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For the Compact Linear Collider project at CERN, the power for the main linacs is extracted from a drive
beam generated from a high current electron source. The design of the electron source and its subsequent
focusing channel has a great impact on the beam dynamic considerations of the drive beam. We report the
design of a thermionic electron source and the subsequent focusing channels with the goal of production of
a high quality beam with a very small emittance.
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I. INTRODUCTION

The compact Linear Collider (CLIC) project at CERN
aims at building an electron-positron linear collider with a
center of mass energy of 3 TeV [1]. Figure 1 shows the
general layout of the CLIC with a total length of 48 km [2].
For CLIC a two beam scheme has been developed in

which a high current drive beam is used to efficiently power
the main beam at the very high accelerating frequency of
12 GHz. The drive beam is generated in the drive beam
injector with 4.2 A current, 140 μs total pulse duration,
50 Hz repetition rate and 0.5 GHz bunch repetition
frequency. A fully loaded linac operating at 1 GHz is used
to accelerate the drive beam to 2.4 GeV followed by a series
of delay lines and combiner rings allowing to increase the
bunch repetition frequency to 12 GHz and the beam current
to 101 A. There are two options for the drive beam injector:
a high current thermionic gun with a sophisticated bunch-
ing system [3] or a high current radio frequency gun [4–5].
In the present work wewill, however, focus only on the first
option which is the CLIC baseline. Figure 2 shows the
layout of the CLIC drive beam injector which starts from a
high current thermionic gun. After the beam is generated in
the electron source, it would be bunched and accelerated
using a bunching system and an accelerating structure. The
bunching system starts with three subharmonic bunchers
(SHBs) at a frequency of 0.5 GHz [6]. The subharmonic
bunchers are responsible for the initial bunching. They also
provide the phase coding required later on for the bunch
multiplication scheme. Downstream from the SHBs, a

prebuncher (PB) [7] and a traveling wave buncher
(TWB) [8] both operating at 1 GHz are situated.
At the end of the bunching system the average energy of

the electrons reaches up to 2.38 MeV. Further acceleration
up to 11 MeV is provided through two identical fully
loaded accelerating structures ACC-1 and ACC-2 (see
Fig. 2), operating at 1 GHz frequency [9]. The whole
injector is located in a long solenoidal focusing channel for
the beam transport. The specifications of the different
components of the drive beam injector can be found in
Ref. [10]. Due to the importance of the electron source on
the beam quality of the drive beam, our objective here is to
find an approach for efficient optimization of the electron
source and also the focusing channel. Traditionally one
would design such an electron source using extensive
particle tracking simulations in a kind of trial and error
method. In the previous works [3,10], numerous simula-
tions were done using the 2D ray tracking code EGUN [11],
the 2D PIC-code magic [12] and the 3D particle tracking
code PARMELA [13] to define the structure of the gun and its
associated focusing channel. The simulation results showed
that a beam with high quality can be obtained from the gun
with 12 mm mrad normalized rms emittance increasing to
22 mm mrad due to the emittance growth during the
bunching process. In the present work we plan to propose
an analytical approach to first optimize the emittance out of
the thermionic gun and its subsequent transport. Using the
approach, we design the CLIC thermionic gun and its
focusing channel with a significant decrease in the beam
emittance generated from the gun and also along the whole
injector. The paper is organized as follows. In the next
section, we will shortly discuss the basic requirements
related to the design of an electron source. Our study covers
the beam envelope equation in an axially symmetric
situation [14] and the emittance variation formula [15]
which provide the basis of the design approach. In Sec. III,
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we present a new analytical approach for the design of a low
emittance thermionic gun and apply it for the CLIC drive
beam injector. To validate the approach,we also simulate the
gun using CST TRACK SOLVER [16]. Section IV is devoted to
the transport of the beam downstream of the gun inside a
solenoidal focusing channel.We employour approach based
on the beam envelope equation once again to find the
optimum structure of the focusing channel. Results of the
simulations with PARMELA are presented in this section to
confirm the precision of the approach. We finally conclude
the paper with a short summary of the findings.

II. BEAM ENVELOPE EQUATION
IN AXIALLY SYMMETRIC FIELDS

In the following section we introduce the theoretical base
that we need for the design of low emittance electron
sources and the subsequent focusing channels. We start
with the general form of the beam envelope equation for

paraxial beams in axially symmetric fields. This relates the
variations of the rms beam radius σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2 þ y2i

p
to the

electromagnetic fields, space charge fields and the beam
emittance through [14]

σ00 þ γγ0

γ2 − 1
σ0 þ kemσ − kε

σ3
− ks

σ
¼ 0: ð1Þ

In Eq. (1) it is assumed that the beam propagates in the z
direction and the primes denote the derivatives with respect
to z. The paraxial approximation applies for a beam of
particles with the trajectories very close to the beam
symmetry axis. In other words r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
for each

particle in the beam is very small compared to the radii of
electrodes, coils, etc. that produce the external electromag-
netic fields. Also this implies that the particle velocities in
the longitudinal direction are much bigger than their
transverse velocities, i.e. βx ≪ βz and βy ≪ βz (β is the

FIG. 2. CLIC injector layout with a total length of 12.7 m consists of an electron source (ES), three subharmonic bunchers (SHB), a
prebuncher (PB), a traveling wave buncher (TWB) and two accelerating structures (ACC-1,2). A solenoidal focusing channel covers the
injector and the accelerating structures.

FIG. 1. CLIC layout (not to scale). The main beams are accelerated at the center of the complex using the rf power extracted from the
drive beam in the power extraction and transfer structures (PETS blue boxes) [2].
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normalized velocity of the particles to the velocity of light
c). In Eq. (1), γ is the usual relativistic factor which can be
related to the longitudinal component of the electric field on
the beam axis Ez through

γ0 ¼ qEz

mc2
; ð2Þ

where q,m and c are the particle charge, mass and speed of
light, respectively. Integration of Eq. (2) leads to the energy
conservation law. On the other hand, the k terms, i.e. kemσ,
kε
σ3
and ks

σ , are known as the effective transverse forces, which
act on the beam as a whole and determine the variations of
the beam rms radius σ along the beam trajectory. The kemσ
term shows the effective transverse force of the external
electromagnetic fields which include electrostatic, magne-
tostatic and rf fields. For paraxial beams the parameter kem
is related to the longitudinal components of the electric Ez
and magnetic Bz fields on the beam axis through

kem ¼
�

qcBz

2mc2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
�

2

þ q
2mc2

�
γ

ðγ2 − 1Þ
∂
∂z

þ 1

c
ffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p ∂
∂t
�
Ez: ð3Þ

We note that in Eq. (3), the ∂Ez∂z and ∂Ez∂t terms lead to the
transverse components of the electric and magnetic fields,
respectively [17],

Er ¼ − r
2

∂Ez

∂z ; ð4Þ

Br ¼ þ r
2c2

∂Ez

∂t : ð5Þ

Equation (3) shows that the electromagnetic force in the
case of the magnetostatic fields has only a focusing effect
while for the electrostatic and also rf fields depending on
the derivatives of Ez with respect to time and z, it can be
either focusing or defocusing. Beam emittance consider-
ations appear in the beam envelope equation through
emittance force kε

σ3
. It originates from the random transverse

velocities of the particles, which naturally lead to the
envelope growth. It has, therefore, only a defocusing effect

on the beam. Given the beam emittance definition εx ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2xp2 − xxp2

q
(xp ¼ γβx), the parameter kε relates to the

beam emittance through

kε ¼
4εx

2

ðγ2 − 1Þ : ð6Þ

The last term in the beam envelope equation ks
σ is known

as the space charge force. This force is due to only the
electromagnetic fields produced by the beam itself and has

a pure defocusing effect on the beam envelope. The
parameter kε of this force is given by

ks ¼
qIb

4πϵ0mc2cðγ2 − 1Þ3=2 ; ð7Þ

where Ib is the average beam current. The general behavior
of a beam is determined through the competition between
the two last defocusing forces, i.e. the emittance force kε

σ3

and the space charge force ks
σ . Depending on which one is

larger, the beam is called either an emittance dominated
beam or a space charge dominated beam. In the case of the
CLIC thermionic gun the space charge force is about 3
orders of magnitude larger than the emittance force and so
the beam is totally a space charge dominated beam. For the
beam transportation purposes, however, these two forces
should be compensated by an appropriate external focusing
field. On the other hand, they should be designed in such a
way that any emittance growth along the injector could be
prevented. In the electron gun, one could achieve this goal
by an appropriate design of the focusing electrodes and for
downstream of the gun by a series of magnetic coils with
appropriate currents and positions. The beam generated in
the cathode has a nonvanishing emittance. This is due to the
thermal transverse velocity distribution of the particles
resulting from the cathode temperature (about 1200 °C in
the case of the CLIC electron gun). On the other hand,
downstream of the cathode there are several mechanisms
which give rise to the beam emittance growth [14]. In
general the variation of the beam emittance is given by the
following equation [15]:

ðεx2Þ0 ¼
−qσ2
2Ibpav

×
∂
∂z ½ΔUb�; ð8Þ

where ΔUb is the beam free energy and pav is the average
momentum of the particles. The beam free energy ΔUb is
given by [15]

ΔUb ¼
ϵ0
2

Z∞

0

½jβE⃗bj2 − jβE⃗eqj2�2πrdr: ð9Þ

In Eq. (9), E⃗b is the electric field resulting from the beam
itself and E⃗eq denotes the electric field of the equivalent
beam. The equivalent beam corresponds to the real beam
through having the same energy, the same current and rms
radial beam size, but with a uniform distribution.
Equation (8) indicates that any nonuniformity in the beam
distribution gives rise to the emittance variation, especially
for larger rms beam radii and lower energies. It is known in
the realm of the beam transport that the linear fields will map
a uniformbeam to another uniformbeamwhile the nonlinear
fields will change the beam uniformity. Therefore, any
nonlinearity in the applied fields can change the beam
uniformity and result in an emittance growth. On the other

LOW EMITTANCE DESIGN OF THE ELECTRON … PHYS. REV. ACCEL. BEAMS 20, 043403 (2017)

043403-3



hand, the space charge fields coming from a nonuniform
beam are nonlinear and can directly lead to an emittance
growth. Based on the above discussion, our goal in the next
section is to design the CLIC electron source by omitting all
the nonlinear fields.

III. DESIGN OF A LOW EMITTANCE ELECTRON
GUN FOR THE CLIC DRIVE BEAM INJECTOR

Any thermionic electron source consists of three impor-
tant parts: a cathode, a focusing electrode and an anode.
The biggest problem in designing such electron guns is to
find the optimum geometry of these three parts with the aim
of generating a high quality beam. From the physics point
of view the geometries of these electrodes are in fact the
geometry of the equipotential surfaces of the electrostatic
potential function within the gun denoted by Φeðr; zÞ.
Therefore, to find the optimum geometry of the electrodes
it would be enough to find an appropriate potential function
Φeðr; zÞ which can meet the desired conditions. Due to the
symmetric structure of the thermionic guns, the electric
fields within these structures are in axially symmetric
forms. From Maxwell’s equations, it can be shown that
the electrostatic potential of such fields denoted byΦeðr; zÞ
could satisfy a series expression as follows [18]:

Φeðr; zÞ ¼
X∞
n¼0

ð−1Þnðr
2
Þ2n

ðn!Þ2
∂2n

∂z2nΦeð0; zÞ; ð10Þ

where Φeð0; zÞ indicates the potential function only on the
gun symmetry axis z. Equation (10) shows knowing the
potential function on the gun symmetry axis is sufficient to
calculate the potential function Φeðr; zÞ at any other point.
The potential function allows then to calculate the corre-
sponding equipotential surfaces which will provide the
appropriate geometries of the electrodes. Therefore, the
problem of designing an electron gun will be reduced to
the problem of calculation of a one-dimensional function
Φeð0; zÞ. An appropriate choice of the function should
provide smooth variations in the beam envelop without any
oscillations to avoid emittance growth [14]. Starting from
the envelope equation, we substitute the γ in Eqs. (1)–(7)
through the simple relation mc2ðγ − 1Þ ¼ qΦeð0; zÞ and
rewrite the envelope equation (1) as a second order
differential equation for the function Φeð0; zÞ:

Φ00
eð0; zÞ þ

2σ0

σ
Φ0

eð0; zÞ þ
8mc2εx2

qσ4ð1 − qΦeð0;zÞ
mc2 Þ

þ Ib

2πϵ0cσ2ð1 − qΦeð0;zÞ
mc2 Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − qΦeð0;zÞ

mc2 Þ2 − 1

q

− 2mc2σ00½ð1 − qΦeð0;zÞ
mc2 Þ2 − 1�

qσð1 − qΦeð0;zÞ
mc2 Þ

¼ 0: ð11Þ

This is a second order nonlinear differential equation
with respect to the Φeð0; zÞ for any given function of the
rms beam radius RðzÞ. However, according to our previous
discussion about the emittance considerations, the σðzÞ
should be a smooth function with respect to z from the
cathode to the position of the anode, which we assumed to
be at a distance d0 from the cathode. Therefore, a linear
decrease with respect to z should be a good approximation
for σðzÞ. We consider the following function for σðzÞ which
shows a decrease in the beam envelope from its initial value
at z ¼ 0 on the cathode surface rcffiffi

2
p (rc being the cathode

radius) to η times this value at the anode position (z ¼ d0):

σðzÞ ¼ rcffiffiffi
2

p
�
1 − ð1 − ηÞ z

d0

�
: ð12Þ

In Eq. (12), η is a real number between zero and one,
which would be fixed by an initial guess, say 1=2. Also d0
which shows the distance between the cathode and the
anode is a free parameter which needs to be adjusted in
such a way that Φeð0; d0Þ exactly equals the anode
potential. For the case of the CLIC thermionic gun, this
is equal to 140 kV [1]:

Φeð0; d0Þ ¼ 140 kV: ð13Þ

In order to solve Eq. (11), we need at least two boundary
conditions. One of these conditions could be the vanishing
potential on the cathode surface. The second one could be
obtained from the space charge limit condition which
implies that the normal component of the electric field
on the cathode surface becomes zero [19]. Therefore, the
boundary conditions read

Φeð0; 0Þ ¼ 0; ð14Þ

Φ0
eð0; 0Þ ¼ 0: ð15Þ

We have, therefore, a self-consistent system of equations
for Φeð0; zÞ and d0. Unless the value of d0 is identified, the
function Φeð0; zÞ cannot be calculated. On the other hand,
only those values of d0 are acceptable that satisfy the
expression (13). But for this we in turn need to know
Φeð0; zÞ. Here one needs to seek an iterative approach and
to start with an initial estimate for d0 to solve Eq. (11) under
the conditions (14) and (15) and find the function Φeð0; zÞ.
The approach is very fast and one can find the exact values
of d0 and Φeð0; zÞ after a few iterations. However, in order
to avoid emittance growth, care must be taken as the radial
component of the electric field related to Φeð0; zÞ should
show a linear behavior with respect to r as discussed in the
previous section. We denote this component by Er and
from Eq. (10) one can easily calculate its series represen-
tation as
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Erðr; zÞ ¼ −X∞
n¼0

ð−1Þnþ1ðr
2
Þ2nþ1

ðnÞ! × ðnþ 1Þ!
∂2nþ2

∂z2nþ2
Φeð0; zÞ: ð16Þ

It is seen from Eq. (16) that for the purpose of having an
Er with a linear behavior as a function of the radial
component r, the Φeð0; zÞ should be close to a parabola.
Therefore, to ensure the field linearity after solving
Eq. (11), we should also check whether or not it is close
enough to a parabola. Otherwise, we need to modify the
function σðzÞ, through changing the value of η for instance,
and repeat the procedure until its appropriate form is found.
Figure 3 shows the solution for the functionΦeð0; zÞ which
was obtained using this approach for η ¼ 1

2
. We used the

fourth order Runge-Kutta method [20] to solve Eq. (11).
Calculations show that for η ¼ 1

2
and d0 ¼ 51.565 mm all

the conditions could be satisfied (red dashed line). In Fig. 3
we have also drawn a perfect parabola (black dashed line).
This shows that our solution is very close to a parabola and
the radial component of the resulting electric field would be
very close to a linear function of the radial component r.
To calculate Φeðr; zÞ from Φeð0; zÞ, we should take the

derivatives of Φeð0; zÞ with respect to z. We can interpolate
our numerical solution presented in Fig. 3 and take its
derivatives numerically. Figure 4 shows the resulting
equipotential surfaces of Φeðr; zÞ obtained from series
expansion (10). It is clear that the equipotential surface
with zero potential gives us the geometries of the cathode
and the focusing electrode while the equipotential surface
with 140 keV gives us the anode geometry.
Figure 5 shows the analytical geometry of zero equi-

potential surface of the cathode plus the focusing electrode
surfaces compared with a parabola. Since in practice the
cathode of the CLIC thermionic gun has a flat surface with
10 mm radius [3], we should use an approximation for the
zero equipotential surface. However, Fig. 5 shows that an
appropriate parabola can be a very good approximation for
the analytical geometry of the focusing electrode. Such a
parabola has an equation of r − rc ¼ h3 × ð zd2Þ2 where rc is

the cathode radius. h3 and d2 are 10, 44 and 37 mm,
respectively.
As mentioned before the anode should be located at the

distance d0 ¼ 51.565 mm from the cathode. Figure 6 also
shows the calculated geometry of the 140 kV equipotential
surface (the anode surface) and compares it with a parabola
and a simple nose. Since in practice we have to open an
aperture in the anode for the beam exit, we should use an
approximation for its geometry. Figure 6 shows, however,
that an appropriate nose can be a good approximation for
the geometry of the anode. Such a nose can be considered
as a combination between a curve [with 5 mm radius (r2)
and 36° angle (α1)], a straight line and a parabola (region
marked with hatches). The equation for the parabola is
expressed as z-d0 ¼ d3 × ð r

h4
Þ2 where d0, d3 and h4 are

51.565, 35.435 and 50 mm, respectively.
We note that the important parameter d0 is the distance

between the vertexes of the analytical curves in Figs. 5 and
6. According to Figs. 5 and 6, our electrode geometries can
be defined with seven different parameters: h3 and d2 for
the cathode geometry, d3, h4, α1 and h5 for anode geometry,
and d0 for the distance between the nose center and the

FIG. 3. Numerical solution for the potential equation with
linear decrease in the beam envelope to half of its initial value in
comparison with a parabola.

FIG. 4. The equipotential surfaces calculated from series
expansion of Φðr; zÞ in terms of Φð0; zÞ and its derivatives.

FIG. 5. Geometry of zero equipotential surface (the cathode
plus the focusing electrode surfaces) in comparison with a
parabola.
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cathode. Our analytical approach for this design determines
the starting values for these seven parameters, which can be
further optimized depending on the requirements. The final
geometry of the CLIC optimized thermionic gun using CST

is presented in Fig. 7. The structure has four different parts,
namely the cathode and the focusing electrode (both are
included in section A in the figure), the anode (section B)
and two additional electrodes (sections C and D). The
values for all the geometrical parameters shown in the
figure are listed on Tables I and II.
The cathode, the central part of the electrode A, has a

cylindrical structure with radius h1 ¼ 10 mm. As men-
tioned before the focusing electrode has a parabola shape
which is defined with the parameters h3 and d2 obtained
from our analytical approach with the values of 37 and

FIG. 6. Analytical geometry of 140 kV equipotential surface
(the anode surface) in comparison with a nose (hatched region)
composed of a curve, straight line and a part of a parabola.

FIG. 7. CST model for the final geometry of the CLIC thermionic gun with all its parameters. Left: the half of the whole structure is
presented. Insets, a quarter of each one of the electrodes with all their parameters are shown. Right top: cathode plus focusing electrode;
right middle: main part of the anode; right bottom: additional electrodes with the same voltage as the anode.
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44 mm, respectively. The anode has a nose shape with three
main parameters, namely d3, h4, r2 with the values of
33.435, 50, and 5 mm, respectively. The structure also has
two additional electrodes: C electrode which is elliptical
and D electrode which is cylindrical (see Fig. 7). The
function of these electrodes is to avoid any field penetration
behind the anode. The parameters of these two electrodes,
however, are not very critical and they do not exert a
significant effect on the beam quality. The elliptical
electrode provides more possibility to control the beam
envelope and make its variations smoother. Simulations
also show that without the cylindrical electrode the beam
energy will decrease after the anode. This is due to the field
penetration behind the anode which decelerates the elec-
trons. In Fig. 8 we have shown the simulation results of CST
TRACK SOLVER for the average energy of the electrons
passing through the gun. At the end of the gun the electrons
will reach the desired energy of 140 keV.
Figure 9 shows the simulation results using CST TRACK

SOLVER for the beam envelop and the beam emittance in the
longitudinal direction along the gun. The smooth behavior
of the beam envelope shows the merit of the design which
has led to a high-quality beam with very little emittance
growth. Our ideal is to design the gun with no emittance
growth, but unfortunately, due to nonlinear effects coming
from the approximations used for the cathode and the anode
geometries, the emittance has some small variations from

its thermal value. However, since the field linearity is still
very good, the emittance variation is very small and at the
end of the gun it does not exceed over 10% of its intrinsic
thermal value. This analytical approach yields an electron
source with significant reduced emittance compared with
the previous designs with 12 mm mrad emittance [3,4].

IV. DESIGN OF THE FOCUSING CHANNEL
FOR THE CLIC DRIVE BEAM INJECTOR

To transport the beam after the electron gun we need to
make use of a focusing channel. Our focusing channel is a
series of N circular magnetic coils which can produce a
longitudinal magnetic field along the beam axis. The
focusing channel has two different parts: a matching cell
and a solenoid (see Fig. 10).
The first part of the focusing channel, i.e. the matching

cell, is composed of two coils with variable positions. On
the other hand, the second part, i.e. the solenoidal section,
consists of 148 coils located at fixed positions starting from
10 cm downstream of the beam waist. The waist in turn is
8.6 cm downstream of the cathode (see Fig. 9). Coils are
equally spaced by 10 cm from each other. All coils have the
same radius (ac), but they are located at different zn
positions with respect to the beam waist and carry the

TABLE I. The values of the geometrical parameters for the
different lengths shown in Fig. 7.

Parameter Size (mm) Parameter Size (mm)

h1 10.00 d7 5.00
h2 20.00 d8 23.05
h3 37.00 d9 120.05
h4 50.00 d10 100.05
h5 15.00 d11 10.00
h6 37.20 r1 10.00
h7 150.00 r2 5.00
h8 100.00 r3 10.00
d1 10.00 r4 10.00
d2 44.00 r5 5.00
d3 33.44 r6 5.00
d4 11.00 r7 10.00
d5 20.00 r8 8.35
d6 15.00 � � � � � �

TABLE II. The values of the geometrical parameters for the
different angles shown in Fig. 7.

Parameter Size (deg)

α1 36
α2 44
α3 46

FIG. 8. CST simulation results for variations of the beam energy
along the CLIC thermionic gun.

FIG. 9. CST simulation results for the variations of the rms beam
radius (top panel) and the beam emittance (bottom panel) along
the gun. For the rms beam radius also Eq. (12) is plotted
(dashed line).
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currents In. Using the Biot-Savart law [18] for the z
component of the induced magnetic field indicated by
Bð0; zÞ on the symmetry axis of the focusing channel we
can write

Bzð0; zÞ ¼
X150
n¼1

μ0In
2ac × ½1þ ðz−znac

Þ2�32 : ð17Þ

In the matching cell the current and position of the first
coil should be calculated in such a way that the magnetic
field cannot penetrate back into the gun. This is due to the
fact that the presence of the magnetic field in the gun and
especially on the cathode surface results in an emittance
growth [21]. The current and position of the second coil in
the matching cell should be adjusted in such a way that the
R0 and R00 vanish at the beginning of the solenoid. The
adjustment should also reduce the beam rms radius from its
initial value at the beam waist (4.4 mm) to the desired value
(0.5 mm) in the focusing channel. Assuming these con-
ditions are satisfied and the strength of the magnetic field in
the solenoid is adjusted appropriately, the beam reaches a
thermal equilibrium with an arbitrary constant rms radius
(say 0.5 mm) within the solenoid. In such a situation we can
suppress any oscillations in the beam envelope which could
result in an emittance growth and preserve the beam
emittance value [14]. The strategy for designing the
focusing channel of the CLIC drive beam injector is to
maintain the beam rms radius at a constant value say
0.5 mm along the solenoid. We make use of Eq. (1) with
R0 ¼ 0 and R00 ¼ 0 and obtain the following equation:

X150
n¼1

μ0In
2ac × ½1þ ðz−znac

Þ2�32

¼ 2mc2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
qc

�
qIb

4πϵ0mc2cðγ2 − 1Þ3=2σ2

þ 4εx
2

ðhγi2 − 1Þσ4 −
�

qγ
2mc2ðγ2 − 1Þ

∂
∂z

þ q

2mc2c
ffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p ∂
∂t
�
Ez

�1
2

; ð18Þ

where hIbi and hγi are functions of z and show the average
values of the current and the Lorentz factor for the particle
within the bunch at each z. If IðtÞ indicates the instantaneous
current of a bunch andNb shows the number of the particles
within the bunch, then for the average current hIbi and the
average Lorentz factor hγi of the bunch we can write

hIbðzÞi ¼
Rþ∞−∞ Iðt; zÞ2dtRþ∞−∞ Iðt; zÞdt ; ð19Þ

hγðzÞi ¼ 1

Nb

XNb

i¼1

γiðzÞ: ð20Þ

Note that for keeping the beam envelope on a constant
value R, Eq. (18) relates the necessary current (In) of the
solenoid, to the average bunch current (hIbi), the beam
emittance (εx) and the electric field (Ez). Given hIbi, εx and
Ez as functions of z along the injector and using Eq. (18),
one can solve the system of equations to find the appro-
priate values of In. Although the functions Ez are deter-
mined throughout the injector (see Ref. [10]), the current
and emittance of the bunches are not predefined and are
strongly related to the magnetic field profile of the focusing
channel. Therefore, to find the appropriate values of In, we
have to follow an iterative approach. We first start with
initial guesses for the functions hIbi and εx. A good starting
point could be the assumption of constant values for these
two functions along the whole focusing channel, e.g.
hIbi ¼ 5 A and εx ¼ 1.8 mmmrad, which are the values
of hIbi and εx at the beam waist location. Using a
Mathematica [22] program we can find the appropriate
set of coil currents to satisfy Eq. (18). Armed with this set,
one can solve the envelope equation [Eq. (1)] along the
whole focusing channel which may have some oscillation
along the solenoid. However, through adjustment of the
matching coil parameters (I1, I2 and z1 and z2), not only
could we cancel the magnetic field at the waist location, but
we could also match the beam envelope to the solenoid with
no oscillations. Here one reaches the appropriate set of
currents and so the required focusing channel structure for
the first order of approximation. Later, we use the PIC-code
PARMELA to simulate the evolution of the beam all the way
down the focusing channel and calculate the functions of
the average bunch current and the beam emittance for the
second order of approximation. Equipped with these two
new functions, we can repeat the procedure to find the
currents for the second order of approximation. This
procedure can be repeated to any desired order of accuracy
until the converged form for the functions hIbi, εx are
found. The approach is fortunately very fast and just after a
few iterations the solutions are obtained. Figure 11 shows
the simulation results with PARMELA for the variations of
the average bunch energy hEkðzÞi ¼ mc2½hγðzÞi − 1� and
its current hIbi along the focusing channel. As can be seen
from Fig. 11 the average bunch energy and current start to

FIG. 10. The complex of the focusing channel. Two matching
coils after the electron gun and 148 coils in the solenoidal
structure. See also Fig. 2.
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increase very fast from the buncher and reach 11 MeV and
154 A at the end of the injector. Due to the sharp and
significant variations of the two quantities an accurate
design for the focusing channel is required.
Figure 12 shows the current distribution of the coils and

the magnetic field profile of the designed focusing channel
for the drive beam injector calculated by the descripted
method. As can be seen at the waist location the magnetic
field is exactly zero as it was required for emittance
conservation. Also along the buncher where we have a
significant increase in the average bunch current and
energy, the magnetic field takes its maximum value of
0.5 T to transport the beam properly. For this structure
using the envelope equation (1) we have plotted in Fig. 13

the variations of the beam rms radius from the beam waist
to the end of the injector. The diagram shows that with the
designed focusing channel, the beam should be well
transported along the whole injector without any oscillation
and at a fixed rms radius of 0.5 mm.
Figure 14 demonstrates the variations of the beam

envelope and the beam emittance along the whole injector.
Figure 13 indicates that the structure found for the focusing
channel gives rise to a beam with a constant rms radius
(0.5 mm) and very small emittance (4.5 mm mrad) along
the whole injector. This shows a significant accomplish-
ment in decreasing the beam emittance along the CLIC
drive beam injector in comparison with the previous work
with a 22 mm mrad emittance [10].

V. CONCLUSIONS AND OUTLOOK

We have reported the design of the electron source and
the focusing channel of the CLIC drive beam injector. We
have devised a new analytical approach to design high
current thermionic guns and their associated focusing
channels. The approach results in small emittances and

FIG. 11. PARMELA simulation results for the variations of the
average bunch energy (top panel) and its current (bottom panel)
in the focusing channel designed for the CLIC drive beam
injector.

FIG. 12. The current distribution of the magnetic coils (top
panel) and the magnetic field profile (bottom panel) in the
focusing channel from the beam waist designed for the CLIC
drive beam injector.

FIG. 13. Variations of the rms beam radius from the beam waist
to the end of the injector using the envelope equation.

FIG. 14. PARMELA simulation results for the variations of the
beam rms radius (top panel) and the beam emittance (bottom
panel) within the focusing channel designed for the CLIC drive
beam injector.
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agrees very well with PIC simulations. Our approach takes
advantage of the beam envelope equations in axially
symmetric fields and the emittance variation formula.
The method provides the optimum geometry of different
electrodes of the gun and also the structure of the focusing
channel for optimal beam transport. We have demonstrated
the feasibility of our method with the design of the
thermionic gun for the CLIC drive beam injector and its
focusing channel. We compared our results with the results
obtained by the simulation codes like CST and PARMELA

with excellent agreement. The final results greatly improve
the beam emittance of the CLIC thermionic gun and the
whole CLIC drive beam injector.

[1] A multi-TeV linear collider based on CLIC technology:
CLIC conceptual design report, edited by M. Aicheler
et al., Report No. CERN-2012-007, 2012.

[2] E. Adli, X-band rf power production, and deceleration in
the two-beam test stand of the Compact Linear Collider test
facility, Phys. Rev. ST Accel. Beams 14, 081001 (2011).

[3] S. Doebert et al., Design of a high current electron source
for the CLIC drive beam injector, in Proceedings of LINAC
(Geneva, Switzerland, 2014).

[4] A. D. Yeremian, A. Jensen, E. Jongewaard, and J. Neilson,
CLIC drive beam gun Report No. SLAC-Pub-16407, 2015.

[5] M. C. Divall et al., Fast phase switching within the bunch
train of the PHIN photoinjector at CERN using fiber-optic
modulators on the drive laser, Nucl. Instrum. Methods
Phys. Res., Sect. A 659, 1 (2011).

[6] H. Shaker et al., Subharmonic buncher design for the CLIC
drive beam injector, in Proceedings of the 4th International
Particle Accelerator Conference, IPAC-2013, Shanghai,
China, 2013 (JACoW, Shanghai, China, 2013).

[7] M. D. Kelisani et al., Design and beamloading-simulations
of a prebunching cavity for the CLIC drive beam injector,
in Proceedings of LINAC (Geneva, Switzerland, 2014).

[8] S. H. S. Hajari et al., Beam dynamics studies of the CLIC
drive beam injector, in Proceedings of LINAC (Geneva,
Switzerland, 2014).

[9] R. Wegner and E. Jensen, CLIC drive beam accelerating
structures Report No. CLICNote–945, 2012.

[10] S. H. S. Hajari et al., Beam dynamics studies of the CLIC
drive beam injector, in Proceedings of LINAC (Geneva,
Switzerland, 2014).

[11] W. B. Hermansfeldt, EGUN an electron optics, and gun
design program Report No. SLAC-PUB331, 1988.

[12] B. Goplen, L. Ludeking, D. Smith, and G. Warren,
User-configurable MAGIC code for electromagnetic PIC
calculations, Comput. Phys. Commun. 87, 54 (1995).

[13] PARMELA, Phase, and radial motion in electron linear
accelerators, 2005.

[14] M. Reiser, Theory, and Design of Charged Particle Beams,
2nd ed. (Wiley-VCH Verlag GMBH, Weinheim, 2008).

[15] T. P. Wangler, K. R. Crandall, R. S. Mills, and M. Reiser,
Relation between field energy and rms emittance in intense
particle beams, IEEE Trans. Nucl. Sci. 32, 2196 (1985).

[16] CST STUDIO SUITE 2014, Computer simulation technology.
[17] T. P. Wangler, RF Linear Accelerators, 2nd ed. (JohnWiley

& Sons, New York, 2008).
[18] J. D. Jackson, Classical Electrodynamics, 3rd ed. (John

Wiley & Sons, New York, 1999).
[19] S. Humphries, Jr., Charged Particle Beams, 2nd ed. (John

Wiley & Sons, New York, 2002).
[20] G. B. Arfken,Mathematical Methods for Physicists, 7th ed.

(Elsevier, New York, 2013).
[21] P. M. Lapostolle and A. L. Septier, Linear Accelerators

(North-Holland Publishing Company, Amsterdam, 1970).
[22] Wolfram Research, Inc., Mathematica, Version 10.1,

Champaign, IL, 2015.

DAYYANI KELISANI, DOEBERT, and ASLANINEJAD PHYS. REV. ACCEL. BEAMS 20, 043403 (2017)

043403-10

https://doi.org/10.1103/PhysRevSTAB.14.081001
https://doi.org/10.1016/j.nima.2011.09.006
https://doi.org/10.1016/j.nima.2011.09.006
https://doi.org/10.1016/0010-4655(95)00010-D
https://doi.org/10.1109/TNS.1985.4333859

