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Effect of an angular trajectory Kkick in a high-gain free-electron laser
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In a free-electron laser, a transverse momentum offset (or “kick’) results in an oscillation of the centroid
of the electron beam about the undulator axis. Studying the influence of this effect on the free-electron laser
(FEL) interaction is important both from a tolerance point of view and for its potential diagnostic
applications. In this paper, we present a self-consistent theoretical analysis of a high-gain FEL driven by
such a “kicked” beam. In particular, we derive a solution to the three-dimensional, linearized initial value
problem of the FEL through an orthogonal expansion technique and also describe a variational method for
calculating the average FEL growth rate. Our results are benchmarked with GENESIS simulations and
provide a robust theoretical background for a comparison with previous analytical results.
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I. INTRODUCTION

In a typical configuration for a high-gain, x-ray free-
electron laser (XFEL) [1-4], the orbit of the driving
electron beam is actively controlled through focusing
and feedback elements in order to avoid large centroid
excursions from the undulator axis, which can significantly
degrade the performance of the machine. There are,
however, several cases where off-axis radiation propagation
can occur, mainly through the introduction (deliberate or
accidental) of angular trajectory errors (or “kicks”). To
begin with, random errors in the focusing system can cause
such kicks, an issue of particular importance for high rep-
rate machines [such as Linac Coherent Light Source II
(LCLS-II)] due to the danger that the mis-steered photon
beam poses to collimators and similar x-ray beam line
elements [5]. Moreover, wake fields and coherent synchro-
tron radiation can induce a correlation of the transverse
slope of the electron beam with the internal bunch position,
leading to a “tilt” in phase space [6]. It can be shown that
the study of this effect requires a thorough understanding of
the basic physics of an FEL driven by a “kicked” beam. The
examples mentioned so far emphasize the tolerance aspect
of the issue under consideration. On the other hand, an
angular kick is often an essential part of many FEL-related
diagnostic or experimental procedures. The standard gain
length measurement procedure in LCLS-I employs such
kicks in order to terminate the interaction at a given location
and record the corresponding radiation pulse energy. Other
applications include schemes such as the DELTA variable
polarization undulator [7] (where different polarization
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components are separated by means of an angular kick
to the bunched e-beam) or proposed fast gain length
measurement techniques using energy-loss data from
kicked beams [8].

In existing literature, the standard analytical result
regarding the influence of a single angular trajectory error
6y is the so-called Tanaka gain length formula [9].
Specifically, it states that the kick increases the FEL power
gain length L from an initial value of Lg to
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where 6. = \/A,/Lgy is the critical angle and A, the
radiation wavelength (the idea being that any kick
larger than O, completely suppresses the FEL effect).
Alternatively, one may interpret this relation as a quadratic
decrease in the FEL growth rate, with a definite cutoff at
6y = 0. Though this result appears reliable enough for
many purposes, its derivation has been based on rather
simple arguments and assumptions more appropriate for a
fully bunched beam (a model more likely to be realized in
the saturation regime). Thus, the question arises whether
the formula is equally applicable in other stages of the
interaction (such as the linear regime) and whether the
simple expression for the critical angle is accurate enough
in such cases. Moreover, we deem it highly desirable to
study the problem at hand using the same rigorous
techniques that are used in the theoretical analysis of more
standard FEL configurations [10,11].

We also point out that some recent studies [12] have
suggested that Ref. [9] is conceptually wrong and that
no coherent radiation intensity degradation should occur
after a single kick of a microbunched beam. Although we
disagree with these studies and would also like to point out
the recent LCLS beam diverting experiment using the
DELTA undulator [7] (which actually showed radiation
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intensity degradation), the motivation for this paper did not
originate from this debate. Instead, we want to address the
growth rate degradation due to an angular kick that affects
the trajectory in the entire undulator. The linear analysis
presented in this paper allows us to obtain a more accurate
formula in order to compare with Eq. (1).

In this paper, we seek to develop the framework for
such a systematic consideration of the impact that a single
angular kick has on the operation of a high-gain FEL. To
this end, we use the Maxwell-Vlasov equations of the FEL
(including a transverse momentum offset) to derive a self-
consistent, fully 3D equation satisfied by the radiation
amplitude in the linear regime of the interaction. We then
employ an orthogonal expansion method in order to derive
a semianalytical, approximate solution to the linearized,
initial value problem (IVP) of the FEL. The basis elements
are suitably constructed to allow for off-axis radiation
propagation and yield accurate results even with a few
expansion modes. Moreover, we develop a periodic analy-
sis technique which enables us to calculate the average
FEL growth rate (over many betatron oscillations) by
means of a variational procedure similar to that which is
used in a standard eigenvalue problem. After a comparison
with simulation, we use the results obtained from the IVP in
order to extract a value for the average FEL growth rate,
which is then compared with the outcome of the periodic
analysis. This procedure reveals an encouraging consis-
tency between all the components used and allows us to
critically assess the applicability of Tanaka’s formula in
various scenarios.

II. THEORY
A. FEL equations

We begin our treatment with a review of the equations of
motion for a single electron in the combined field of the
undulator and the FEL radiation. The latter is assumed to be
linearly polarized in the x direction and its electric field is
given by E, = (1/2)E,(x,z)e™ (=) 4 cc. Here, c.c.
stands for complex conjugate, E,(x,z) is the radiation
amplitude [a function of the transverse position x = (x, y)
and the longitudinal position z along the undulator], and v
is the frequency of the radiation scaled by the resonant
frequency w, (v = w/w,). The latter quantity is given by
o, = ck, =2rc/4,, where k, (4,) is the resonant wave
number (wavelength), in turn defined through the FEL
resonance condition 4, = 4,(1 + K3/2)/(2y3). Here, 4, =
27 /k, is the undulator period, Ky = ¢q,By/(m.ck,) is the
dimensionless undulator parameter (¢g,/m, is the electron
charge/mass, B, is the peak, on-axis magnetic field), and y,
is the average value for the electron Lorentz factor. The
radiation amplitude is assumed to be a slowly varying
function of z, i.e., it changes little over an undulator period
[|(A,/E,)OE,/0z| < 1]. In the context of our model, after
averaging out the fast wiggle effect, the transverse motion

of the electrons is governed by the relations x” = —k%,xx
and y” = —k%,yy (where a prime denotes differentiation with
respect to z). The focusing strengths kg, and kg, are, in
general, assumed to be unequal but constant. For the case of
an undulator with parabolically shaped pole faces and no
external focusing, this representation is exact. In fact, the
natural focusing strengths satisfy kj, + k3 = k; = Kgky/
(273). If external focusing is to be added, the model can still
be valid provided the focusing lattice is treated in the
smooth approximation [10]. The transverse equations of
motion can also be written as

dx dp
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a form which also introduces the transverse slopes p,, p,.
The longitudinal dynamics of the system is determined by
the generalized pendulum equations, namely

o k,

2z = 0 =2k = (P4 Py K £ K507, (3)
do . :

pr K E,(x,z)e"Akueind 4 ¢ c, (4)

Here, 6 = k,z + k.(z — ct) + Qg sin(2k,z) is the phase
variable [Qy = K3/(4 + 2K3)1, 6 = y/yo — 1 is the energy
deviation, Av =v —1 is the frequency detuning, and
k1 = q.Ko[JJ]/(4y3m,c?), with [JJ] = Jo(Qo) — J1(Qy)
being a well-known factor arising from the wiggle averag-
ing. The quadratic term on the right-hand side of Eq. (3)
represents the influence of the transverse motion on the
longitudinal phase space dynamics.

The self-consistent interaction between the electron
beam and the generated FEL radiation in the field of the
undulator can be studied using the Maxwell-Vlasov equa-
tions for the combined system [10]. The 6D phase space
state of the electron beam is characterized by a distribution
function of the form f = f(6,6.x,y, py,p,.2), whose
value is constant along individual phase space trajectories
(f is akin to a phase space density). Following the standard
approach, we confine our attention to the linear (or
exponential gain) regime of the interaction, in which f
can be expressed as f = f, + f1, where f is a background
distribution and f; is a small perturbation due to the
microbunching. In view of the fact that frequencies are
decoupled in the linear regime, f; is written as f; =
foe +c.c., where f, = f,(6,x.y, p,. p,.z) is another
amplitude quantity (analogous to E,). It should be stressed
that, in the context of this perturbation method, both £, and

f, are assumed to be first-order (small) quantities, apart
from slowly varying functions of z. Up to the onset of
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saturation, the operation of the FEL can be adequately
described via the following linearized, frequency-domain,
Maxwell-Vlasov equations [13]:

o 1 [® @
(8_z+2ik [ax o ])E”(x’y’z)

= —Kyeltvhi / dp.dp,dsf,(8.x,, Py, Py.2)s  (5)

ofy Oy O ., Of 0fy
- , -k -k i0
Oz + Dx Ox +py 8)7 /3xxapx /)’ ap + fz/
= —k, E e Akt ofo (6)

05

where k, = q,K[JJ]/(2¢e0y0) and we recall that 8’ is given
by Eq. (3). The unperturbed distribution f, satisfies the
zeroth-order Vlasov equation

o, , 0 Do

“YJo afO k2 8fO
0z Px Ox

=0, (7
ape Y 9p, (7)

2
— kX
while the same quantity is normalized according to the
relation

[ dvidp,ds [ axdydz,go = . (8)

where 7, = @/k, is the internal bunch position and N, is
the total number of electrons. To consider a specific case,
we select a distribution function of the form

foz Ny/l, exp 5
0 (27)%%6,6,0,6,05 203

X exp (_ (Pe = Pee(2))? + K3, (x — xce@)z)

20/2
X exp(—

which corresponds to a horizontally “kicked” beam with
Gaussian energy and transverse profiles but with a uniform
longitudinal profile. The latter can be considered as a
limiting case of a flattop current profile in which the bunch
length [, is much larger than the slippage length N,4,,
where N, is the number of undulator periods. Thus, the
beam currentis I, = q,cN, /1, and we can disregard any
dependence (0f,/06 = 0). In the previous equation,

Xee (Z) = (pO/kﬂx) Sin(kﬂxZO) (10)

Py + ky” 2) 9)

/2
20y,

and

pce(z) = Do Cos<kﬂx20)’ (11)

(where zo = 7z — z,, and z, is a constant position offset), are
the oscillating, horizontal position and momentum centroids

of the beam, defined in terms of a transverse slope amplitude
Ppo- When z, = 0, the beam has zero position offset at the
start of the undulator (z = 0) but a horizontal momentum
offset of p,, which can thus represent an initial kick. On the
other hand, o, is the rms energy spread, o,, o, are the rms
transverse beam sizes, and o, ag, are the rms values of the
transverse slopes. We stress that no offset is considered in
the y direction and that the beam is assumed to be matched
to the focusing channel, i.e., 6 = 6.k, and o, = 6k,
(so that the beam sizes are constant).

Given the background distribution, the next step is to
analytically invert the linearized Vlasov equation [Eq. (6)]
by expressing f, in terms of E,. This procedure would
follow the lines of the method of integration along
unperturbed trajectories. The end result is [13]

- o)

Fu= i 0 [ e, ey O expl-iduhd + i0),
(12)

where &= -z, x; = xcos(kpé) + (po/kpy) sin(kp,é)

and y, = ycos(kp&) + (py/kgy) sin(kg,&). This solution
assumes zero initial density modulation (f,(z = 0) = 0)
but does not rely on the particular form of f;. Substituting
Eq. (12) into the right-hand side of Eq. (5) and making use
of Eq. (9), we eventually obtain a self-consistent relation
that governs the evolution of the radiation amplitude along
the undulator:

o 1[0 &
(8_z+2ik L?x o DE”(”’Z)

:/dpxdpy[)vdCKl(xvy7px’py7zvé‘)Eu(x+’y+?C)?

(13)
with
Ky (x, ¥, Pxs Py 2:6)
= 8l/) ku gg_iAUkufe_Z(ing‘:z
27r0' )
[px - pce( )} k/zix[x Xe (Z)]2
xexp| — P
2+ k
20,
X exp _ik,éf( 14 pl+ kit + Kk y?) (14)
2 Px py px ﬁ)'y .
In the above results,
K3[JJ)? 1,)\V/3
= 7;)[2 F L (15)
I AN
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is the dimensionless FEL (or Pierce) parameter [14]
(I, = 17 kA is the Alfven current). As is well known, the
p parameter can be viewed as a measure of the frequency
bandwidth of the FEL effect.

B. Orthogonal mode expansion

Having determined the equation that is satisfied by the
radiation field, our main goal now is to obtain a solution to
Eq. (13) that is compatible with a given input amplitude
E,(x,0) at the entrance of the undulator. To this end, we
shall employ an orthogonal expansion technique, relying
on a version which takes into account the lack of axial
symmetry of the problem at hand. To begin with, we
introduce a set of orthogonal transverse modes given by

Wonn (X 2) = Y (%, 2)@, (¥, 2), Where

\/EAX —imu
e~ yo(x, 2),

X

) e~y (y, 2) (16)

t(x.2) = <2mm!>-1/2Hm(

V2

w

pu(r.2) = <z"n!>-1/2Hn(

y

and

20(6.2) = (ki /m) 14 (B + i) 2ol )

X exp (_ M)
2(ﬁx + lZ) ’
90(y.2) = (k,By /) V(B + iz)™'/

xexp<-#yjiz)>. (17)

In the above definitions, m,n =0,1,2,3,..., H; are the
Hermite polynomials while f,, f,, and a, are complex-
valued, z-dependent basis parameters. The use of two
different basis parameters in x and y (B, and ) accounts
for the asymmetry of the problem while the additional
parameter a, is introduced in order to deal with the off-axis
characteristics of the radiation propagation (which we will
verify in due course). The convention according to which
an index r/i denotes the real/imaginary part is adopted for
these, as well as other, complex variables in this discussion.
Thus, the real parts of the three basis functions are denoted
by By By and a,,, respectively, while their imaginary
parts are f3,;, f,;, and a,;. From a physical point of view, f3,,
and f3,, represent the local Rayleigh lengths of the radiation
while —f,; and —f,; correspond to the local waist positions.
As far as a, is concerned, we will verify that a,; is
proportional to the offset of the radiation profile from
the origin of the inverse (angle) space while both «,, and
a,; contribute to the offset in real space. Moreover,

7 \1/2 .
W)C - <krﬂxr) ‘ﬁx + 1z

— (2 1 18
W)’_ <krﬂyr) |ﬁy—|—lZ| ( )

’

and

+ .
u, = arctan (—Z b x’),
B

u, = arctan (%@) (19)

are the waist and Gouy phaselike parameters while
Ax = x — x,, with

Z +ﬂxi
ﬂxr

representing the centroid of the radiation profile. These
modes, which have also been used in the study of an FEL
based on a transverse gradient undulator [13,15], satisfy the
orthonormality condition

(20)

Xe = Qyp + Oy

/ dle//fn’n’(x7 Z)l//mn (X’ Z) = 5mm’5nn’ (21)

and form a complete set. Thus, the radiation amplitude
E,(x, z) can (generally speaking) be expanded in terms of
the generalized Gauss-Hermite modes described above.
Were such an expansion to be substituted back into
Eq. (13), the result would be an infinite set of evolution
equations for the mode coefficients. However, pursuing a
general multimode analysis here is not deemed advisable
due to the significantly increased algebraic complexity of
the expressions involved, which makes the final analytical
results too unwieldy to be of much practical use. Instead,
we shall confine our objective to the construction of an
approximate solution for the initial value problem which
retains only the fundamental (m = n =0 or 00) mode.
This allows for reasonably compact results without much
loss of accuracy in cases where multimode effects are not
important in describing the radiation.

In the single-mode approximation, we assume that
E,(x,2) ® E)’(x,2) = €ooCoo(2)Woo(X, 2), Where &y is a
constant and Cy(z) is a dimensionless mode coefficient
to be determined along with the basis parameters f,(z),
a,(z), and f,(z) following a self-consistent (or source-
dependent) approach [16,17]. Let us also abbreviate
Eq. (13) as T(E,(x, z) = 0, where 7, is the corresponding
integral-differential operator. Since EY’(x,z) is not an
exact solution of the amplitude equation, 7 (EX(x, z) is
a nonzero function. Instead, our approximate solution is
based on imposing the condition that the projections of
ToEY with respect to the 00, 10, 20, and 02 modes are
Zero, i.e.,

(Wool ToEY) = (w10l ToEY)
= <U/20|70E80>
= (Wl THEY) =0,
(22)
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where we recall that the definition of the inner product is
(flg) = [d*xf*g. The projections with respect to the 01
and 11 modes can be readily shown to be identically equal
to zero. Utilizing Egs. (16)—(17), along with the afore-
mentioned conditions, we can obtain a set of four integro-
differential equations for Cy, fy, @, and f3,. In order to cast
these analytical results in a more useful form, we first
introduce the scaled variables z = z/B... B, = By/Pors
a, = a,/o,, and [}y - ﬂy/ﬂey» where f,, = Gx/(f; -
1/kg, is the horizontal matched electron beta function
and f,, = o,/0), = 1/kg, is its vertical counterpart. The
resulting equations are

dCy { 1 dp,
= +
dz 4B, dz

x daxr +
dz

1 dﬁyi A &xi
4/;)yr d? X/;)xr

axi d/;)xi =
~ C
2. ) e

+/OZdZCOO(z)Ll(Z’E’ﬁ IB Ay, x{vﬁywﬁ)é’)
(23)
da, @%
&~ Wl
XA dECOO(E)IQ(ZvEvﬁxvﬁx,é”&m&x,é”ﬁy’ﬁy,()’
(24)
d_/}x _ fOZ dzCOO C)L3<Z g ﬁx’ﬁxgaaxvaxé’vﬂwﬂv()
dz Coo(2)
(25)
and
@ _ f()Z dzCOO(E)l%(Z’EHBx’Bx,Cv dx’ &x.g’ﬁyvﬁy@)
dz Coo(2) '
(26)

In the above equations (and elsewhere), an extra subscript
¢ assigned to a variable denotes a dependence on the

integration variable C, i.e., ﬁx,g = 4.2, a.. =a./(0),
and ﬁy,g = /}y(f ) etc. The functions L; — L, are given by
Ly = —8iA}Eexp(~2iADE —243(6,)°8)

X (ﬁxr,{/ﬁxr)U4(ﬁyr,§/ﬁyr>1/4(Bx/Bx,§)1/2

X (By/Byc) Gy T3 exp(To) Cpy/ 1312,
L2 = (ﬁ,\xr/éx)l/zem'x(Tl/fé)le
Ly = 2, e (T3 (1 + T7/(2T5)) - 1)Ly,
Ly = 2B,e% (V3" = 1)Ly, (27)

where A, = pkyfoxs € =C~2, 0= Av/(2p), 65 = 05/p,
ﬁx = ﬂx +iz, ﬂy = ﬂy + i(ﬁex//}ey)z’ and Ex = kro-xagc'
From a physical point of view, Ax is proportional to the
ratio of the horizontal beta function to the gain length
while B, is proportional to the ratio of the horizontal
beam emittance o,0’, to the radiation emittance A,/4r.

Furthermore, T, = G, + Go,G,/Gpp> T, = (1/2)
(GQG - G(Z)p/Gpp)’ Y, = (1/2)(Ctt Cgp/cpp), and

. G T U
TOZZGZP 4;2—5(1—&—zBXé)x%—i—poxcsmzo—?O

B, {&i N ‘f‘)za‘.g n (£ - 7;)? n (£e COSE - &x,C)z}’
ﬁxr ﬁxr,é’ ﬂx ﬁx,i_,’
(28)

where 7, = ZO/ﬁexv X = xc/ax =, + &xi<2 +/)7xi)/ﬁxr’
and p, = py/o’. The remaining quantities to be defined are

B, sin&
G,,=1+iBE+ <
ﬂx{
G¢99 = Bx/ﬁxr + VT/J%(COSQE/BXYZ: + l/éx + lé)’
B2
Ggp = — B, W, cosEsiné,
ﬁx,(
G, = pocosZy — = (. cos & — @, ;) siné,
X,§
BY? . = RV,
Gy = - £ Wx(xc Ot;) - (1 + lef) ~1/2
X B,
BY? - - _ W,sinz
— =—W,cos(k.cosé —a, ) + Py )CA,*/QO,
:Bx,C By
(29)
where w, = |/_}x|/ B2, and
C,p=1+iBéE+ Bysinzé/ﬁng,
Cu = By/Byr + WAB;" +i& + cos?E/B, .
C,p= —E;/z(ﬁ/y/ﬁy_g) cos Esin &, (30)
with B, = k,0,6,, &= (B../B.,)E and W, = |B,|/pI/>.

Given the values of Cy, f,, fy, and a, at z = 0, numeri-
cally solving Egs. (23)—(26) yields an approximate solution
to the 3D initial value problem of the FEL. This solution
can be used to provide a quantitative description of the
FEL radiation in the linear regime. The radiation power
P,—which is defined by P, = [d’xI,(x,z), where I, =
(cey/2)|E, | is the radiation intensity (and & is the vacuum
permittivity)—is given by
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P, = Py|Cp|*. (31)

where the initial condition for the mode coefficient is
assumed to be Cyy(0) =1 and Py = cgy|égol?/2 is the
input radiation power. Moreover, the rms radiation beam
sizes are, in turn, given by

<x2>r - <X>% = Wx/2 (32)

Orx =

and

ory = /07, = wy/2, (33)

where (x), =x, and the (...), average uses the spatial
intensity /, as a weighting function [for example, we have
(x?), = [d®xx*1.(x,z)/ [ d®XI,(x,z) etc.]. As far as the
situation in the inverse transverse (i.e. momentum) space is
concerned, an inspection of the Fourier transform definition
E,(k,z) « [ d’XE,(x,z)exp(ikx) leads to a Gaussian
angular profile with

L 2 (kx_k0)2 K2
|E,(k, )| ocexp(—T%x exp _K}]%y 7

where

G%X = k%6;x2 = kr/(zﬁxr)’
G%y = kgd,ry2 = kr/(Zﬂyr),
kO = er/c = _kr<axi/ﬁxr)' (34)

In the above equations, o/, and ), are the rms angular sizes
while x/. is the angular centroid of the radiation.

Thus far, we have only considered properties of the
radiation. As far as the electron beam is concerned, the
perturbation formalism we have been using also allows us
to calculate a quantitative expression (valid in the linear
regime) for the bunching that is induced by the FEL effect.
The bunching factor of the electron beam can be defined in
terms of the distribution function f as the absolute value of
the average (e~"), which is in turn defined by

(e0) [dp [ d>x [ ds [~ dOfe?
J&p [&x [d5 [aof -

where p = (p,, py). Recalling that f = f, + f;, with f,
being # independent and normalized according to Eq. (8)
while f; has a sinusoidal modulation with @ according to

(35)

fi~fe”+cec (wal), the expression for the phase
average reduces to

:27zfd2pfdzxfd5fy

=T 1) 30

In view of Eq. (5), Eq. (36) becomes

: L, 1 _.
<e_l9> _ _N_l;ge—tAukuZ/dzxLEy(x,z), (37)

where L = 0/0z + V2 /(2ik,) is the paraxial operator.
Making use of the assumption that E, (x,z2)~
¢00Coo(2)woo(X, z) (i.e. the single mode, Gaussian approxi-
mation adopted earlier) in conjunction with Eqgs. (17) and
(37), we find—after some algebra—that the bunching
factor is given by

(%) :Nlb <2Pr>1/2 (g)l/zﬁ),# 1/4
bK2 \ C€o r

+ 1 dﬂxr 1 dﬁyr dQE
4p,, dz 4P, dz dz

—0Qp

’

X

i,

(38)

where Qp = k,a%,/(2p,,) and u, is a z-dependent, local
complex growth rate that is defined through the relation
Coo(z) = exp(i [§ dsu.(s)) or, equivalently,

_ i dCO()(Z)
C()()(Z) dz ’

po(2) = (39)

A more convenient expression can be obtained if one
switches to the scaled variables discussed earlier. In terms
of that scaling, we find that the expression for the bunching
factor is

A

) P\ 1/2 ﬁ 1/4 1/4
-0\ — [ Z2r ﬁ Ayr

1 [ 1 dp 1 dp,, d
X ZIMAZ+—A|: ~ ﬁfr = ﬂz — Q_E:| e_QE,
24,45, Az 4Ap, dz  dZ

(40)

where Pg = PYomeC2Ip/qe, Or = Bx&ii/(zﬁxr)7 and ﬁz =
u./(2pk,), all other symbols having already been defined.
Taking into account the fact that [{e=)| < 1, as well as the
observation that the part on the right-hand side of the above
equation which contains the various scaled basis parameters
is (generally speaking) of the order of unity, it follows that
the perturbation result given in Eq. (40) should break down
when P, ~ Pg = pPyeyn, Where Ppeyn = yom.c*l,/q, is
the e-beam power. Viewed as a qualitative limit for the
applicability of the linearized model, this condition repro-
duces the established fact that the saturation power is of the
order of the e-beam power multiplied by the FEL parameter.

C. Periodic analysis

In the previous section, we described a technique for
obtaining a semianalytical, approximate solution to the initial

040703-6



EFFECT OF AN ANGULAR TRAJECTORY KICK ...

PHYS. REV. ACCEL. BEAMS 20, 040703 (2017)

value problem of the FEL. That solution can adequately
describe the FEL interaction in the linear regime, given the
initial conditions. However, it is also possible to develop a
method similar in form to the standard FEL eigenmode
approach [18], which would lead to a description indepen-
dent of initial conditions. This is made possible by exploiting
the periodic z dependence that is introduced by the centroid
oscillation. Starting from the radiation amplitude equation
[Eq. (13)], our first step is to switch to the new horizontal
variables p, = p, — pe.(z) and X = x—x.(z). This
manipulation allows us to utilize a frame that is comoving
with the e-beam. Its end result is the equation

0 0 1 [o* &2
<a_z_p0005<kﬂxzo)%+2ik [8 2+8 ])E (X,y,2)
_/dpxdpy/ovdCK2<x’y’pwpy,ZaC)ED()_CwL?wa’C)y
(41)

where E,(%,y,7) =
quantity, X, = X cos(ks,&) +

E, (X + x..(2), y, z) is a new amplitude
+ (P/kpy) sin(kp, &), and

K2<)_C7 Y, px’ py’ 2 g)
8ip’k]

!
2rn6,0),

Eemibuikit o208

=2 2 22
+ ky X + k3 y
XCXp(— xzo/gx 2 /gy )
x Oy

ik,$
xexp( 5 (Px + py + k5, X + K y?)

X eXP{—iPOkrSE[I_?x COS(k/,vxZO) + k/ix)_c Sin(kﬂxz())}}'
(42)

In the above equation, we have introduced the shifted
detuning Av,, which is defined through the relation

Av,k, = Avk, + (k,/2)p3. (43)

This definition is consistent with the increase in the FEL
wavelength due to the kick. To proceed, we need to
define some additional scaled quantities, starting with
the following: X = X/o,, ¥ =y/0,, Py = p./0%. Py =
py/oy 2=k 20 =2pk,z. ¢ =2pk,l,  and
(f = f — Z = 2pk, & Moreover, we also introduce the scaled
detuning D, = Av,/(2p), the scaled energy spread
65 = 65/p, the diffraction parameters 7, = (4k,k,po>)”"!
and 14, = (4k,k,po3)~", as well as the focusing/emittance
parameters kﬁx = k/ix/(zpku)’ kﬁy = k/}y/(zpku)’ Mex =
k.o\%/(2pk,), and n,, = k,0,?/(2pk,). We note that the
latter four parameters satisfy the relations 7,, = I%x /(2n4y)
and 7, = 12/23y /(2n4y). Last but not least, we also define

two scaled parameters that are proportional to the kick
angle pg:

€1 = po/ (2pkyoy) (44)
and

e = k.poo’/(2pk,). (45)
We note that their ratio is related to the horizontal emittance

€, = 6,0, since e¢/e; = k,0,06,. The scaled evolution
equation is

0 ~ .0 . A
(6_2 — € cos(ky,Zp) Frak [ndxﬁ + Nay 8—5)2} )Ev(x’y’ Z)

- / dp.dp, / B (2.9, Pos pys 2. 8B (5191 8).

where £, =X,/o,
yi/0y = $cos(kg, 5)

(kﬁxé) + px Sln(kﬁ’xé)
1n(k/;v§) and

IA{S()?’ yAv ﬁx? ﬁyv 2’ é;)

A

ié A
= —Zexp(—wsf - 628%/2)

1+ in, & O I
L )= ———=(p3 +5%)

cenp(- ek
x exp(—ieé[p, cos(kp2o) + % sin(kp20)]).- (47)

2

The term proportional to 9/0X in the first line of Eq. (46) and
the entire third line of Eq. (47) are the new features
introduced by p,. The latter also contains an explicit, periodic
dependence on Z, (i.e. not one implicitly contained in
f = f — 2). Expanding this exponential term up to second
order in €, we have

Qp = exp(—ie[p, COS(/%ﬁxZ\()) + £ sin(leﬁxfo)])
~ 1 — ie[p, cos(kg2o) + % sin(kyZo)]

28 . .
- [Picos? (kg 2o) + £2sin? (kg Zo)
+ &P, sin(2kp20)] + - - (48)

so the coefficients in the Fourier series

Qp =dy+ &'18”2/’*20 + cAi_le‘”zﬂ-va
+ ﬁzeziéﬂxfo + (3_26‘2’%20 NI (49)

are given by
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U e8P+ £
do(%, Py, &) =1 ——— + 0(e*),
2 2
. A 2 re a2 X +ip,
dl ()C, P> 5) = _d—l(x’ Pxs é:) = _65

& [ﬁz—ﬁi l]
X

+ 0(e),

do(& pod) = Llh pud) = S [S 2 4 250

+ 0(e*), (50)

etc. In a more compact form, one can show that the

above Fourier coefficients are also given by El,l =
J_n (€€ /P2 + £2)ei"% | where Oy = arctan(p,/%). This
expression is derived using the Jacobi-Anger expansion
and is valid even when ¢ > 1. However, we will see that
the expansion in terms of e given by Eq. (50) is quite
sufficient for our purposes.

In view of the periodic z dependence of the problem at
hand, we try a solution of the form

0

E (%,9.2) = Z Ay (R, §)eiitnks)to, (51)

n=—00

where A,, are Fourier amplitudes and /i is a complex growth
rate. Alternatively, this solution can be viewed as a trans-
verse profile that is periodic in Z,, multiplied by exp(iiZ).
Substituting the above ansatz into Eq. (46) yields an infinite
set of coupled equations, namely

N o0? 0?
<ﬂ + I’lk/;x - |}7dx(9)?2 + Ny a),}2:| >An(x, y)

i€1 814”_1()?,)7) 8An+1(£vy)
+2< x| o

0 0 . .
= [ands, [ diD 525,09

j=

XA,y (X, 9 ) exp(ila + (n+ j)lz/,x]é). (52)

In the relation given above, we have changed the transverse
integration variables from (p,, p,) to (X,, $.). As we will
see later on, this particular choice allows for some very
useful insight regarding the structure of the problem.
Moreover,

(%, 9. %, 9..8) =d;(%,%, . O£, 5. %.9..8), (53)

~ A

TI(£, 9, %1.9.¢)
_ Sexp(=in,é - 638/2)
27|sin(kg, &) sin(kpyé)|
1 + inexé a2 a2 an 7z
X exp (— —— R X7+ X5 = 28K, cos(kg&)]
2sin? (kg €)
< 1+ ingyé
Xexp| ——— x5
2sin” (kg €)

(5% + 2 — 299, cos(iéﬁy@])

(54)
and
. 282162 4 22 _nas I
Jo=1 ey +x' : Axxtcos( x5)] Lo,
4sin” (kg &)
~ 53[(Sin(éﬁxe€) F icos(lgﬁxf))f +i%,]
diyy=F ——
2sin(kp, &)
+0(e%) (55)

etc. In what follows, we confine our attention to a model
that includes only the fundamental amplitude A, and the
first two satellite amplitudes A, ;. Even with this simpli-
fication, the resulting truncated set of coupled amplitude
equations is not amenable to analytical treatment. Instead,
we follow a perturbation approach, which is valid when e
and e are smaller than unity (i.e. when the kick angle py, is
sufficiently small). The latter condition can be further
clarified by noting that

€= (Zﬂ\/g/fw)l/z\/’a(l?o/ac) (56)

and

€1 = (4ﬂ\/§/f31))1/2\/@(170/9c)’ (57)

where f3p > 1 is a dimensionless parameter representing
the gain length increase due to transverse effects and energy
spread (see Sec. III for more details). Thus, the smallness of
€, €1 can be directly related to the ratio of the kick to the
critical angle.

Our main objective is to obtain the average growth
rate fi in the form of a series expansion in terms of p,.
Thus, we assume that g = 4© + 4 + 4?) +...—where
Ak ~ pk—and also A, = AV AN 4 AP 4 (for
n =0, £1), seeking to determine the contribution of each
order. To implement this approach, we need to expand the
integral kernels 0 ; in terms of p,. Apart from Egs. (50) and
(55), we need to take into account the fact that the shifted
detuning 7, also depends on the kick angle via o, = 0 + €5,
where 0= Av/(2p) and e, = k,p}/(4pk,) = €/ (4ns).
For py =0, Qj =0 for all j #0 and we only need to
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deal with the fundamental amplitude Ay (%, §). In this case,
there is no periodic z dependence and our solution reduces
to a standard FEL guided mode, which satisfies the zeroth
order mode equation

R 0? ? R
<M<0) - [’de % + ay 8—)72} >A(()O) (£.9)

0 A~ N
— [atar. [* 8052059
0¢), (58)

>

0/n o .
X A(() )(x+, 9 ) exp(ial

where Q(()O)()G,)?,)%+,y+,§) =II(%,9,%,94,¢)5 p- This
equation is the standard version that has been studied
extensively in 3D theory [18]. Its solutions can be
determined through variational theory (among other
methods). The latter is based on constructing the follow-
ing functional:

R R R 0 .
/dXdyAE)O) (%,9) {M(O) - [’1‘1’“8)22+ Nay ayAz} }AE)O) (%,9)

(VN
— [ aidin ) [ asas, [

x O (%,9,2,.9.. HAY (2,9, ) exp(ia®d).  (59)

The above relation yields an approximation to the growth
rate 4(¥ given a trial function for the transverse profile
AF(2.9). Since 0F (%.9.%,.9,.8) = 05 (2..94.£.9.8),
a first order variation of A(()O) in the neighborhood of the
actual solution yields an estimate for 49 that is accurate
up to second order terms. For the fundamental mode, we
use a Gaussian trial solution of the form Aéo) (%,9) =
exp(—a,£* — a,$?). The resulting variational dispersion
relation is

172 172
y

FO(ﬁ(O)7 Ay, ay) = /2(0) + Ny + Naydy +ax"a

< [ degexpliGn® - )¢

- 838 /2)D* Dy =0, (60)
where
Do = 7 (1 + 18 + (1 + e, + alsin? (i &),
Dy, = 4]_1( +n1€y§) (1+ir]6y.§)ay+a§sin2(l€ﬂy§).

(61)

The solution is completed by the relations dF,/0a, = 0
and OF,/0a, =0, which are due to the fact that the

stationary growth rate satisfies 9 /0a, = 940/
da, = 0. These three equations yield the fundamental
growth rate 4(*) and the mode parameters a, and a
functions of the detuning 7.

For p, # 0, the periodic z dependence is restored and the
two satellite amplitudes A, ; need to be included in our

yas

analysis. Since dy, = O(e), we anticipate that the leading
contribution to A, will also be « e. The two first-order
equations for A, are

. - o? o? 1)/ a o
(/4(0) + kﬁx - [Tldx@‘f‘ﬂdy 6_)72]>A (x Y)

I () P PR
—/dx+dy+/ de(())(x,y,x+,y+,§)A$l)(x+,y+)

. 0)/n A
. A A ie; 0Ay (%, 9
< expli() & )] = Fuy(2.5) = — 1 20_L05)
0 .. A
T / a5, / dEOV)(%,9.%,.94.8)
x AV (34.9.4) explin® . (62)

We note that—unlike a typical, homogeneous mode
equation such as Eq. (58), which involves both an
unknown growth rate and a transverse profile—the above
results are driven equations for the transverse profile only.

Given 4 and A(()O) (%,9) from the standard variational
calculation described earlier, Egs. (62) can also be solved
using a modified version of the variational technique
suitable for driven equations. In particular, we define the
functional

. R 62 2
I, = / didsAl) (3 ){u“” + kg, — {'ldx a;eﬁ"d’ﬂﬁz}}

£
aana (D a a0 2
dRd$AL[(R,9) [ dr dy, | dE

x AL (%, 9) -

~(0)/~n A Py .
x OV (%9, 5.9, AN (5, 5,) expli(a© + kg )]
—x [ didsall5.9)F (5.9) (63)

where the driving term F (£, §) has already been defined
in Eq. (62) and x = 2. The above relation yields a complex
number /.. for a given profile Ag (%,9). As is shown in
the Appendix, in the neighborhood of the actual solution,
I, is nonzero but stationary. In other words, a first order
variation in Agl) only yields a second order variation
in /1. As is also argued in the Appendix, a suitable trial
function for the satellite amplitudes is Ai_fl) (%,9) =
A % exp(—b, %) exp(—c,$?). Substituting this form into
Eq. (63) and also using the Gaussian trial function for

AE)O) (%,9), we obtain the relation
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7t/12
1, = +£ 31,40
+ Sbi\/@/@[ﬂ px + 3Naxb i+ ngycy]
71'/12 0) 5
+T 3 a’f/jexp[( ikﬂ - 0)é - 055 /2]

a, 1
(bs +a,)*? (cx +ay)'/?
iﬂ'eﬂi

T deE exslil - 0)E- 382

« N,D2D7V2, (64)

<N D7)/*Dy)? ~ime

where

N, = a,exp(Eiky&) sin(ky &) = (1 + inei),
1
D, = b.a,sin (kﬂxf) 3

(1 + in,, &)
+ i ,

( + l’/lsxg)(b:t + ax)

R
Dy = C:k:aysnlz(kﬂyé) + E (1 + u/lsyf)(czt + (1),)

L+ ey )’

) (65)

and

Ny = (1 + in, &) cos(ky,é),

o |
Dy, = bisin? (kg &) + bo(1 + ineE) + 4( +ined)?,

PP N .2
Dy, = cisin®(kgyé) + o (1 4 ine,8) + 3 (1 + in.,&)%

(66)

For this case, the variational relations are 0, /0l. =
Ol /0b, = 0I,/0c, = 0. Solving these equations yields
the satellite mode parameters (4, b, and c.). In view of
the simple quadratic dependence of /. on A, and e, €y, it
can be readily seen that the resulting value for 4, is a
linear combination of ¢ and €;. Thus, as expected, 1, and

Agtll) are indeed first order quantities (recall that € and €
are both proportional to p).

Having determined ﬁ(o), Af)()), and Agtll) , we seek the
second order corrections to ji. Indeed, it can be shown that
there are no first order corrections to the above quantity,
so we simply have i = 4(¥) + 4(®). Reviewing the version
of Eq. (52) for n = 0, we collect all second order terms.
The end result is

A . & o .
A@A0 (2, 5) + (;AO) |:”Idx 5 +lay aAz} )Aé (2.9)

i [aAg”(x, 5) oAl (w)]

2 0% 0%
_ [az,a5, [* @200 ®5.2,.9,. 942, .9
Xpdyy fQ() (-xvy’-x-&-’y-‘r’g)[ 0 ('x+’y+>
+ig@EAY (2,.5,)] explin V€] + G (2. 5), (67)

where
PPN PPN O 22 o s o 2
g('x9y) = dx+dy+ d§Q0 (x’y,x+a)’+s§)
(0) A A .,\<0)’\ ~ ~ 0 A
XAy (Xy,9y)expligVe] + [ di dP, dg
X Q(_1|>()2’)A’,)2+, 5]\4»93)1451)(5&4»95}4»)
xexpli(@® + ky)él + [ di.ds.
L P
X d&Q, (%, 9. %, 9,4, ) (x+,y+)

~

x expli(A©) — kg,)E). (68)

~ l ~ ~ A A A ~ ~ ~ ~ ~ N ~
Here, Qil)(x,y,x+,y+,.§) :dil(l) XH(x,y,x+,y+,§),;S_,ﬁ

while the second order term related to Qy is given by

([ g cER o nt ol d]
47]dx 4 Sll’l2 (kﬂxg)

In order to extract /i(?), we multiply Eq. (67) by A(()O) (%, 9)
and integrate over the scaled transverse position. After
using Eq. (58), as well as some properties discussed in the
Appendix, we obtain a formula for the second order
correction to the growth rate:

2 [ [ asasta . =i [ aasa ) [ as.as.
(L ~ ~
x / dEEOY) (2.9, 8.5, &) explin @AY (£, y;)}

o [00, e

n / d2d5AY) (£.9)G(%. 9). (70)

where G has been defined in Eq. (68). Substituting the

analytical expressions for A(()o) and Ai]]) into Eq. (70), we
obtain the following analytical result:
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[Se]

0 .a
{1 +iay?al? / de:gze‘Png/zng/z]ﬁ@)

iy

3/2 1/2|:
(ax + b+)3/2 (ay + C+)1/2

= —ieay "ay

oo
+
(ay +b_)3%(a, +c)'/?

2 0

€ an — _

+Zai/2a}/2 / dE& e Ny, Dy, * Dy,
—0o0

ie? 0 ~a _ _
+—a?a)? / dé&e" Dy’ Dy
4'7dx -

[So]

i 0 An ~ _ _
+ €A/ / dé& e (N.DT?D5'%),

| 0 ~n ~
+qelanya [ e (D7D L (1)

where W = i(2©0) — D)& — 6282 /2, W, = W + iky &, Ny, =
a, + (1 + in,,&)/2, and

~ A A

1 A oA A A n
N, = a,sin(kg,&) +§ [sin(kg &) F icos(ky &)](1+ inel).

Given 49, a,, ay, A+, by, and c (all of which are available
from our previous variational calculations), Eq. (71) yields
the second order correction to fi. This completes our
perturbation solution for the periodic problem.

III. NUMERICAL EXAMPLES

This section provides a brief numerical illustration of the
theoretical methods outlined above. In particular, we
compare the results of the linearized IVP solution with
the output of the three-dimensional FEL simulation code
GENESIS [19] for a set of standard, LCLS-like electron beam
and undulator parameters. Next, we use the asymptotic
portion of the linearized solution in order to validate the
results of the periodic, eigenmodelike analysis. Lastly, the
latter are also contrasted with the Tanaka gain length
formula for a kicked beam. To begin with, we consider
the set of FEL parameters given in Table I, which are
similar to those of a typical hard x-ray configuration
for LCLS. In particular, they involve generating 8.2 keV
photons (0.15 nm radiation wavelength) with a 14.3 GeV e-
beam and a 3 cm period undulator (with K, = 3.7) while
the typical average beta value of 30 m corresponds to a
beam size of about 23 ym (for a transverse normalized
emittance of 0.5 mm mrad). Besides this baseline value, we
will briefly consider two other average beta values, namely
15 and 60 m, in order to explore the sensitivity of our
results with respect to the size of the electron beam. For all
three configurations, we assume a peak current of 3 kA and
an rms energy spread of 1074,

TABLE I. Undulator and electron beam parameters.
Parameter Value
Undulator parameter K 3.7
Undulator period 4, 3 cm
Beam energy yym,c? 14.31 GeV
Resonant wavelength A, 0.15 nm
Peak current /, 3 kA

Energy spread o 10~
Normalized emittance yye, = o€, 0.5 um
Average beta value ff,, = f,, 15/30/60 m
Electron beam size ¢, = o, ) 16.3/23.1/32.7 um
FEL parameter p (6.8/5.4/4.3) x 107*

Beginning with the 30 m beta case, we assume a
symmetric, on-axis, Gaussian input radiation with a
Rayleigh length of 12 m and a waist situated at the
undulator entrance (z = 0). As far as the various dimen-
sionless parameters are concerned, we have Ax =34,
Ex = éy = 0.747, and 65 = 0.184, while the initial mode
parameters are f3,(0) = ﬁy(O) =04 and @.(0)=0.
Moreover, the specific frequency we are considering trans-
lates into a scaled detuning of © = —0.5. Using Eqgs. (23)—
(26), we obtain the linearized solution of the IVP for the
setup described above and four kick angle values corre-
sponding to py= py/c. =0, 1, 2, 3 and 2,=0
(6, = 6/Pey = 0.77 urad). The principal results are pre-
sented in Fig. 1, in which we plot the e-beam horizontal
centroid x.,, FEL gain G = log(P,/P,) (Py = 4 kW is the
input power), and bunching factor | (e=")| as functions of z.
Also included for comparison are the corresponding results
from a time-independent (steady-state) GENESIS run. Up to
the onset of saturation, we observe good agreement
between the linearized solution and the simulation results.
In fact, the extent of the linear regime can be roughly
estimated by simply determining the z value for which the
analytical result for the bunching factor becomes equal
to unity.

A similar compatibility between the IVP solution and
simulation can be established for the radiation beam size,
as is shown in Fig. 2 (this particular example corresponds to
a kick angle of 1.54 urad). We clarify that the radiation
size plotted here as a function of z is a combined quantity
defined by o, = \/(x?) — (x)2 + (y?) (its analog in the
context of the single-mode, Gaussian approximation is

6, = \/07 + 07,). Moreover, Fig. 3 compares the hori-

zontal centroid of the radiation beam as calculated from
the linearized solution with the centroid of the e-beam. We
observe that, after an initial delay due to the angular
mismatch, the radiation centroid generally follows the
oscillating electron beam.

Having established the basic validity of the linearized
solution, we now turn to the task of integrating it with
the formalism of the periodic analysis. Specifically, the
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FIG. 1. Electron beam centroid, FEL gain and bunching factor

as functions of z, for a kick angle of py=0/0.77/1.54/
2.31 prad (blue/red/green/magenta). The solid and dashed lines
represent the linearized solution and GENESIS simulation results,
respectively.

principal task is to use Eqs. (60), (64), and (71) in order to
determine the total average growth rate g = 4(© 4 4 in
terms of the frequency detuning variable £. The relevant
dimensionless parameters (again assuming a 30 m beta

45

40}

35+

30+

25}

oy (pm)

20

15 theory
-------- simulation

10 : : A A
0 20 40 60 80

z(m)
FIG. 2. Radiation beam size versus z for a kick angle of
1.54 urad (theory and GENESIS simulation results).

value) are 174, = 14, = 0.098, 77, = 1, = 0.109, and ky, =
IAcﬁy =0.146 while ¢ = 0.109/0.2 and ¢; = 0.145/0.29 for a
0.77/1.54 urad kick. On the other hand, according to the
discussion at the end of the orthogonal expansion sub-
section, the results of the single-mode IVP solution can be
used in calculating a z-dependent, local, complex growth
rate u, [see Eq. (39)] the negative imaginary part of which
is equal to half the logarithmic power growth rate
P;'dP,/dz. Thus, a direct comparison can be made
between —f; and P;'dP,/dz = —2u_; scaled by 4pk,.
This is presented in Fig. 4 for the above-mentioned kick
angle values. Each comparison includes both the unper-
turbed mode growth rate 4(*) and the “corrected” version
which involves the second order contribution due to the
kick (the latter is derived from the full, three-amplitude
calculation described in the theory section). For both cases,
it is evident that the scaled logarithmic power growth rate
exhibits a periodic variation with z in the asymptotic
portion of the linear regime. Its averaged value (after
excluding the initial transient) agrees rather well with

501
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x-centroid(pm)

10r &

........ e-beam

oF —— radiation

0 20 40 60 80

FIG. 3. Electron and radiation horizontal centroids for a kick
angle of 1.54 urad (analytical results).
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FIG. 4. Comparison between the scaled, local power growth
rate —i.; = —u.;/(2pk,) and the results of the periodic analysis
(PE). Also shown is the growth rate in the absence of a kick
(results for g, = 30 m and o = —0.5, as in Figs. 1-3).

the value calculated from the periodic analysis. Thus, we
are encouraged to use the latter as a figure of merit for a
kicked beam configuration (though saturation may some-
times limit the actual number of completed betatron
oscillations).

To facilitate a proper comparison between the results of
the periodic analysis and the Tanaka gain length formula,
we first define the frequency-dependent coefficient
e, = (1 /i) /2. Since € « py and 4?) o« p?, this
quantity is independent of the kick angle. In fact, it is
proportional to the coefficient of the quadratic decrease of
the growth rate with respect to the angular kick. Figure 5(a)
shows the plot of ¢, versus the scaled detuning 7, also
comparing it with the corresponding value derived from
Tanaka’s formula [Eq. (1)]. The latter can be determined as
follows: we recall that the power gain length L is defined
as the length necessary for one exponentiation of the
radiation power. Since the power is proportional to |E,|?,
for a field dependence of the form E, o exp(iuz) (where u

Cy

— PE
........ formula

-1.5 -1 -0.5 0
b = Av/(2p)
(a) Frequency-dependent coefficient ¢, = —(ﬂgz)/ﬂgo))/e%.

1.05

— PE

0.95¢

f opt

0.9+

0.85r

0.8

0 01 02 03 0.4
€ = pO/(2pkuaz)
(b) Optimized coefficient fopt = (A\" + A1\ )opt /(A" opt.-

FIG. 5. Comparison of the periodic analysis (PE) results with
the estimates derived from the Tanaka formula [Eq. (1)] for
.. = 30 m. A stronger-than-anticipated reduction of the growth
rate is observed.

is the complex growth rate), the gain length is given by
L = —1/(2u;). Thus, in terms of our scaling, the gain
length (in the absence of a kick) Lgo can be written as
Lo = fapLo, where Ly = A,/(47\/3p) is the 1D gain

length and f5, = —/3/ (2/21(-0) ) > 11is a parameter express-
ing the influence of energy spread and 3D effects. Using
Eq. (1), it is straightforward to show that the fractional
growth rate decrease due to the kick is equal to
(Po/6.)* = Trei, where Tp= f3D/(4”\/§’7dx) is the
quantity we plot in Fig. 5(a) (recall that the critical angle
is given by 6, = \/1,/Lg). Overall, we observe a some-
what stronger reduction in gain compared to what we
would expect from the Tanaka formula.

A similar comparison involves the optimized coefficient

fopt = (ﬁl(.o) + ﬁ[('Z))opt/ (ﬁgo))opt, where both numerator and
denominator have been maximized with respect to the

detuning (a scenario relevant for self-amplified spontaneous
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emission). This quantity represents the fractional reduction
in the optimized growth rate due to a kick of given strength.
In Fig. 5(b), we plot f, versus the €, parameter and com-
pare its variation with that given by the gain length formula.
The latter is simply 1 — (po/0.)> = 1 — f3pel/ (4mv/314),
with f3p involving the frequency-optimized value of the
unperturbed growth rate 4(?). Once again, a stronger gain
reduction (compared to the formula value) is observed. This
conclusion can be quantified in a clearer way by recalling
that f is equal to the ratio Lo/ L. Thus, we can rewrite
our results as

Lo

b T T e, (pof0. 7
where the dimensionless coefficient a,, expresses the
deviation from the value calculated by means of Eq. (1).
In fact, we have a,, ~ 2, for the 30 m beta value, so that the
fractional increase in the gain length is twice as much as that
given by the Tanaka formula. An entirely similar study can
be performed for the average beta values of 15 m
and 60 m. The basic compatibility between the linearized
IVP solution, 3D simulation and periodic analysis is still
preserved while «,, is approximately equal to 2.5 and 1.5,
respectively.

IV. CONCLUSIONS

In this paper, we have developed a self-consistent theory
for treating the influence of an angular kick on the operation
of a high-gain FEL in the linear regime of the interaction.
Working within the framework of a Maxwell-Vlasov formal-
ism, we derived a single, three-dimensional equation that
governs the evolution of the slowly varying radiation ampli-
tude along the undulator, taking into account the effect of the
oscillating e-beam centroid. Using an expansion of the
radiation amplitude in terms of an appropriate set of orthogo-
nal transverse modes, we obtained a semianalytical, approxi-
mate solution to the linearized initial value problem which
includes the calculation of key e-beam and radiation param-
eters. The validity of these linearized results is established
through direct comparison with simulation for an LCLS-like
FEL configuration. Furthermore, we presented a periodic
analysis technique which allows us to define and determine an
averaged FEL growth rate, suitable for describing the kicked-
beam setup after averaging over the centroid oscillations.
After verifying its results through a comparison with the
asymptotic part of the linearized IVP solution, the periodic
analysis is in turn contrasted with Tanaka’s gain length
formula, revealing a stronger than expected quadratic
decrease of the growth rate with the kick angle.
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APPENDIX: VARIATIONAL TECHNIQUE
FOR DRIVEN EQUATIONS

A typical FEL eigenmode problem is defined by a
homogeneous equation of the form

(o + 20V A0(x) = [ P, Glx.x. o) ho(x.) = 0.
(A1)

where Ay(x) is the unknown FEL mode profile, y is the
corresponding complex growth rate (also to be deter-
mined), and 4, is a constant. The standard variational
technique for such a problem is based on constructing the
functional relation expressed by

/ XA + 0V3)A()
- / Px,A(x,)Gr(x.x,. 1)) =0, (A2)

which yields a complex number y given a function A(x).
It is evident that substituting the exact mode profile [that
is, A(x) = Ay(x)]into Eq. (A2) yields the exact growth rate
(i.e. p = pg). It can also be shown that, provided that
Gg(x,x,,p49) = Gg(X,,X,pg), a first order variation
around Ag(x) actually results in a second order variation
around pg [13]. The details of this proof are similar to the
development presented below so they will be omitted.
The variational solution is thus based on the functional of
Eq. (A2) and a proper choice of trial function.

The question we aim to address is whether a variational
solution can also be found for a driven equation of the form

(1o + 29V2)Ag(x)

- [ @x Glxox holx,) = F9. (A3)

where Ay (x) is the unknown mode profile and  is now a
known complex constant (both unrelated to the correspond-
ing parameters of the homogeneous problem). We begin by
constructing the functional

1= [ @xA) [0+ TDAR)
- [ @x A )Gr(x X, 0) P (A4

where « is another constant. Given a trial function A(x),
one obtains a complex number /. In view of Eq. (A3), for

A(x) = Ay(x), we have

I=1Iy=(1-x) / xAy(x)F(x), (A5)
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which is generally nonzero for x # 1. Now, we consider the
first order variation of 1. For A(x) = Ay(x) + A (x), we
have I — I, + I, with

= [ x{2a0do(x0Ai () + 2odo(x) V341 (3

ok (x)ViA)} - [ [ dx,Gitxxm)

x {Ag(x)A; (x.) + A (x)Ag(x,)}

- / d*xcF(x)A,(x). (A6)

Next, we use the properties

/dZXA()(X)ViAl(X) = /dZXAl(X)ViAO(X), (A7)

which come from integration by parts, and

[ @x [ @x. A (x)Ge(xx,0)
=[x [ @xAox DA (x..x.p0)

_ / Px / XA (X)Ay(x.)G(x. X4 ). (AS)

which is based on the fact that the integral kernel satisfies
Gg(x,,X,pg) = Gg(X, X, pig). With these in mind, we
find

= [ @x2d 0] sodo(x) + V340

- [ @xdalx )Gl xe ) -5 F) |

=(2-x) / XA, (X)F(x). (A9)

If we select k =2, we have I, #0 but I; =0 i.e. the
functional gives a nonzero but stationary value. Thus, a
variational solution can be constructed even for nonhomo-
geneous equations. All of the above conclusions still hold
when Vi is replaced by any linear operator £ for which
[d®xAy(x) LA, (x) = [d®xA,(x)LAy(x). In our case, the
relevant operator is £ = 1,4,0%/0x* + 1,4,0%/0y*. This
particular form is involved in all the mode equations
encountered in the periodic analysis of the main text.
This includes both the homogeneous result—namely,
Eq. (58)—and the driven versions [Egs. (62)].

As far as the specific form of the variational trial
functions is concerned, we have the following arguments:

for nondriven mode equations such as Eq. (A1), we deem it
sufficient to use a standard trial function of the form

Ap(x,y) = exp(—a,x) exp(—a,y?) for the fundamental
FEL mode, whenever the integral kernel is characterized
by a Gaussian transverse dependence [see, for example, the
relevant expression in Eq. (58)]. This choice is standard
practice for an electron beam with a Gaussian transverse
profile and can be justified on the basis of some of the
arguments given below. For the driven mode equations
such as Eq. (A3), we instead elect to use a modified trial
function of the form Ay (x,y) = Axexp(—bx?) exp(—cy?).
The reasoning for the latter choice can be stated as
follows: suppose AO and u, satisfy a homogeneous mode
equation of the form
(Ho + 40V )Ao(x) = Ulx.ip)Ag(x) = 0. (AI0)
In fact, this is the limiting form of the general mode
equation for the parallel beam regime (negligible emittance
and focusing effects). If U has a parabolic dependence of
the form U(x, y) = uy — u;x*> — u,y?, the exact solution for
the fundamental mode is actually an asymmetric Gaussian
like the one mentioned above [13,20]. This result is valid
only when the diffraction parameters 7,4, and 754, are
smaller than unity, in which case the radiation sizes are
smaller than the corresponding e-beam sizes and the cutoff
of the parabolic profile can be ignored. Now consider the

function ® = /leO, where A is a constant. It is easily shown
that @ satisfies the driven equation

(4o + V2 )® — U(X, pto)® = 24040A,/0x.  (Al1)
An inspection of Egs. (62) shows that the above form is
entirely analogous to the parallel beam limit of the driven
equations given in the main text. Indeed, for ¢, — 0 and

o), = 0, we have lgﬂx, Igﬂy = 0, gxs Ny = 0, € > 0, and

y
Qg — 0, so the driving term on the right-hand side of

Egs. (62) is simply proportional to 8A(()0> /0% while the
differential operators on the left-hand side of Egs. (58)
and (62) are identical. In other words, the only remaining
driving term is proportional to the x derivative of the solution
to the homogeneous equation, which is precisely the case
we described above. To recapitulate, in the parallel beam
regime, the solution to the driven problem is simply the
homogeneous solution (an asymmetric Gaussian) multiplied
by x and a constant. We use the same functional form to model
our trial function for the driven equation in the general case.

[1] W. Ackermann et al., Operation of a free-electron laser
from the extreme ultraviolet to the water window, Nat.
Photonics 1, 336 (2007).

[2]1 P. Emma et al., First lasing and operation of an angstrom-
wavelength free-electron laser, Nat. Photonics 4, 641
(2010).

040703-15


https://doi.org/10.1038/nphoton.2007.76
https://doi.org/10.1038/nphoton.2007.76
https://doi.org/10.1038/nphoton.2010.176
https://doi.org/10.1038/nphoton.2010.176

BAXEVANIS, HUANG, and STUPAKOV

PHYS. REV. ACCEL. BEAMS 20, 040703 (2017)

(3]

(10]

(11]

[12]

[13]

T. Ishikawa et al., A compact X-ray free-electron laser
emitting in the sub-angstrom region, Nat. Photonics 6, 540
(2012).

E. Allaria et al., Highly coherent and stable pulses from the
FERMI seeded free-electron laser in the extreme ultra-
violet, Nat. Photonics 6, 699 (2012).

J. Krzywinski (personal communication).

P. Emma, SLAC theory (unpublished).

A. Lutman et al., Polarization control in an X-ray free-
electron laser, Nat. Photonics 10, 468 (2016).

H. D. Nuhn (personal communication).

T. Tanaka et.al, Consideration on the BPM alignment
tolerance in X-ray FELs, Nucl. Instrum. Methods Phys.
Res., Sect. A 528, 172 (2004).

Z. Huang and K.-J. Kim, Review of x-ray free-electron
laser theory, Phys. Rev. ST Accel. Beams 10, 034801
(2007).

E. L. Saldin, E. A. Schneidmiller, and M. V. Yurkov, The
Physics of Free Electron Lasers (Springer-Verlag, Berlin,
2000).

G. Geloni, V. Kocharyan, and E. Saldin, Effect of Aberration
of Light in X-ray Free Electron Lasers, arXiv:1511.01375.
P. Baxevanis, Ph.D. thesis, Stanford University, 2015.

[14]

[15]

[16]

[17]

(18]

[19]

(20]

040703-16

R. Bonifacio, C. Pellegrini, and L. Narducci, Collective
instabilities and high-gain regime in a free electron laser,
Opt. Commun. 50, 373 (1984).

P. Baxevanis and R. Ruth, Initial value problem for an FEL
driven by an asymmetric electron beam, 36th International
Free Electron Laser Conference, Basel, Switzerland, 2014
(2014), p. 433, http://accelconf.web.cern.ch/AccelCont/
FEL2014/papers/tup027.pdf.

P. Sprangle, A. Ting, and C. M. Tang, Analysis of radiation
focusing and steering in the free-electron laser by use of a
source-dependent expansion technique, Phys. Rev. A 36,
2773 (1987).

P. Baxevanis, R. Ruth, and Z. Huang, General method for
analyzing three-dimensional effects in free-electron
laser amplifiers, Phys. Rev. ST Accel. Beams 16, 010705
(2013).

M. Xie, High gain free electron lasers driven by flat
electron beam, Nucl. Instrum. Methods Phys. Res., Sect.
A 507, 450 (2003).

S. Reiche, GENESIS 1.3: A fully 3D time-dependent FEL
simulation code, Nucl. Instrum. Methods Phys. Res., Sect.
A 429, 243 (1999).

M Xie, Ph.D. thesis, Stanford University, 1988.


https://doi.org/10.1038/nphoton.2012.141
https://doi.org/10.1038/nphoton.2012.141
https://doi.org/10.1038/nphoton.2012.233
https://doi.org/10.1038/nphoton.2016.79
https://doi.org/10.1016/j.nima.2004.04.040
https://doi.org/10.1016/j.nima.2004.04.040
https://doi.org/10.1103/PhysRevSTAB.10.034801
https://doi.org/10.1103/PhysRevSTAB.10.034801
http://arXiv.org/abs/1511.01375
https://doi.org/10.1016/0030-4018(84)90105-6
http://accelconf.web.cern.ch/AccelConf/FEL2014/papers/tup027.pdf
http://accelconf.web.cern.ch/AccelConf/FEL2014/papers/tup027.pdf
http://accelconf.web.cern.ch/AccelConf/FEL2014/papers/tup027.pdf
http://accelconf.web.cern.ch/AccelConf/FEL2014/papers/tup027.pdf
http://accelconf.web.cern.ch/AccelConf/FEL2014/papers/tup027.pdf
http://accelconf.web.cern.ch/AccelConf/FEL2014/papers/tup027.pdf
https://doi.org/10.1103/PhysRevA.36.2773
https://doi.org/10.1103/PhysRevA.36.2773
https://doi.org/10.1103/PhysRevSTAB.16.010705
https://doi.org/10.1103/PhysRevSTAB.16.010705
https://doi.org/10.1016/S0168-9002(03)00964-1
https://doi.org/10.1016/S0168-9002(03)00964-1
https://doi.org/10.1016/S0168-9002(99)00114-X
https://doi.org/10.1016/S0168-9002(99)00114-X

