA
OR

with IT = ymV being the particle’s kinematic momentum.
The Hamiltonian might be constructed using the Legendre
transformation of L:

3
HP.Qi] =V-P-L=> 0P, —L
i=1

= c\/mzc2 + (P —eA)? + ed.

The time evolution of the system is given by Hamilton’s
equations

@ __oH QoK
d 0Q dt  OP
or equivalently
P-cA

Q

= C s
Vm2c? + (P —eA)?
P=¢(VA)-Q-eVd.

APPENDIX B: GLOBAL COORDINATES
ASSOCIATED WITH FRENET-SERRET FRAME

The model of accelerator assumes the specification of a
reference orbit designed for a particle with certain equi-
librium energy and assignment of beam line elements
placed along it. In the case of a circular accelerator the
closed orbit of a machine with alignment errors in general
will not coincide with reference orbit. For most accelerator
needs (except e.g. helical orbits for muon cooling) the
designed orbit is piecewise flat function, which means that
it consists of a series of curves with zero torsion; moreover,
usually, these curves are straight lines and circular arcs. In
order to better exploit the geometry of beam motion and
symmetry of electromagnetic fields we will introduce the
local Frenet-Serret frame attached to the equilibrium orbit
and new global coordinates associated with it (see Fig. 5).

Q, Q

FIG. 5. Schematic plot of a reference orbit for an accelerator
consisting of five straight and five 72° curved sections. Lab frame
and local Frenet-Serret frames are shown in black and blue colors
respectively. The test particle winding the equilibrium orbit is
shown in red.

1(s)

FIG. 6. Illustration of a test particle’s position vector
expressed as a transverse, i.e. for fixed g3, displacement from
equilibrium orbit.
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We identify a particular curve segment in space as
the local “reference path” (See Fig. 6). A particle whose
orbit would follow that curve perfectly is a “reference
particle” and its orbit, the “reference orbit.” Let R(7) be its
position vector as a function of time. Arclength along the
path can be expressed as

() = A "IRo()]dr

and R, can be parametrized as a function of s rather than ¢.
The local Frenet-Serret coordinate frame with origin at R

has right-handed orthonormal basis vectors, {i,b,t} (or
TNB frame), defined as follows: (i) tangent unit vector

dR(s)

t= ,
ds

(i1) outward-pointing normal unit vector

a1 dt
~ k(s)ds’
(ii1) and binormal unit vector
b=1tx n,

where « = |dt/ds| defines the local curvature of the
equilibrium orbit. Using the Frenet-Serret formulas
describing the derivatives of unit vectors in terms of each
other,

t 0 -« O t
dla| =[x 0 = n |ds,
b 0 —z 0| |b

where 7(s) is the torsion of an equilibrium orbit which
measures the failure of a curve to be planar, the position
vector of a test particle and its infinitesimal can be
expressed as a displacement from an equilibrium orbit,

R = Ry(s) +r(s) = Ro(s) + ¢;fi + ;b
dR = fidg, + bdg, + (1 + xq;)tdg; + (g, b — g,f)dgs.

where (g, ¢», g3) are local curvilinear coordinates spanned
on (1, b, f). One can see that in the case of flat orbit, i.e.
7 = 0, the local Frenet-Serret frame can be associated with
global orthogonal coordinate system with a line element in
a form

dl = hléldql + hléldql + hléldql,

where scale factors are hy =h,=1and h = hy; = 1 + kq;,.

The use of global coordinates with the metric provided
by the local Frenet-Serret frame allows one to write the
Lagrangian as

|2
Lr, ¥ 1] = —mc? I—U—z—eqH—ev-A,
c

where v = (g, ¢, hqs3) is the particle’s velocity expressed
in new coordinates. Thus the equation of motion is

d . .
a(}’mV) = e(E + ¢;3€,v,B;) + ymg3K,

where the vector in the right-hand side of the equation is
defined as

K = (xh,0,4q,),

and ¥’ = dk/dq; is the derivative of x with respect to the
longitudinal coordinate. Derivatives of potentials using
expressions for differential operators in curvilinear orthogo-
nal coordinates form Table VI. Calculating components of
the new canonical momenta

1oL
h; 9g;

% = ymv; + eA;(r)

allows one to rewrite the Hamiltonian

Hlp.q:1] = ¢

3 2
29 pi—ehiA,»
g _ ]
mc+' < . ) +e

i=1

and equations of motion

2 pi—ehA;
0oX = i i l’
9 ! H—€¢ l’ll‘
. c? D K; (p3—ehA3\?2
pi/hi:m |:e€ijk#Bk +ﬁ<%) :| +€Ei.
J

Further simplifications can be made by specifying a
type of the field or a certain symmetry. We will restrict
ourself to the case of transverse electromagnetic fields.
In orthogonal curvilinear coordinate system associated
with Serret-Frenet frame these are the fields with trans-
lation symmetry along longitudinal coordinate g;. Thus,
the scalar and vector potentials are a function of trans-
verse coordinates only and we shall assume the vector
potential has only one nonvanishing component which is
A;. Taken together, these imply the gauge condition,
V-A =0. Both scalar and vector potentials satisfy
Laplace’s equation,

110 [/ o o [ Od
AD=-—|—(h—)+—(h=—]]| =0,
h [9%( 5611) 8(12( 5612)}

) la(hA3)] ) {13(%)]
AM=—|——|+—|-——=| =0
0q, [h dq, O0q, |h Oq,

043501-10



SECTOR MAGNETS OR TRANSVERSE ...

PHYS. REV. ACCEL. BEAMS 20, 043501 (2017)

The corresponding fields are given by Maxwell equations

E =-Vo, B=VxA,ri
00  10(hAs)
ST
oD 19(hA3)
E,=——, B, = —— ,
’ 9q, ’ h - 9q

with differential operators defined for the orthogonal curvi-
linear coordinate system (see Table VI in Appendix C).

In the case of pure electric or magnetic fields further
simplifications can be applied. For numerical integration
purposes, it is convenient to have a Hamiltonian in the
form of a sum of “kinetic”” and “potential”” energies, so that
potentials will be separated from momentum coordinates.
In this case, one can easily construct a symplectic integrator
consisting of “drifts” and “kicks” associated with kinetic
and potential terms respectively (e.g. [7]). Depending on
the field type two models can be employed.

1. t-representation

For a pure electric field, when the curvature is constant
(dx/ds = 0), not only the Hamiltonian but also ps is an
invariant of motion, and the problem is essentially two
dimensional. Measuring time in units of ¢t and normalizing
the transverse momenta by the longitudinal component,

Pi2 = Pi2/P3» one has

. L [p3+hPm*c* ., e
H[PJL“]-%\/T"‘h(Pl"’Pz)"‘E‘D-

We will call this model Hamiltonian the z-representation;
with no assumptions made, but the field symmetry, we
derived general equations of motion which can be used for
the basis for the construction of the symplectic integrator.
In a paraxial approximation, p;, < 1, and for p,, > mc
the form is significantly simpler, and a limit of straight
coordinates when 4 = 1 is obvious:

=2 =2
~ P1 | P 1 ¢
Hfp.q;c]mh(EL+ 2) + -4 —o.
[p. q; ct] <2+2>+h+p3c

2. s-representation

For a pure magnetic field the Hamiltonian is harder to
exploit since it has only a square root and thus no terms to
split. Introducing an extended Hamiltonian with a new
fictitious orbit (“time”) parameter, 7, where the old inde-
pendent variable and old Hamiltonian with a negative sign
will be treated as an additional pair of canonically con-
jugated coordinates, (—H, ), one has

0=0Ipi1.p2.P3.—H:q1. 92, 45, 1:7]

— ehAz\?
:c\/m202+p%+p%+ (pzhz> _H.

Integration of the additional equations of motion gives
‘H is invariant, and ¢ = 7 + C,.

We can set the arbitrary constant of integration, Cy = 0.

Continuing to assume that the curvature is constant, as
was done in the case of an electric field, the longitudinal
component of momentum is conserved. We shall use —ps
as a new Hamiltonian, reducing the number of degrees of
freedom back to 3 by using g3 as a new independent
variable:

—p3s =K[p1. pa. —H: 1. ¢2. 15 q5)

2
- —h\/<§> —m?c? — p? — p3 — ehAs.

The use of generating function

G,(t, 1) = —ty/T1>c* + (mc?)?

will allow one to use the full kinetic momentum —II of a
particle instead of —H as one of canonical momentums:

Klp1, P2 =T5q1, g2, 1 g3] = =h\[TI? = pi = p3 — ehAs,

where corresponding canonical coordinate is a particle’s
traversed path [ = —0G,/0Il = fct.

Since the Hamiltonian does not explicitly depend on /,
the full momentum IT is conserved and we can exclude
associated degrees of freedom using the further renormal-
ization of the Hamiltonian L — K = C/TI, which can
be achieved by renormalizing transverse components of
canonical momentums p;, = p;, = p;,/IL

P _

[P1, P23 41+ 925 93]

We will call this model Hamiltonian s-representation
since the longitudinal coordinate (sometimes referred to
as the natural parameter along equilibrium orbit, s) is
used as a time parameter. This representation is conven-
ient to use for the numerical integrator construction for
transverse magnetic fields. The paraxial approximation,
P12 < 1, gives

~2 2

~ P1 | P2 €
K ; ~h|—4+=) —h—-=hA;.
[p,q,%] (2 2) s
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APPENDIX C: DIFFERENTIAL OPERATORS IN ORTHOGONAL COORDINATES

Differential operators in orthogonal curvilinear coordinates

are listed in Table VL

TABLE VI.  Differential operators in general orthogonal coordinates (g, ¢», g3) where H = h; h,hs, and its expressions in orthogonal
coordinates associated with Serret-Frenet frame.
Operation Notation Expression
Gradient V¢ S i qu &
%él +g—(iez +%%é3
Divergence V-F i %ﬁ (ﬂ Fy)
1 [O(hF)) | O(hF,) | OF
E[ 0‘11l 3(172 +Tfiﬂ
h
Curl VxF P m €ijk 0?1 (hiF;)
(hF3) _ OFyg 4 1(0F, _ 9(hFy) g OF, _ OF
h[ dqa3 i)qﬂ talog — "o 182+ [Z)QIZ :3611
Scalar Laplacian Ap=V-(Vg) S Har (ﬂz _k)
=1 Hogq
170 (3,90 1 0¢
[dql (h dql) (h dqz) d_qz (Fd_)]
Vector Laplacian AF=V(V-F)-Vx (VxF)

Yici liagp [%%(ﬁ Fi)] -

h
l]k aq [ GIWULI(hmFm)}} €

APPENDIX D: HOMOGENEOUS AND SECTOR HARMONICS

Harmonic homogeneous polynomials and sector harmonics are listed below in Tables VII and VIII respectively.

TABLE VII. Harmonic homogeneous polynomials in two variables.

n A, B,

0 1

1 X

2 x> —y? 2xy

3 x> —3xy? 3x%y —y3

4 xt—6x2y? +y* 4x3y — 4xy?

5 X —10x3y? 4 5xy* Sxty — 10x2y3 + 33

6 X0 — 15x*y? + 15x%y* — 0 6x3y — 2053y + 6xy°

7 x7 =210y 4+ 35x3y* — Txy® 7x%y — 35x%y3 4 21x2y% —y7
8 x® —28x6y% + 70x°y* — 84x3y® + 9xy® 8xy — 56x7y® + 56x3y° — 8xy’
9 x° —36x7y? + 126x7y* — 84x3y® + 9xy® 9x8y — 84x%y3 4- 126x*y° — 36x%y7 + y°
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TABLE VIII. Sector harmonics.

n
A 0 :
1 Inp
2 5~y ~Inp
3 -3 + 32 —y?) Inp
4 L= 607y 4y =33+ p2 =237 Inp
5 [_59(/1:6—1)+5X6/1‘T—1y2]+5(— r +‘§/’ +1)—6’%y2+y4)lnp
A 0 S
! RS
2 =25 =32 + p2Inp}
2 —
3 1{[ (P*+1) p 21 3/7 1 2} ; zlnp}
4 1{[ 3(5p* —4p2 l)+6/1 V2 4y + (2+p§—4y2)p21np}
5 1{[ ,,Hgol, D=1 _ o 3(p? +|),) —1y2+5pT—1y4} _ |5(l+,;2_4y2)p21np}
By’ 0 0
1 y{1}
2 y{2Inp}
—
3 W{B55 =y =3Inp}
4 w1255 + 4353 -y Inp}
3 52— 102552 + 34 = 53+ 397 — 29%) Inp}
B 0 0
1 {1}
) 2_
2 R
3 X{[—3”2—_1—y2}+3pzlnp}
4 SIS - 42T — 6 Inp)
5 \{[ 3(5p* —4p —1)+10/) —1y2+y]+5(3+% 2_2y2)p21np}
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APPENDIX E: R- AND S-MULTIPOLES—EXACT EXPRESSIONS

!

T. ZOLKIN
The scalar potentials, longitudinal component of vector potential, and field components for pure R- and S-multipoles up
to fifth order are listed in Tables IX and X and Tables XI and XII, respectively.
TABLE IX. Longitudinal component of the vector potential and scalar potential for pure normal and skew R-multipoles.
n A, (o}
0 Calibration -Cy 0
1 Normal dipole -LxC, -4
2 Normal quadrupole -1 (x2-y?)G, -4 (2xy)C,
3 Normal sextupole -1 =307)C; -4 (3x%y = )G
4 Normal octupole —4l x* —6x2y? +y4)Cy —ﬁ (4x%y — 4xy*)Cy
5 Normal decapole -3 (¥ = 10x%y? + 5xy*)Cs -2 (5x*y = 10x2y* 4+ y°)C
0 Calibration 0 Cy
1 Skew dipole L(C, 4 (x)C
2 Skew quadrupole 7 (2xy)Cy -5 =y)C,
3 Skew sextupole % (3x%y = y*)C;s -4 (2 =3x?)C;
4 Skew octupole L(4x3y —4xy3)Cy -5 (x* = 6x2y? +yHCy
5 Skew decapole L (5x*y = 10x%y* 4 y°)Cs -4 (x> = 10x°y? + 5xy*) Cs
TABLE X. Horizontal and vertical components of pure normal and skew R-multipole magnets’ field.
n F, F,
0 Calibration e
1 Normal dipole 0 C,
2 Normal quadrupole T (G, 3 (%),
3 Normal sextupole 7% (2xy)Cy 5 (x* =) Gy
4 Normal octupole 3 (3x%y = y*)Cy (x —3xy?)C,
5 Normal decapole L (4x3y — 4xy)Cs L (x — 6x2y? +y*)Cs
0 Calibration e e
1 Skew dipole C 0
2 Skew quadrupole ()G, LG,
3 Skew sextupole i (2 =y Cy -5 (2xy)Cs
4 Skew octupole (3 =3x%)Cy -3 (3x%y = y*)Cy
5 Skew decapole 4 (x* = 6x?y? + y*)Cs — 4 (4x3y — 4xy¥) Cs
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TABLE XI. Azimuthal component of the vector potential and scalar potential for pure normal and skew S-multipoles.

n
) 0 —ar, 111Co

1 ~ LG

2 _%% [— zz_l—y]+ﬂ21n/’}c2

3 _%/l} [3(pz+l)p221_3/)—1y2] 3 p>Inp}C,

4 L= 28R 6055y 4y 4 300 210 1T,

5 —%,%{[W — 102D 2y 52l ) B 24 ) C
) 0 0

1 -4y{1}C,

) —%y{Zlnp}fz

3 ~ (B -5 - 3}y

4 —{[-1255 + 435 - )?) Inp}Cy

5 — Ly {52 10257y 4 34 - 53 + 39 - 2) Inp}Cs
Aéﬂ) 0 0

| G

2 {256

3 %ﬁ—,{[ 3”7‘1—y2]+3/)21n/)}c3

4 LT 402~ 6p2 InplC,

5 sisil- 5M+10” —‘y2+y4]+5(3+2ﬂ = 2y%)p*Inp}Cs
o) 0 —{1}G

1 —ﬁ{lnﬂ}gl

2 ~5 {5 =y = np}C

3 — {35 35 - ) Inp} Gy

4 ,{[%”” 6551y +3'] =36+ p* —20?) InplC,

s S L{[=5200 5 62y AL _ g2\ L ) 1y phe
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TABLE XII. Radial and vertical components of pure normal and skew S-multipoles’ field.
n
fgn) 0 Calibration
1 Normal dipole 0
2 Normal quadrupole - ﬁ% {1}C,
2
Normal sextupole -2l 3G,
4 Normal octupole _%% -3 /)22—1 -y} +3p*Inp}C,
N 3(p2 2_ 2 —
5 Normal decapole - %7) {[4 M”Tl — 425132 — 6p? Inp}Cs
f§”) 0 Calibration
1 Normal dipole & {1}C,
2 Normal quadrupole #i{lnp}C,
3 Normal sextupole {5 -y - Inp}C,
4 Normal octupole {3 "22‘1] + 3(L2+1 —y2)Inp}C,
5 Normal decapole LRI 62t \2 4y 3(L 4 p?2 — 2)?) Inp}Cs
g 0 Calibration e
I,
1 Skew dipole s 113G
2_
2 Skew quadrupole %{l) e
3 Skew sextupole 7 {l- 2y + p?InplCs
2 2_ 2_
4 Skew octupole 31'%) [3(”4“) e 3022 32 InplC,
ot —dp?— 2_ 02 —4y?
5 Skew decapole %%{[ 3(5p*—4p’-1) + 6/Ile2 +y4] + 3(2+p*—4y )p2 Inp}Cs
E(yn) 0 Calibration
1 Skew dipole 0
2 Skew quadrupole T{1}C,
3 Skew sextupole 2iv{2Inp}C;
2_
4 Skew octupole Iy{B45 -y} - 3Inp}C,
5 Skew decapole

2 >
{12757 + 43757 = ) Inp) G
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APPENDIX F: TAYLOR POLYNOMIALS OF F, AND G,

The first ten terms of the Maclaurin series of F,(x), G,(x) and %) are listed in Table XIII.

1+x

TABLE XIII. Maclaurin series of F,(x), G,(x) and gl”i)g, they are also Taylor polynomials of F,(p), G,(p) and g/—fﬁ) atp = 1.
n T(}—n)

0 1

1 x— I i3 I I LS T - LB 80 - LX10 4 o(x)

2 x2 —%xS —l—}‘x“ —éxs +éx6 —lx7 +lx8 —%xg +l—10x10 —l—llx” +0(x'?)

3 T A L A e

4 Ao 2xS p a0 S ITNT 4 2308 S0 4 1010 ATl g ST 2 T (13 (x4

5 X = x + 14x %x + 12172x9 24274x'0 + 3668996x 2255 2+ 1276126 - %xm +0(x")

6 X0 —7x Jrﬁx zlt_x + 112x 1224312)6ll + %ﬁx - 1 x4 126301196x ¢ 4503054x15 +0(x'°)

7 Xl — %xg + %gxg 2l 10+ 5}1;’6 3689 2+ 257%43596 594%8132 o+ 99x ;?g;xm +0(x")

; 0! i B 0l
9 X - %xlo + %x” xlz + 1218494 252()89$sxl4 + ;25878x ’ - x16 + 5(?56716 v 11294t24t92712x]8 +0(x")
n T(gn)

0 1

1 x+%x2

2 x? +%x3 - %x“ +%x5 - 6'—0x6 +ﬁx7 —Ilmxg +2;—2x9 %()xlo +495x“ +0(x'?)

3 x4 3 xt — X g2 — 25k + 38— g X 4 10 — i !+ g x™ + 0(xP)

4 x4+%x5 _1_10"6’*‘73_0)57 560x8+70x 105"104'4620"11 2640x12+2145xm+0( )

3 0 4500 — T g — g + 37 x'0 — gl x! + g x? — gl + 16016x14 +0(x")

6 X0 +%x7 _%xg +%x9 _%xlo +%x” 1:11334 2+ %%éz a _WXM + o 12012 X%+ 0(x'%)
7 X+ %xg - ﬁxg + ﬁxlo - 528"“ + 1056x1 1190532 B+ 1é2(1)4x14 - %xls + 3ég(9)9 14+ 0(x")
8 xS+ gxg _%xlo +%xll 72932x12 + 3514 T 2(2);1)2 4 2(1)232 P 3%3332)616 + 1;(5)822)617 +0(x"*)
9 X +%x10 _1_11x11 +2—12x12 1?i4x13 + 2288xl4 zgggxls "‘4576)‘16 - 6§§§gsxl7 + 1274?476972)518 +0(x")
n T(G./p)

0 T—x+x2 =3 +x* = +x0 —x" + 2% =22 + 0(x'9)

1 x— gt =l 10 =18+ a7 — a8 —I—lxg —1x10+ O(x')

2 W2 2x g Lt SIS 86 LT | 0908 37,0 4 28,00 38,11 4 g (x12)

3 x3——x +20x 40x6+22x7 112x +19 ’ 120"10""411:71(1) %x12+0(x13)

4 Xt =300 50 = 8T 550 — i g 1 — e x ! 55X — g + 0

3 X —%X6 37 =t 3R -G - S+ e - R A + 0

6 A8 =37 + 3x® = 5% e x'® — Rt + e x'? — e x gy xt — 35X + 0(x'6)
7 xl - x + 12x §x10 + éggx 1305536 2+ 287%16596 a % et 158634074" ; 2885156xl6 +0(x")
8 e R 33X“ + 5@3 13052?6 P+ Eaxt - 520 + gt — e + 0"
0 o —gxl0 4 Fall =l 4 - Bt 4 P Jé%xm + i) — e+ 0(")
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