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In a free-electron laser, a transverse momentum offset (or “kick”) results in an oscillation of the centroid
of the electron beam about the undulator axis. Studying the influence of this effect on the free-electron laser
(FEL) interaction is important both from a tolerance point of view and for its potential diagnostic
applications. In this paper, we present a self-consistent theoretical analysis of a high-gain FEL driven by
such a “kicked” beam. In particular, we derive a solution to the three-dimensional, linearized initial value
problem of the FEL through an orthogonal expansion technique and also describe a variational method for
calculating the average FEL growth rate. Our results are benchmarked with GENESIS simulations and
provide a robust theoretical background for a comparison with previous analytical results.

DOI: 10.1103/PhysRevAccelBeams.20.040703

I. INTRODUCTION

In a typical configuration for a high-gain, x-ray free-
electron laser (XFEL) [1–4], the orbit of the driving
electron beam is actively controlled through focusing
and feedback elements in order to avoid large centroid
excursions from the undulator axis, which can significantly
degrade the performance of the machine. There are,
however, several cases where off-axis radiation propagation
can occur, mainly through the introduction (deliberate or
accidental) of angular trajectory errors (or “kicks”). To
begin with, random errors in the focusing system can cause
such kicks, an issue of particular importance for high rep-
rate machines [such as Linac Coherent Light Source II
(LCLS-II)] due to the danger that the mis-steered photon
beam poses to collimators and similar x-ray beam line
elements [5]. Moreover, wake fields and coherent synchro-
tron radiation can induce a correlation of the transverse
slope of the electron beam with the internal bunch position,
leading to a “tilt” in phase space [6]. It can be shown that
the study of this effect requires a thorough understanding of
the basic physics of an FEL driven by a “kicked” beam. The
examples mentioned so far emphasize the tolerance aspect
of the issue under consideration. On the other hand, an
angular kick is often an essential part of many FEL-related
diagnostic or experimental procedures. The standard gain
length measurement procedure in LCLS-I employs such
kicks in order to terminate the interaction at a given location
and record the corresponding radiation pulse energy. Other
applications include schemes such as the DELTA variable
polarization undulator [7] (where different polarization

components are separated by means of an angular kick
to the bunched e-beam) or proposed fast gain length
measurement techniques using energy-loss data from
kicked beams [8].
In existing literature, the standard analytical result

regarding the influence of a single angular trajectory error
θ0 is the so-called Tanaka gain length formula [9].
Specifically, it states that the kick increases the FEL power
gain length LG from an initial value of LG0 to

LG ¼ LG0

1 − ðθ0=θcÞ2
; ð1Þ

where θc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λr=LG0

p
is the critical angle and λr the

radiation wavelength (the idea being that any kick
larger than θc completely suppresses the FEL effect).
Alternatively, one may interpret this relation as a quadratic
decrease in the FEL growth rate, with a definite cutoff at
θ0 ¼ θc. Though this result appears reliable enough for
many purposes, its derivation has been based on rather
simple arguments and assumptions more appropriate for a
fully bunched beam (a model more likely to be realized in
the saturation regime). Thus, the question arises whether
the formula is equally applicable in other stages of the
interaction (such as the linear regime) and whether the
simple expression for the critical angle is accurate enough
in such cases. Moreover, we deem it highly desirable to
study the problem at hand using the same rigorous
techniques that are used in the theoretical analysis of more
standard FEL configurations [10,11].
We also point out that some recent studies [12] have

suggested that Ref. [9] is conceptually wrong and that
no coherent radiation intensity degradation should occur
after a single kick of a microbunched beam. Although we
disagree with these studies and would also like to point out
the recent LCLS beam diverting experiment using the
DELTA undulator [7] (which actually showed radiation
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intensity degradation), the motivation for this paper did not
originate from this debate. Instead, we want to address the
growth rate degradation due to an angular kick that affects
the trajectory in the entire undulator. The linear analysis
presented in this paper allows us to obtain a more accurate
formula in order to compare with Eq. (1).
In this paper, we seek to develop the framework for

such a systematic consideration of the impact that a single
angular kick has on the operation of a high-gain FEL. To
this end, we use the Maxwell-Vlasov equations of the FEL
(including a transverse momentum offset) to derive a self-
consistent, fully 3D equation satisfied by the radiation
amplitude in the linear regime of the interaction. We then
employ an orthogonal expansion method in order to derive
a semianalytical, approximate solution to the linearized,
initial value problem (IVP) of the FEL. The basis elements
are suitably constructed to allow for off-axis radiation
propagation and yield accurate results even with a few
expansion modes. Moreover, we develop a periodic analy-
sis technique which enables us to calculate the average
FEL growth rate (over many betatron oscillations) by
means of a variational procedure similar to that which is
used in a standard eigenvalue problem. After a comparison
with simulation, we use the results obtained from the IVP in
order to extract a value for the average FEL growth rate,
which is then compared with the outcome of the periodic
analysis. This procedure reveals an encouraging consis-
tency between all the components used and allows us to
critically assess the applicability of Tanaka’s formula in
various scenarios.

II. THEORY

A. FEL equations

We begin our treatment with a review of the equations of
motion for a single electron in the combined field of the
undulator and the FEL radiation. The latter is assumed to be
linearly polarized in the x direction and its electric field is
given by Er ¼ ð1=2ÞEνðx; zÞeiνkrðz−ctÞ þ c:c. Here, c.c.
stands for complex conjugate, Eνðx; zÞ is the radiation
amplitude [a function of the transverse position x ¼ ðx; yÞ
and the longitudinal position z along the undulator], and ν
is the frequency of the radiation scaled by the resonant
frequency ωr (ν ¼ ω=ωr). The latter quantity is given by
ωr ¼ ckr ¼ 2πc=λr, where kr (λr) is the resonant wave
number (wavelength), in turn defined through the FEL
resonance condition λr ¼ λuð1þ K2

0=2Þ=ð2γ20Þ. Here, λu ¼
2π=ku is the undulator period, K0 ¼ qeB0=ðmeckuÞ is the
dimensionless undulator parameter (qe=me is the electron
charge/mass, B0 is the peak, on-axis magnetic field), and γ0
is the average value for the electron Lorentz factor. The
radiation amplitude is assumed to be a slowly varying
function of z, i.e., it changes little over an undulator period
[jðλu=EνÞ∂Eν=∂zj ≪ 1]. In the context of our model, after
averaging out the fast wiggle effect, the transverse motion

of the electrons is governed by the relations x00 ¼ −k2βxx
and y00 ¼ −k2βyy (where a prime denotes differentiation with
respect to z). The focusing strengths kβx and kβy are, in
general, assumed to be unequal but constant. For the case of
an undulator with parabolically shaped pole faces and no
external focusing, this representation is exact. In fact, the
natural focusing strengths satisfy k2βx þ k2βy ¼ k2n ¼ K2

0k
2
u=

ð2γ20Þ. If external focusing is to be added, the model can still
be valid provided the focusing lattice is treated in the
smooth approximation [10]. The transverse equations of
motion can also be written as

dx
dz

¼ px;
dpx

dz
¼ −k2βxx;

dy
dz

¼ py;
dpy

dz
¼ −k2βyy; ð2Þ

a form which also introduces the transverse slopes px, py.
The longitudinal dynamics of the system is determined by
the generalized pendulum equations, namely

dθ
dz

¼ θ0 ¼ 2kuδ −
kr
2
ðp2

x þ p2
y þ k2βxx

2 þ k2βyy
2Þ; ð3Þ

dδ
dz

¼ κ1Eνðx; zÞe−iΔνkuzeiνθ þ c:c: ð4Þ

Here, θ ¼ kuzþ krðz − ctÞ þQ0 sinð2kuzÞ is the phase
variable [Q0 ¼ K2

0=ð4þ 2K2
0Þ], δ ¼ γ=γ0 − 1 is the energy

deviation, Δν ¼ ν − 1 is the frequency detuning, and
κ1 ¼ qeK0½JJ�=ð4γ20mec2Þ, with ½JJ� ¼ J0ðQ0Þ − J1ðQ0Þ
being a well-known factor arising from the wiggle averag-
ing. The quadratic term on the right-hand side of Eq. (3)
represents the influence of the transverse motion on the
longitudinal phase space dynamics.
The self-consistent interaction between the electron

beam and the generated FEL radiation in the field of the
undulator can be studied using the Maxwell-Vlasov equa-
tions for the combined system [10]. The 6D phase space
state of the electron beam is characterized by a distribution
function of the form f ¼ fðθ; δ; x; y; px; py; zÞ, whose
value is constant along individual phase space trajectories
(f is akin to a phase space density). Following the standard
approach, we confine our attention to the linear (or
exponential gain) regime of the interaction, in which f
can be expressed as f ¼ f0 þ f1, where f0 is a background
distribution and f1 is a small perturbation due to the
microbunching. In view of the fact that frequencies are
decoupled in the linear regime, f1 is written as f1 ¼
f̂νeiνθ þ c:c:, where f̂ν ¼ f̂νðδ; x; y; px; py; zÞ is another
amplitude quantity (analogous to Eν). It should be stressed
that, in the context of this perturbation method, both Eν and
f̂ν are assumed to be first-order (small) quantities, apart
from slowly varying functions of z. Up to the onset of
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saturation, the operation of the FEL can be adequately
described via the following linearized, frequency-domain,
Maxwell-Vlasov equations [13]:

� ∂
∂zþ

1

2ikr

� ∂2

∂x2 þ
∂2

∂y2
��

Eνðx; y; zÞ

¼ −κ2eiΔνkuz
Z

dpxdpydδf̂νðδ; x; y; px; py; zÞ; ð5Þ

∂f̂ν
∂z þ px

∂f̂ν
∂x þ py

∂f̂ν
∂y − k2βxx

∂f̂ν
∂px

− k2βyy
∂f̂ν
∂py

þ iθ0f̂ν

¼ −κ1Eνe−iΔνkuz
∂f0
∂δ ; ð6Þ

where κ2 ¼ qeK0½JJ�=ð2ε0γ0Þ and we recall that θ0 is given
by Eq. (3). The unperturbed distribution f0 satisfies the
zeroth-order Vlasov equation

∂f0
∂z þ px

∂f0
∂x þ py

∂f0
∂y − k2βxx

∂f0
∂px

− k2βyy
∂f0
∂py

¼ 0; ð7Þ

while the same quantity is normalized according to the
relation

Z
dpxdpydδ

Z
dxdydzbf0 ¼ Nb; ð8Þ

where zb ¼ θ=kr is the internal bunch position and Nb is
the total number of electrons. To consider a specific case,
we select a distribution function of the form

f0 ¼
Nb=lb

ð2πÞ5=2σxσyσ0xσ0yσδ
exp

�
−

δ2

2σ2δ

�

× exp

�
−
ðpx − pceðzÞÞ2 þ k2βxðx − xceðzÞÞ2

2σ0x2

�

× exp

�
−
p2
y þ k2βyy

2

2σ0y2

�
; ð9Þ

which corresponds to a horizontally “kicked” beam with
Gaussian energy and transverse profiles but with a uniform
longitudinal profile. The latter can be considered as a
limiting case of a flattop current profile in which the bunch
length lb is much larger than the slippage length Nuλr,
where Nu is the number of undulator periods. Thus, the
beam current is Ip ¼ qecNb=lb and we can disregard any θ
dependence (∂f0=∂θ ¼ 0). In the previous equation,

xceðzÞ ¼ ðp0=kβxÞ sinðkβxz0Þ ð10Þ
and

pceðzÞ ¼ p0 cosðkβxz0Þ; ð11Þ
(where z0 ¼ z − ze and ze is a constant position offset), are
the oscillating, horizontal position and momentum centroids

of the beam, defined in terms of a transverse slope amplitude
p0. When ze ¼ 0, the beam has zero position offset at the
start of the undulator (z ¼ 0) but a horizontal momentum
offset of p0, which can thus represent an initial kick. On the
other hand, σδ is the rms energy spread, σx, σy are the rms
transverse beam sizes, and σ0x, σ0y are the rms values of the
transverse slopes. We stress that no offset is considered in
the y direction and that the beam is assumed to be matched
to the focusing channel, i.e., σ0x ¼ σxkβx and σ0y ¼ σykβy
(so that the beam sizes are constant).
Given the background distribution, the next step is to

analytically invert the linearized Vlasov equation [Eq. (6)]
by expressing f̂ν in terms of Eν. This procedure would
follow the lines of the method of integration along
unperturbed trajectories. The end result is [13]

f̂ν ¼ −κ1
∂f0
∂δ

Z
z

0

dζEνðxþ; yþ; ζÞ expð−iΔνkuζ þ iθ0ξÞ;

ð12Þ
where ξ ¼ ζ − z, xþ ¼ x cosðkβxξÞ þ ðpx=kβxÞ sinðkβxξÞ
and yþ ¼ y cosðkβyξÞ þ ðpy=kβyÞ sinðkβyξÞ. This solution
assumes zero initial density modulation (f̂νðz ¼ 0Þ ¼ 0)
but does not rely on the particular form of f0. Substituting
Eq. (12) into the right-hand side of Eq. (5) and making use
of Eq. (9), we eventually obtain a self-consistent relation
that governs the evolution of the radiation amplitude along
the undulator:

� ∂
∂zþ

1

2ikr

� ∂2

∂x2 þ
∂2

∂y2
��

Eνðx; y; zÞ

¼
Z

dpxdpy

Z
z

0

dζK1ðx; y; px; py; z; ζÞEνðxþ; yþ; ζÞ;

ð13Þ

with

K1ðx; y; px; py; z; ζÞ

¼ −
8iρ3k3u
2πσ0xσ0y

ξe−iΔνkuξe−2σ
2
δk

2
uξ

2

× exp

�
−
½px − pceðzÞ�2 þ k2βx½x − xceðzÞ�2

2σ0x2

�

× exp
�
−
p2
y þ k2βyy

2

2σ0y2

�

× exp

�
−
ikrξ
2

ðp2
x þ p2

y þ k2βxx
2 þ k2βyy

2Þ
�
: ð14Þ

In the above results,

ρ ¼
�

K2
0½JJ�2

16γ30k
2
uσxσy

Ip
IA

�
1=3

ð15Þ
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is the dimensionless FEL (or Pierce) parameter [14]
(IA ≈ 17 kA is the Alfven current). As is well known, the
ρ parameter can be viewed as a measure of the frequency
bandwidth of the FEL effect.

B. Orthogonal mode expansion

Having determined the equation that is satisfied by the
radiation field, our main goal now is to obtain a solution to
Eq. (13) that is compatible with a given input amplitude
Eνðx; 0Þ at the entrance of the undulator. To this end, we
shall employ an orthogonal expansion technique, relying
on a version which takes into account the lack of axial
symmetry of the problem at hand. To begin with, we
introduce a set of orthogonal transverse modes given by
ψmnðx; zÞ ¼ χmðx; zÞφnðy; zÞ, where

χmðx; zÞ ¼ ð2mm!Þ−1=2Hm

� ffiffiffi
2

p
Δx

wx

�
e−imuxχ0ðx; zÞ;

φnðy; zÞ ¼ ð2nn!Þ−1=2Hn

� ffiffiffi
2

p
y

wy

�
e−inuyφ0ðy; zÞ ð16Þ

and

χ0ðx; zÞ ¼ ðkrβxr=πÞ1=4ðβx þ izÞ−1=2e−krα2xi=ð2βxrÞ

× exp

�
−
krðx − αxÞ2
2ðβx þ izÞ

�
;

φ0ðy; zÞ ¼ ðkrβyr=πÞ1=4ðβy þ izÞ−1=2

× exp

�
−

kry2

2ðβy þ izÞ
�
: ð17Þ

In the above definitions, m; n ¼ 0; 1; 2; 3;…, Hk are the
Hermite polynomials while βx, βy, and αx are complex-
valued, z-dependent basis parameters. The use of two
different basis parameters in x and y (βx and βy) accounts
for the asymmetry of the problem while the additional
parameter αx is introduced in order to deal with the off-axis
characteristics of the radiation propagation (which we will
verify in due course). The convention according to which
an index r=i denotes the real/imaginary part is adopted for
these, as well as other, complex variables in this discussion.
Thus, the real parts of the three basis functions are denoted
by βxr, βyr, and αxr, respectively, while their imaginary
parts are βxi, βyi, and αxi. From a physical point of view, βxr
and βyr represent the local Rayleigh lengths of the radiation
while −βxi and −βyi correspond to the local waist positions.
As far as αx is concerned, we will verify that αxi is
proportional to the offset of the radiation profile from
the origin of the inverse (angle) space while both αxr and
αxi contribute to the offset in real space. Moreover,

wx ¼
�

2

krβxr

�
1=2

jβx þ izj;

wy ¼
�

2

krβyr

�
1=2

jβy þ izj ð18Þ

and

ux ¼ arctan

�
zþ βxi
βxr

�
;

uy ¼ arctan

�
zþ βyi
βyr

�
ð19Þ

are the waist and Gouy phaselike parameters while
Δx ¼ x − xc, with

xc ¼ αxr þ αxi
zþ βxi
βxr

ð20Þ

representing the centroid of the radiation profile. These
modes, which have also been used in the study of an FEL
based on a transverse gradient undulator [13,15], satisfy the
orthonormality condition

Z
d2xψ�

m0n0 ðx; zÞψmnðx; zÞ ¼ δmm0δnn0 ð21Þ

and form a complete set. Thus, the radiation amplitude
Eνðx; zÞ can (generally speaking) be expanded in terms of
the generalized Gauss-Hermite modes described above.
Were such an expansion to be substituted back into
Eq. (13), the result would be an infinite set of evolution
equations for the mode coefficients. However, pursuing a
general multimode analysis here is not deemed advisable
due to the significantly increased algebraic complexity of
the expressions involved, which makes the final analytical
results too unwieldy to be of much practical use. Instead,
we shall confine our objective to the construction of an
approximate solution for the initial value problem which
retains only the fundamental (m ¼ n ¼ 0 or 00) mode.
This allows for reasonably compact results without much
loss of accuracy in cases where multimode effects are not
important in describing the radiation.
In the single-mode approximation, we assume that

Eνðx; zÞ ≈ E00
ν ðx; zÞ ¼ ĉ00C00ðzÞψ00ðx; zÞ, where ĉ00 is a

constant and C00ðzÞ is a dimensionless mode coefficient
to be determined along with the basis parameters βxðzÞ,
αxðzÞ, and βyðzÞ following a self-consistent (or source-
dependent) approach [16,17]. Let us also abbreviate
Eq. (13) as T 0Eνðx; zÞ ¼ 0, where T 0 is the corresponding
integral-differential operator. Since E00

ν ðx; zÞ is not an
exact solution of the amplitude equation, T 0E00

ν ðx; zÞ is
a nonzero function. Instead, our approximate solution is
based on imposing the condition that the projections of
T 0E00

ν with respect to the 00, 10, 20, and 02 modes are
zero, i.e.,

hψ00jT 0E00
ν i ¼ hψ10jT 0E00

ν i
¼ hψ20jT 0E00

ν i
¼ hψ02jT 0E00

ν i ¼ 0;

ð22Þ
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where we recall that the definition of the inner product is
hfjgi ¼ R

d2xf�g. The projections with respect to the 01
and 11 modes can be readily shown to be identically equal
to zero. Utilizing Eqs. (16)–(17), along with the afore-
mentioned conditions, we can obtain a set of four integro-
differential equations forC00, βx, αx, and βy. In order to cast
these analytical results in a more useful form, we first
introduce the scaled variables z̄ ¼ z=βex, β̂x ¼ βx=βex,
α̂x ¼ αx=σx, and β̂y ¼ βy=βey, where βex ¼ σx=σ0x ¼
1=kβx is the horizontal matched electron beta function
and βey ¼ σy=σ0y ¼ 1=kβy is its vertical counterpart. The
resulting equations are

dC00

dz̄
¼ i

�
1

4β̂xr

dβ̂xi
dz̄

þ 1

4β̂yr

dβ̂yi
dz̄

þ B̂x
α̂xi
β̂xr

×

�
dα̂xr
dz̄

þ α̂xi
2β̂xr

dβ̂xi
dz̄

��
C00ðz̄Þ

þ
Z

z̄

0

dζ̄C00ðζ̄ÞL1ðz̄; ζ̄; β̂x; β̂x;ζ; α̂x; α̂x;ζ; β̂y; β̂y;ζÞ;

ð23Þ

dα̂x
dz̄

¼ i
α̂xi
β̂xr

dβ̂x
dz̄

þ C−1
00 ðz̄Þ

×
Z

z̄

0

dζ̄C00ðζ̄ÞL2ðz̄; ζ̄; β̂x; β̂x;ζ; α̂x; α̂x;ζ; β̂y; β̂y;ζÞ;

ð24Þ
dβ̂x
dz̄

¼
R
z̄
0 dζ̄C00ðζ̄ÞL3ðz̄; ζ̄; β̂x; β̂x;ζ; α̂x; α̂x;ζ; β̂y; β̂y;ζÞ

C00ðz̄Þ
;

ð25Þ
and

dβ̂y
dz̄

¼
R
z̄
0 dζ̄C00ðζ̄ÞL4ðz̄; ζ̄; β̂x; β̂x;ζ; α̂x; α̂x;ζ; β̂y; β̂y;ζÞ

C00ðz̄Þ
:

ð26Þ
In the above equations (and elsewhere), an extra subscript
ζ assigned to a variable denotes a dependence on the
integration variable ζ̄, i.e., β̂x;ζ ¼ β̂xðζ̄Þ, α̂x;ζ ¼ α̂xðζ̄Þ,
and β̂y;ζ ¼ β̂yðζ̄Þ etc. The functions L1 − L4 are given by

L1 ¼ −8iÂ3
xξ̄ expð−2iÂxν̂ ξ̄−2Â2

xðσ̂δÞ2ξ̄2Þ
× ðβ̂xr;ζ=β̂xrÞ1=4ðβ̂yr;ζ=β̂yrÞ1=4ð ˆ̄βx= ˆ̄βx;ζÞ1=2

× ð ˆ̄βy= ˆ̄βy;ζÞ1=2G−1=2
pp T̂−1=2

2 expðT̂0ÞC−1=2
pp Ŷ−1=2

2 ;

L2 ¼ ðβ̂xr=B̂xÞ1=2eiuxðT̂1=T̂2ÞL1;

L3 ¼ 2β̂xre2iux ½T̂−1
2 ð1þ T̂2

1=ð2T̂2ÞÞ − 1�L1;

L4 ¼ 2β̂yre2iuyðŶ−1
2 − 1ÞL1; ð27Þ

where Âx ¼ ρkuβex, ξ̄ ¼ ζ̄ − z̄, ν̂ ¼ Δν=ð2ρÞ, σ̂δ ¼ σδ=ρ,
ˆ̄βx ¼ β̂x þ iz̄, ˆ̄βy ¼ β̂y þ iðβex=βeyÞz̄, and B̂x ¼ krσxσ0x.
From a physical point of view, Âx is proportional to the
ratio of the horizontal beta function to the gain length
while B̂x is proportional to the ratio of the horizontal
beam emittance σxσ

0
x to the radiation emittance λr=4π.

Furthermore, T̂1 ¼ Gθ þ GθpGp=Gpp, T̂2 ¼ ð1=2Þ
ðGθθ −G2

θp=GppÞ, Ŷ2 ¼ ð1=2ÞðCtt − C2
tp=CppÞ, and

T̂0 ¼
G2

p

2Gpp
þ T̂2

1

4T̂2

−
1

2
ð1þ iB̂xξ̄Þx̂2c þ p̂0x̂c sin z̄0 −

p̂2
0

2

−
B̂x

2

�
α̂2xi
β̂xr

þ α̂2xi;ζ
β̂xr;ζ

þ ðx̂c − α̂�xÞ2
ˆ̄β
�
x

þ ðx̂c cos ξ̄ − α̂x;ζÞ2
ˆ̄βx;ζ

�
;

ð28Þ

where z̄0 ¼ z0=βex, x̂c ¼ xc=σx ¼ α̂xr þ α̂xiðẑþ β̂xiÞ=β̂xr,
and p̂0 ¼ p0=σ0x. The remaining quantities to be defined are

Gpp ¼ 1þ iB̂xξ̄þ
B̂xsin2ξ̄
ˆ̄βx;ζ

;

Gθθ ¼ ˆ̄βx=β̂xr þ ~w2
xðcos2ξ̄= ˆ̄βx;ζ þ 1=B̂x þ iξ̄Þ;

Gθp ¼ −
B̂x

1=2

ˆ̄βx;ζ
~wx cos ξ̄ sin ξ̄;

Gp ¼ p̂0 cos z̄0 −
B̂x

ˆ̄βx;ζ
ðx̂c cos ξ̄ − α̂x;ζÞ sin ξ̄;

Gθ ¼ −
B̂1=2
x

ˆ̄β
�
x

~wxðx̂c − α̂�xÞ − ð1þ iB̂xξ̄Þ
x̂c ~wx

B̂1=2
x

−
B̂1=2
x

ˆ̄βx;ζ
~wx cos ξ̄ðx̂c cos ξ̄ − α̂x;ζÞ þ p̂0

~wx sin z̄0
B̂1=2
x

;

ð29Þ

where ~wx ¼ j ˆ̄βxj=β̂1=2xr , and

Cpp ¼ 1þ iB̂y
~ξþ B̂ysin2 ~ξ=

ˆ̄βy;ζ;

Ctt ¼ ˆ̄βy=β̂yr þ ~w2
y½B̂−1

y þ i~ξþ cos2 ~ξ= ˆ̄βy;ζ�;
Ctp ¼ −B̂1=2

y ð ~wy=
ˆ̄βy;ζÞ cos ~ξ sin ~ξ; ð30Þ

with B̂y ¼ krσyσ0y, ~ξ ¼ ðβex=βeyÞξ̄, and ~wy ¼ j ˆ̄βyj=β̂1=2yr .
Given the values of C00, βx, βy, and αx at z ¼ 0, numeri-
cally solving Eqs. (23)–(26) yields an approximate solution
to the 3D initial value problem of the FEL. This solution
can be used to provide a quantitative description of the
FEL radiation in the linear regime. The radiation power
Pr—which is defined by Pr ¼

R
d2xIrðx; zÞ, where Ir ¼

ðcε0=2ÞjEνj2 is the radiation intensity (and ε0 is the vacuum
permittivity)—is given by
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Pr ¼ P0jC00j2; ð31Þ

where the initial condition for the mode coefficient is
assumed to be C00ð0Þ ¼ 1 and P0 ¼ cε0jĉ00j2=2 is the
input radiation power. Moreover, the rms radiation beam
sizes are, in turn, given by

σrx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2ir − hxi2r

q
¼ wx=2 ð32Þ

and

σry ¼
ffiffiffiffiffiffiffiffiffiffi
hy2ir

q
¼ wy=2; ð33Þ

where hxir ¼ xc and the h…ir average uses the spatial
intensity Ir as a weighting function [for example, we have
hx2ir ¼

R
d2xx2Irðx; zÞ=

R
d2xIrðx; zÞ etc.]. As far as the

situation in the inverse transverse (i.e. momentum) space is
concerned, an inspection of the Fourier transform definition
~Eνðk; zÞ ∝

R
d2xEνðx; zÞ expðikxÞ leads to a Gaussian

angular profile with

j ~Eνðk; zÞj2 ∝ exp
�
−
ðkx − k0Þ2

2σ2kx

�
exp

�
−

k2y
2σ2ky

�
;

where

σ2kx ¼ k2rσ0rx2 ¼ kr=ð2βxrÞ;
σ2ky ¼ k2rσ0ry2 ¼ kr=ð2βyrÞ;
k0 ¼ krx0c ¼ −krðαxi=βxrÞ: ð34Þ

In the above equations, σ0rx and σ0ry are the rms angular sizes
while x0c is the angular centroid of the radiation.
Thus far, we have only considered properties of the

radiation. As far as the electron beam is concerned, the
perturbation formalism we have been using also allows us
to calculate a quantitative expression (valid in the linear
regime) for the bunching that is induced by the FEL effect.
The bunching factor of the electron beam can be defined in
terms of the distribution function f as the absolute value of
the average he−iθi, which is in turn defined by

he−iθi ¼
R
d2p

R
d2x

R
dδ

R
2π
0 dθfe−iθR

d2p
R
d2x

R
dδ

R
2π
0 dθf

; ð35Þ

where p ¼ ðpx; pyÞ. Recalling that f ¼ f0 þ f1, with f0
being θ independent and normalized according to Eq. (8)
while f1 has a sinusoidal modulation with θ according to
f1 ≈ f̂νeiθ þ c:c: (ν ≈ 1), the expression for the phase
average reduces to

he−iθi ¼ 2π
R
d2p

R
d2x

R
dδf̂ν

2πðNb=lbÞ
: ð36Þ

In view of Eq. (5), Eq. (36) becomes

he−iθi ¼ −
lb
Nb

1

κ2
e−iΔνkuz

Z
d2xLEνðx; zÞ; ð37Þ

where L ¼ ∂=∂zþ∇2⊥=ð2ikrÞ is the paraxial operator.
Making use of the assumption that Eνðx; zÞ ≈
ĉ00C00ðzÞψ00ðx; zÞ (i.e. the single mode, Gaussian approxi-
mation adopted earlier) in conjunction with Eqs. (17) and
(37), we find—after some algebra—that the bunching
factor is given by

jhe−iθij ¼ lb
Nbκ2

�
2Pr

cε0

�
1=2

�
4π

kr

�
1=2

β1=4xr β1=4yr

×

				iμz þ 1

4βxr

dβxr
dz

þ 1

4βyr

dβyr
dz

−
dQE

dz

				e−QE;

ð38Þ

where QE ¼ krα2xi=ð2βxrÞ and μz is a z-dependent, local
complex growth rate that is defined through the relation
C00ðzÞ ¼ expði R z

0 dsμzðsÞÞ or, equivalently,

μzðzÞ ¼ −
i

C00ðzÞ
dC00ðzÞ

dz
: ð39Þ

A more convenient expression can be obtained if one
switches to the scaled variables discussed earlier. In terms
of that scaling, we find that the expression for the bunching
factor is

jhe−iθij ¼
�
2Pr

PS

�
1=2

�
β̂xr
B̂x

�1=4�β̂yr
B̂y

�1=4

×

				iμ̂zþ 1

2Âx

�
1

4β̂xr

dβ̂xr
dz̄

þ 1

4β̂yr

dβ̂yr
dz̄

−
dQE

dz̄

�				e−QE;

ð40Þ

where PS ¼ ργ0mec2Ip=qe, QE ¼ B̂xα̂
2
xi=ð2β̂xrÞ, and μ̂z ¼

μz=ð2ρkuÞ, all other symbols having already been defined.
Taking into account the fact that jhe−iθij ≤ 1, as well as the
observation that the part on the right-hand side of the above
equation which contains the various scaled basis parameters
is (generally speaking) of the order of unity, it follows that
the perturbation result given in Eq. (40) should break down
when Pr ∼ PS ¼ ρPbeam, where Pbeam ¼ γ0mec2Ip=qe is
the e-beam power. Viewed as a qualitative limit for the
applicability of the linearized model, this condition repro-
duces the established fact that the saturation power is of the
order of the e-beam power multiplied by the FEL parameter.

C. Periodic analysis

In the previous section, we described a technique for
obtaining a semianalytical, approximate solution to the initial
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value problem of the FEL. That solution can adequately
describe the FEL interaction in the linear regime, given the
initial conditions. However, it is also possible to develop a
method similar in form to the standard FEL eigenmode
approach [18], which would lead to a description indepen-
dent of initial conditions. This is made possible by exploiting
the periodic z dependence that is introduced by the centroid
oscillation. Starting from the radiation amplitude equation
[Eq. (13)], our first step is to switch to the new horizontal
variables p̄x ¼ px − pceðzÞ and x̄ ¼ x − xceðzÞ. This
manipulation allows us to utilize a frame that is comoving
with the e-beam. Its end result is the equation

� ∂
∂z − p0 cosðkβxz0Þ

∂
∂x̄þ

1

2ikr

� ∂2

∂x̄2 þ
∂2

∂y2
��

Ēνðx̄; y; zÞ

¼
Z

dp̄xdpy

Z
z

0

dζK2ðx̄; y; p̄x; py; z; ζÞĒνðx̄þ; yþ; ζÞ;

ð41Þ

where Ēνðx̄; y; zÞ ¼ Eνðx̄þ xceðzÞ; y; zÞ is a new amplitude
quantity, x̄þ ¼ x̄ cosðkβxξÞ þ ðp̄x=kβxÞ sinðkβxξÞ, and

K2ðx̄; y; p̄x; py; z; ζÞ

¼ −
8iρ3k3u
2πσ0xσ0y

ξe−iΔνskuξe−2σ
2
δk

2
uξ

2

× exp

�
−
p̄2
x þ k2βxx̄

2

2σ0x2
−
p2
y þ k2βyy

2

2σ0y2

�

× exp

�
−
ikrξ
2

ðp̄2
x þ p2

y þ k2βxx̄
2 þ k2βyy

2Þ
�

× expf−ip0krξ½p̄x cosðkβxz0Þ þ kβxx̄ sinðkβxz0Þ�g:
ð42Þ

In the above equation, we have introduced the shifted
detuning Δνs, which is defined through the relation

Δνsku ¼ Δνku þ ðkr=2Þp2
0: ð43Þ

This definition is consistent with the increase in the FEL
wavelength due to the kick. To proceed, we need to
define some additional scaled quantities, starting with
the following: x̂ ¼ x̄=σx, ŷ ¼ y=σy, p̂x ¼ p̄x=σ0x, p̂y ¼
py=σ0y, ẑ ¼ 2ρkuz, ẑ0 ¼ 2ρkuz0, ζ̂ ¼ 2ρkuζ, and
ξ̂ ¼ ζ̂ − ẑ ¼ 2ρkuξ. Moreover, we also introduce the scaled
detuning ν̂s ¼ Δνs=ð2ρÞ, the scaled energy spread
σ̂δ ¼ σδ=ρ, the diffraction parameters ηdx ¼ ð4kukrρσ2xÞ−1
and ηdy ¼ ð4kukrρσ2yÞ−1, as well as the focusing/emittance

parameters k̂βx ¼ kβx=ð2ρkuÞ, k̂βy ¼ kβy=ð2ρkuÞ, ηεx ¼
krσ0x2=ð2ρkuÞ, and ηεy ¼ krσ0y2=ð2ρkuÞ. We note that the

latter four parameters satisfy the relations ηεx ¼ k̂2βx=ð2ηdxÞ
and ηεy ¼ k̂2βy=ð2ηdyÞ. Last but not least, we also define

two scaled parameters that are proportional to the kick
angle p0:

ϵ1 ¼ p0=ð2ρkuσxÞ ð44Þ

and

ϵ ¼ krp0σ
0
x=ð2ρkuÞ: ð45Þ

We note that their ratio is related to the horizontal emittance
ϵx ¼ σxσ

0
x since ϵ=ϵ1 ¼ krσxσ0x. The scaled evolution

equation is

� ∂
∂ẑ− ϵ1 cosðk̂βxẑ0Þ

∂
∂x̂− i

�
ηdx

∂2

∂x̂2 þ ηdy
∂2

∂ŷ2
��

Êνðx̂; ŷ; ẑÞ

¼
Z

dp̂xdp̂y

Z
ẑ

0

dζ̂K̂3ðx̂; ŷ; p̂x; p̂y; ẑ; ζ̂ÞÊνðx̂þ; ŷþ; ζ̂Þ;

ð46Þ

where x̂þ ¼ x̄þ=σx ¼ x̂ cosðk̂βxξ̂Þ þ p̂x sinðk̂βxξ̂Þ, ŷþ ¼
yþ=σy ¼ ŷ cosðk̂βyξ̂Þ þ p̂y sinðk̂βyξ̂Þ and

K̂3ðx̂; ŷ; p̂x; p̂y; ẑ; ζ̂Þ

¼ −
iξ̂
2π

expð−iν̂sξ̂ − σ̂2δξ̂
2=2Þ

× exp

�
−
1þ iηεxξ̂

2
ðp̂2

x þ x̂2Þ − 1þ iηεyξ̂

2
ðp̂2

y þ ŷ2Þ
�

× expð−iϵξ̂½p̂x cosðk̂βxẑ0Þ þ x̂ sinðk̂βxẑ0Þ�Þ: ð47Þ

The term proportional to ∂=∂x̂ in the first line of Eq. (46) and
the entire third line of Eq. (47) are the new features
introducedbyp0. The latter also contains an explicit, periodic
dependence on ẑ0 (i.e. not one implicitly contained in
ξ̂ ¼ ζ̂ − ẑ). Expanding this exponential term up to second
order in ϵ, we have

QP ¼ expð−iϵξ̂½p̂x cosðk̂βxẑ0Þ þ x̂ sinðk̂βxẑ0Þ�Þ
≈ 1 − iϵξ̂½p̂x cosðk̂βxẑ0Þ þ x̂ sinðk̂βxẑ0Þ�

−
ϵ2ξ̂2

2
½p̂2

xcos2ðk̂βxẑ0Þ þ x̂2sin2ðk̂βxẑ0Þ
þ x̂p̂x sinð2k̂βxẑ0Þ� þ � � � ð48Þ

so the coefficients in the Fourier series

QP ¼ d̂0 þ d̂1eik̂βxẑ0 þ d̂−1e−ik̂βxẑ0

þ d̂2e2ik̂βxẑ0 þ d̂−2e−2ik̂βxẑ0 þ � � � ð49Þ

are given by
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d̂0ðx̂; p̂x; ξ̂Þ ¼ 1 −
ϵ2ξ̂2

2

�
p̂2
x þ x̂2

2

�
þOðϵ4Þ;

d̂1ðx̂; p̂x; ξ̂Þ ¼ −d̂�−1ðx̂; p̂x; ξ̂Þ ¼ −ϵξ̂
x̂þ ip̂x

2
þOðϵ3Þ;

d̂2ðx̂; p̂x; ξ̂Þ ¼ d̂�−2ðx̂; p̂x; ξ̂Þ ¼
ϵ2ξ̂2

2

�
x̂2 − p̂2

x

4
þ i
2
x̂p̂x

�

þOðϵ4Þ; ð50Þ

etc. In a more compact form, one can show that the
above Fourier coefficients are also given by d̂n ¼
J−nðϵξ̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂2
x þ x̂2

p
ÞeinθE , where θE ¼ arctanðp̂x=x̂Þ. This

expression is derived using the Jacobi-Anger expansion
and is valid even when ϵ > 1. However, we will see that
the expansion in terms of ϵ given by Eq. (50) is quite
sufficient for our purposes.
In view of the periodic z dependence of the problem at

hand, we try a solution of the form

Êνðx̂; ŷ; ẑÞ ¼
X∞
n¼−∞

Anðx̂; ŷÞeiðμ̂þnk̂βxÞẑ0 ; ð51Þ

where An are Fourier amplitudes and μ̂ is a complex growth
rate. Alternatively, this solution can be viewed as a trans-
verse profile that is periodic in ẑ0, multiplied by expðiμ̂ẑ0Þ.
Substituting the above ansatz into Eq. (46) yields an infinite
set of coupled equations, namely

�
μ̂þ nk̂βx −

�
ηdx

∂2

∂x̂2 þ ηdy
∂2

∂ŷ2
��

Anðx̂; ŷÞ

þ iϵ1
2

�∂An−1ðx̂; ŷÞ
∂x̂ þ ∂Anþ1ðx̂; ŷÞ

∂x̂
�

¼
X∞
j¼−∞

Z
dx̂þdŷþ

Z
0

−∞
dξ̂ ~Q−jðx̂; ŷ; x̂þ; ŷþ; ξ̂Þ

× Anþjðx̂þ; ŷþÞ expði½μ̂þ ðnþ jÞk̂βx�ξ̂Þ: ð52Þ

In the relation given above, we have changed the transverse
integration variables from (p̂x, p̂y) to (x̂þ, ŷþ). As we will
see later on, this particular choice allows for some very
useful insight regarding the structure of the problem.
Moreover,

~Qjðx̂; ŷ; x̂þ; ŷþ; ξ̂Þ ¼ ~djðx̂; x̂þ; ξ̂Þ ~Πðx̂; ŷ; x̂þ; ŷþ; ξ̂Þ; ð53Þ

where

~Πðx̂; ŷ; x̂þ; ŷþ; ξ̂Þ

¼ −
ξ̂ expð−iν̂sξ̂ − σ̂2δξ̂

2=2Þ
2πjsinðk̂βxξ̂Þ sinðk̂βyξ̂Þj

× exp

�
−

1þ iηεxξ̂

2sin2ðk̂βxξ̂Þ
½x̂2þ þ x̂2 − 2x̂x̂þ cosðk̂βxξ̂Þ�

�

× exp

�
−

1þ iηεyξ̂

2sin2ðk̂βyξ̂Þ
½ŷ2þ þ ŷ2 − 2ŷŷþ cosðk̂βyξ̂Þ�

�

ð54Þ

and

~d0 ¼ 1 −
ϵ2ξ̂2½x̂2þ þ x̂2 − 2x̂x̂þ cosðk̂βxξ̂Þ�

4sin2ðk̂βxξ̂Þ
þOðϵ4Þ;

~d�1 ¼ ∓ ϵξ̂½ðsinðk̂βxξ̂Þ ∓ i cosðk̂βxξ̂ÞÞx̂� ix̂þ�
2 sinðk̂βxξ̂Þ

þOðϵ3Þ ð55Þ

etc. In what follows, we confine our attention to a model
that includes only the fundamental amplitude A0 and the
first two satellite amplitudes A�1. Even with this simpli-
fication, the resulting truncated set of coupled amplitude
equations is not amenable to analytical treatment. Instead,
we follow a perturbation approach, which is valid when ϵ
and ϵ1 are smaller than unity (i.e. when the kick angle p0 is
sufficiently small). The latter condition can be further
clarified by noting that

ϵ ¼ ð2π
ffiffiffi
3

p
=f3DÞ1=2

ffiffiffiffiffiffi
ηεx

p ðp0=θcÞ ð56Þ

and

ϵ1 ¼ ð4π
ffiffiffi
3

p
=f3DÞ1=2

ffiffiffiffiffiffi
ηdx

p ðp0=θcÞ; ð57Þ

where f3D > 1 is a dimensionless parameter representing
the gain length increase due to transverse effects and energy
spread (see Sec. III for more details). Thus, the smallness of
ϵ, ϵ1 can be directly related to the ratio of the kick to the
critical angle.
Our main objective is to obtain the average growth

rate μ̂ in the form of a series expansion in terms of p0.
Thus, we assume that μ̂ ¼ μ̂ð0Þ þ μ̂ð1Þ þ μ̂ð2Þ þ � � �—where

μ̂ðkÞ ∼ pk
0—and also An ¼ Að0Þ

n þ Að1Þ
n þ Að2Þ

n þ � � � (for
n ¼ 0, �1), seeking to determine the contribution of each
order. To implement this approach, we need to expand the
integral kernels ~Qj in terms of p0. Apart from Eqs. (50) and
(55), we need to take into account the fact that the shifted
detuning ν̂s also depends on the kick angle via ν̂s ¼ ν̂þ ϵ2,
where ν̂ ¼ Δν=ð2ρÞ and ϵ2 ≡ krp2

0=ð4ρkuÞ ¼ ϵ21=ð4ηdxÞ.
For p0 ¼ 0, ~Qj ¼ 0 for all j ≠ 0 and we only need to
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deal with the fundamental amplitude A0ðx̂; ŷÞ. In this case,
there is no periodic z dependence and our solution reduces
to a standard FEL guided mode, which satisfies the zeroth
order mode equation

�
μ̂ð0Þ −

�
ηdx

∂2

∂x̂2 þ ηdy
∂2

∂ŷ2
��

Að0Þ
0 ðx̂; ŷÞ

¼
Z

dx̂þdŷþ

Z
0

−∞
dξ̂ ~Qð0Þ

0 ðx̂; ŷ; x̂þ; ŷþ; ξ̂Þ

× Að0Þ
0 ðx̂þ; ŷþÞ expðiμ̂ð0Þξ̂Þ; ð58Þ

where ~Qð0Þ
0 ðx̂; ŷ; x̂þ; ŷþ; ξ̂Þ ¼ ~Πðx̂; ŷ; x̂þ; ŷþ; ξ̂Þν̂s→ν̂. This

equation is the standard version that has been studied
extensively in 3D theory [18]. Its solutions can be
determined through variational theory (among other
methods). The latter is based on constructing the follow-
ing functional:

Z
dx̂dŷAð0Þ

0 ðx̂; ŷÞ
�
μ̂ð0Þ −

�
ηdx

∂2

∂x̂2 þ ηdy
∂2

∂ŷ2
��

Að0Þ
0 ðx̂; ŷÞ

¼
Z

dx̂dŷAð0Þ
0 ðx̂; ŷÞ

Z
dx̂þdŷþ

Z
0

−∞
dξ̂

× ~Qð0Þ
0 ðx̂; ŷ; x̂þ; ŷþ; ξ̂ÞAð0Þ

0 ðx̂þ; ŷþÞ expðiμ̂ð0Þξ̂Þ: ð59Þ

The above relation yields an approximation to the growth
rate μ̂ð0Þ given a trial function for the transverse profile

Að0Þ
0 ðx̂; ŷÞ. Since ~Qð0Þ

0 ðx̂; ŷ; x̂þ; ŷþ; ξ̂Þ¼ ~Qð0Þ
0 ðx̂þ; ŷþ; x̂; ŷ; ξ̂Þ,

a first order variation of Að0Þ
0 in the neighborhood of the

actual solution yields an estimate for μ̂ð0Þ that is accurate
up to second order terms. For the fundamental mode, we

use a Gaussian trial solution of the form Að0Þ
0 ðx̂; ŷÞ ¼

expð−axx̂2 − ayŷ2Þ. The resulting variational dispersion
relation is

F0ðμ̂ð0Þ; ax; ayÞ ¼ μ̂ð0Þ þ ηdxax þ ηdyay þ a1=2x a1=2y

×
Z

0

−∞
dξ̂ξ̂ exp½iðμ̂ð0Þ − ν̂Þξ̂

− σ̂2δξ̂
2=2�D−1=2

0x D−1=2
0y ¼ 0; ð60Þ

where

D0x ¼
1

4
ð1þ iηεxξ̂Þ2 þ ð1þ iηεxξ̂Þax þ a2xsin2ðk̂βxξ̂Þ;

D0y ¼
1

4
ð1þ iηεyξ̂Þ2 þ ð1þ iηεyξ̂Þay þ a2ysin2ðk̂βyξ̂Þ:

ð61Þ

The solution is completed by the relations ∂F0=∂ax ¼ 0
and ∂F0=∂ay ¼ 0, which are due to the fact that the

stationary growth rate satisfies ∂μ̂ð0Þ=∂ax ¼ ∂μ̂ð0Þ=
∂ay ¼ 0. These three equations yield the fundamental
growth rate μ̂ð0Þ and the mode parameters ax and ay as
functions of the detuning ν̂.
For p0 ≠ 0, the periodic z dependence is restored and the

two satellite amplitudes A�1 need to be included in our
analysis. Since ~d�1 ¼ OðϵÞ, we anticipate that the leading
contribution to A�1 will also be ∝ ϵ. The two first-order
equations for A�1 are

�
μ̂ð0Þ � k̂βx −

�
ηdx

∂2

∂x̂2 þ ηdy
∂2

∂ŷ2
��

Að1Þ
�1ðx̂; ŷÞ

−
Z

dx̂þdŷþ

Z
0

−∞
dξ̂ ~Qð0Þ

0 ðx̂; ŷ; x̂þ; ŷþ; ξ̂ÞAð1Þ
�1ðx̂þ; ŷþÞ

× exp½iðμ̂ð0Þ � k̂βxÞξ̂� ¼ F�1ðx̂; ŷÞ ¼ −
iϵ1
2

∂Að0Þ
0 ðx̂; ŷÞ
∂x̂

þ
Z

dx̂þdŷþ

Z
0

−∞
dξ̂ ~Qð1Þ

�1ðx̂; ŷ; x̂þ; ŷþ; ξ̂Þ

× Að0Þ
0 ðx̂þ; ŷþÞ exp½iμ̂ð0Þξ̂�: ð62Þ

We note that—unlike a typical, homogeneous mode
equation such as Eq. (58), which involves both an
unknown growth rate and a transverse profile—the above
results are driven equations for the transverse profile only.

Given μ̂ð0Þ and Að0Þ
0 ðx̂; ŷÞ from the standard variational

calculation described earlier, Eqs. (62) can also be solved
using a modified version of the variational technique
suitable for driven equations. In particular, we define the
functional

I� ¼
Z

dx̂dŷAð1Þ
�1ðx̂; ŷÞ

�
μ̂ð0Þ � k̂βx −

�
ηdx

∂2

∂x̂2 þ ηdy
∂2

∂ŷ2
��

× Að1Þ
�1ðx̂; ŷÞ −

Z
dx̂dŷAð1Þ

�1ðx̂; ŷÞ
Z

dx̂þdŷþ

Z
0

−∞
dξ̂

× ~Qð0Þ
0 ðx̂; ŷ; x̂þ; ŷþ; ξ̂ÞAð1Þ

�1ðx̂þ; ŷþÞ exp½iðμ̂ð0Þ � k̂βxÞξ̂�

− κ

Z
dx̂dŷAð1Þ

�1ðx̂; ŷÞF�1ðx̂; ŷÞ; ð63Þ

where the driving term F�1ðx̂; ŷÞ has already been defined
in Eq. (62) and κ ¼ 2. The above relation yields a complex

number I� for a given profile Að1Þ
�1ðx̂; ŷÞ. As is shown in

the Appendix, in the neighborhood of the actual solution,
I� is nonzero but stationary. In other words, a first order

variation in Að1Þ
�1 only yields a second order variation

in I�. As is also argued in the Appendix, a suitable trial

function for the satellite amplitudes is Að1Þ
�1ðx̂; ŷÞ ¼

λ�x̂ expð−b�x̂2Þ expð−c�ŷ2Þ. Substituting this form into
Eq. (63) and also using the Gaussian trial function for

Að0Þ
0 ðx̂; ŷÞ, we obtain the relation
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I� ¼ πλ2�
8b�

ffiffiffiffiffiffi
b�

p ffiffiffiffiffiffi
c�

p ½μ̂ð0Þ � k̂βx þ 3ηdxb� þ ηdyc��

þ πλ2�
8

Z
0

−∞
dξ̂ξ̂ exp½iðμ̂ð0Þ � k̂βx − ν̂Þξ̂ − σ̂2δξ̂

2=2�

×N1xD
−3=2
1x D−1=2

1y −iπϵ1λ�
ax

ðb� þ axÞ3=2
1

ðc� þ ayÞ1=2

þ iπϵλ�
4

Z
0

−∞
dξ̂ξ̂2 exp½iðμ̂ð0Þ − ν̂Þξ̂ − σ̂2δξ̂

2=2�

× NxD
−3=2
x D−1=2

y ; ð64Þ

where

Nx ¼ ax expð�ik̂βxξ̂Þ sinðk̂βxξ̂Þ �
i
2
ð1þ iηεxξ̂Þ;

Dx ¼ b�axsin2ðk̂βxξ̂Þ þ
1

2
ð1þ iηεxξ̂Þðb� þ axÞ

þ ð1þ iηεxξ̂Þ2
4

;

Dy ¼ c�aysin2ðk̂βyξ̂Þ þ
1

2
ð1þ iηεyξ̂Þðc� þ ayÞ

þ ð1þ iηεyξ̂Þ2
4

ð65Þ

and

N1x ¼ ð1þ iηεxξ̂Þ cosðk̂βxξ̂Þ;

D1x ¼ b2�sin
2ðk̂βxξ̂Þ þ b�ð1þ iηεxξ̂Þ þ

1

4
ð1þ iηεxξ̂Þ2;

D1y ¼ c2�sin
2ðk̂βyξ̂Þ þ c�ð1þ iηεyξ̂Þ þ

1

4
ð1þ iηεyξ̂Þ2:

ð66Þ

For this case, the variational relations are ∂I�=∂λ� ¼
∂I�=∂b� ¼ ∂I�=∂c� ¼ 0. Solving these equations yields
the satellite mode parameters (λ�, b�, and c�). In view of
the simple quadratic dependence of I� on λ� and ϵ, ϵ1, it
can be readily seen that the resulting value for λ� is a
linear combination of ϵ and ϵ1. Thus, as expected, λ� and

Að1Þ
�1 are indeed first order quantities (recall that ϵ and ϵ1

are both proportional to p0).
Having determined μ̂ð0Þ, Að0Þ

0 , and Að1Þ
�1, we seek the

second order corrections to μ̂. Indeed, it can be shown that
there are no first order corrections to the above quantity,
so we simply have μ̂ ¼ μ̂ð0Þ þ μ̂ð2Þ. Reviewing the version
of Eq. (52) for n ¼ 0, we collect all second order terms.
The end result is

μ̂ð2ÞAð0Þ
0 ðx̂; ŷÞ þ

�
μ̂ð0Þ −

�
ηdx

∂2

∂x̂2 þ ηdy
∂2

∂ŷ2
��

Að2Þ
0 ðx̂; ŷÞ

þ iϵ1
2

�∂Að1Þ
1 ðx̂; ŷÞ
∂x̂ þ ∂Að1Þ

−1ðx̂; ŷÞ
∂x̂

�

¼
Z

dx̂þdŷþ

Z
0

−∞
dξ̂ ~Qð0Þ

0 ðx̂; ŷ; x̂þ; ŷþ; ξ̂Þ½Að2Þ
0 ðx̂þ; ŷþÞ

þ iμ̂ð2Þξ̂Að0Þ
0 ðx̂þ; ŷþÞ� exp½iμ̂ð0Þξ̂� þ Gðx̂; ŷÞ; ð67Þ

where

Gðx̂; ŷÞ ¼
Z

dx̂þdŷþ

Z
0

−∞
dξ̂ ~Qð2Þ

0 ðx̂; ŷ; x̂þ; ŷþ; ξ̂Þ

× Að0Þ
0 ðx̂þ; ŷþÞ exp½iμ̂ð0Þξ̂� þ

Z
dx̂þdŷþ

Z
0

−∞
dξ̂

× ~Qð1Þ
−1ðx̂; ŷ; x̂þ; ŷþ; ξ̂ÞAð1Þ

1 ðx̂þ; ŷþÞ

× exp½iðμ̂ð0Þ þ k̂βxÞξ̂� þ
Z

dx̂þdŷþ

×
Z

0

−∞
dξ̂ ~Qð1Þ

1 ðx̂; ŷ; x̂þ; ŷþ; ξ̂ÞAð1Þ
−1ðx̂þ; ŷþÞ

× exp½iðμ̂ð0Þ − k̂βxÞξ̂�: ð68Þ

Here, ~Qð1Þ
�1ðx̂; ŷ; x̂þ; ŷþ; ξ̂Þ¼ ~d�1

ð1Þ× ~Πðx̂; ŷ; x̂þ; ŷþ; ξ̂Þν̂s→ν̂

while the second order term related to ~Q0 is given by

~Qð2Þ
0 ðx̂; ŷ; x̂þ; ŷþ; ξ̂Þ
¼ ~Πðx̂; ŷ; x̂þ; ŷþ; ξ̂Þν̂s→ν̂

×

�
−

iξ̂
4ηdx

ϵ21 −
ϵ2ξ̂2

4

x̂2þ þ x̂2 − 2x̂x̂þ cosðk̂βxξ̂Þ
sin2ðk̂βxξ̂Þ

�
: ð69Þ

In order to extract μ̂ð2Þ, we multiply Eq. (67) by Að0Þ
0 ðx̂; ŷÞ

and integrate over the scaled transverse position. After
using Eq. (58), as well as some properties discussed in the
Appendix, we obtain a formula for the second order
correction to the growth rate:

μ̂ð2Þ
�Z

dx̂dŷ½Að0Þ
0 ðx̂; ŷÞ�2 − i

Z
dx̂dŷAð0Þ

0 ðx̂; ŷÞ
Z

dx̂þdŷþ

×
Z

0

−∞
dξ̂ξ̂ ~Qð0Þ

0 ðx̂; ŷ; x̂þ; ŷþ; ξ̂Þ exp½iμ̂ð0Þξ̂�Að0Þ
0 ðx̂þ; ŷþÞ

�

¼ −
iϵ1
2

Z
dx̂dŷAð0Þ

0 ðx̂; ŷÞ
�∂Að1Þ

1 ðx̂; ŷÞ
∂x̂ þ ∂Að1Þ

−1ðx̂; ŷÞ
∂x̂

�

þ
Z

dx̂dŷAð0Þ
0 ðx̂; ŷÞGðx̂; ŷÞ; ð70Þ

where G has been defined in Eq. (68). Substituting the

analytical expressions for Að0Þ
0 and Að1Þ

�1 into Eq. (70), we
obtain the following analytical result:
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�
1þ ia1=2x a1=2y

Z
0

−∞
dξ̂ξ̂2eΨD−1=2

0x D−1=2
0y

�
μ̂ð2Þ

¼ −iϵ1a
3=2
x a1=2y

�
λþ

ðax þ bþÞ3=2ðay þ cþÞ1=2

þ λ−
ðax þ b−Þ3=2ðay þ c−Þ1=2

�

þ ϵ2

4
a1=2x a1=2y

Z
0

−∞
dξ̂ξ̂3eΨN0xD

−3=2
0x D−1=2

0y

þ iϵ21
4ηdx

a1=2x a1=2y

Z
0

−∞
dξ̂ξ̂2eΨD−1=2

0x D−1=2
0y

þ i
4
ϵλþ

ffiffiffiffiffi
ax

p ffiffiffiffiffi
ay

p Z
0

−∞
dξ̂ξ̂2eΨþð ~NxD

−3=2
x D−1=2

y Þþ

þ i
4
ϵλ−

ffiffiffiffiffi
ax

p ffiffiffiffiffi
ay

p Z
0

−∞
dξ̂ξ̂2eΨ−ð ~NxD

−3=2
x D−1=2

y Þ−; ð71Þ

where Ψ ¼ iðμ̂ð0Þ − ν̂Þξ̂ − σ̂2δξ̂
2=2, Ψ� ¼ Ψ� ik̂βxξ̂, N0x ¼

ax þ ð1þ iηεxξ̂Þ=2, and

~Nx ¼ ax sinðk̂βxξ̂Þþ
1

2
½sinðk̂βxξ̂Þ∓ icosðk̂βxξ̂Þ�ð1þ iηεxξ̂Þ:

Given μ̂ð0Þ, ax, ay, λ�, b�, and c� (all of which are available
from our previous variational calculations), Eq. (71) yields
the second order correction to μ̂. This completes our
perturbation solution for the periodic problem.

III. NUMERICAL EXAMPLES

This section provides a brief numerical illustration of the
theoretical methods outlined above. In particular, we
compare the results of the linearized IVP solution with
the output of the three-dimensional FEL simulation code
GENESIS [19] for a set of standard, LCLS-like electron beam
and undulator parameters. Next, we use the asymptotic
portion of the linearized solution in order to validate the
results of the periodic, eigenmodelike analysis. Lastly, the
latter are also contrasted with the Tanaka gain length
formula for a kicked beam. To begin with, we consider
the set of FEL parameters given in Table I, which are
similar to those of a typical hard x-ray configuration
for LCLS. In particular, they involve generating 8.2 keV
photons (0.15 nm radiation wavelength) with a 14.3 GeV e-
beam and a 3 cm period undulator (with K0 ¼ 3.7) while
the typical average beta value of 30 m corresponds to a
beam size of about 23 μm (for a transverse normalized
emittance of 0.5 mm mrad). Besides this baseline value, we
will briefly consider two other average beta values, namely
15 and 60 m, in order to explore the sensitivity of our
results with respect to the size of the electron beam. For all
three configurations, we assume a peak current of 3 kA and
an rms energy spread of 10−4.

Beginning with the 30 m beta case, we assume a
symmetric, on-axis, Gaussian input radiation with a
Rayleigh length of 12 m and a waist situated at the
undulator entrance (z ¼ 0). As far as the various dimen-
sionless parameters are concerned, we have Âx ¼ 3.4,
B̂x ¼ B̂y ¼ 0.747, and σ̂δ ¼ 0.184, while the initial mode
parameters are β̂xð0Þ ¼ β̂yð0Þ ¼ 0.4 and α̂xð0Þ ¼ 0.
Moreover, the specific frequency we are considering trans-
lates into a scaled detuning of ν̂ ¼ −0.5. Using Eqs. (23)–
(26), we obtain the linearized solution of the IVP for the
setup described above and four kick angle values corre-
sponding to p̂0 ¼ p0=σ0x ¼ 0, 1, 2, 3 and ẑe ¼ 0
(σ0x ¼ σx=βex ¼ 0.77 μrad). The principal results are pre-
sented in Fig. 1, in which we plot the e-beam horizontal
centroid xce, FEL gain G ¼ logðPr=P0Þ (P0 ¼ 4 kW is the
input power), and bunching factor jhe−iθij as functions of z.
Also included for comparison are the corresponding results
from a time-independent (steady-state) GENESIS run. Up to
the onset of saturation, we observe good agreement
between the linearized solution and the simulation results.
In fact, the extent of the linear regime can be roughly
estimated by simply determining the z value for which the
analytical result for the bunching factor becomes equal
to unity.
A similar compatibility between the IVP solution and

simulation can be established for the radiation beam size,
as is shown in Fig. 2 (this particular example corresponds to
a kick angle of 1.54 μrad). We clarify that the radiation
size plotted here as a function of z is a combined quantity
defined by σr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2i − hxi2 þ hy2i

p
(its analog in the

context of the single-mode, Gaussian approximation is

σr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2rx þ σ2ry

q
). Moreover, Fig. 3 compares the hori-

zontal centroid of the radiation beam as calculated from
the linearized solution with the centroid of the e-beam. We
observe that, after an initial delay due to the angular
mismatch, the radiation centroid generally follows the
oscillating electron beam.
Having established the basic validity of the linearized

solution, we now turn to the task of integrating it with
the formalism of the periodic analysis. Specifically, the

TABLE I. Undulator and electron beam parameters.

Parameter Value

Undulator parameter K0 3.7
Undulator period λu 3 cm
Beam energy γ0mec2 14.31 GeV
Resonant wavelength λr 0.15 nm
Peak current Ip 3 kA
Energy spread σδ 10−4

Normalized emittance γ0ϵx ¼ γ0ϵy 0.5 μm
Average beta value βex ¼ βey 15=30=60 m
Electron beam size σx ¼ σy 16.3=23.1=32.7 μm
FEL parameter ρ ð6.8=5.4=4.3Þ × 10−4
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principal task is to use Eqs. (60), (64), and (71) in order to
determine the total average growth rate μ̂ ¼ μ̂ð0Þ þ μ̂ð2Þ in
terms of the frequency detuning variable ν̂. The relevant
dimensionless parameters (again assuming a 30 m beta

value) are ηdx ¼ ηdy ¼ 0.098, ηεx ¼ ηεy ¼ 0.109, and k̂βx¼
k̂βy¼0.146while ϵ ¼ 0.109=0.2 and ϵ1 ¼ 0.145=0.29 for a
0.77=1.54 μrad kick. On the other hand, according to the
discussion at the end of the orthogonal expansion sub-
section, the results of the single-mode IVP solution can be
used in calculating a z-dependent, local, complex growth
rate μz [see Eq. (39)] the negative imaginary part of which
is equal to half the logarithmic power growth rate
P−1
r dPr=dz. Thus, a direct comparison can be made

between −μ̂i and P−1
r dPr=dz ¼ −2μzi scaled by 4ρku.

This is presented in Fig. 4 for the above-mentioned kick
angle values. Each comparison includes both the unper-
turbed mode growth rate μ̂ð0Þ and the “corrected” version
which involves the second order contribution due to the
kick (the latter is derived from the full, three-amplitude
calculation described in the theory section). For both cases,
it is evident that the scaled logarithmic power growth rate
exhibits a periodic variation with z in the asymptotic
portion of the linear regime. Its averaged value (after
excluding the initial transient) agrees rather well with
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FIG. 1. Electron beam centroid, FEL gain and bunching factor
as functions of z, for a kick angle of p0 ¼ 0=0.77=1.54=
2.31 μrad (blue/red/green/magenta). The solid and dashed lines
represent the linearized solution and GENESIS simulation results,
respectively.
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FIG. 2. Radiation beam size versus z for a kick angle of
1.54 μrad (theory and GENESIS simulation results).
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FIG. 3. Electron and radiation horizontal centroids for a kick
angle of 1.54 μrad (analytical results).
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the value calculated from the periodic analysis. Thus, we
are encouraged to use the latter as a figure of merit for a
kicked beam configuration (though saturation may some-
times limit the actual number of completed betatron
oscillations).
To facilitate a proper comparison between the results of

the periodic analysis and the Tanaka gain length formula,
we first define the frequency-dependent coefficient

cν ¼ −ðμ̂ð2Þi =μ̂ð0Þi Þ=ϵ21. Since ϵ1 ∝ p0 and μ̂ð2Þ ∝ p2
0, this

quantity is independent of the kick angle. In fact, it is
proportional to the coefficient of the quadratic decrease of
the growth rate with respect to the angular kick. Figure 5(a)
shows the plot of cν versus the scaled detuning ν̂, also
comparing it with the corresponding value derived from
Tanaka’s formula [Eq. (1)]. The latter can be determined as
follows: we recall that the power gain length LG is defined
as the length necessary for one exponentiation of the
radiation power. Since the power is proportional to jEνj2,
for a field dependence of the form Eν ∝ expðiμzÞ (where μ

is the complex growth rate), the gain length is given by
LG ¼ −1=ð2μiÞ. Thus, in terms of our scaling, the gain
length (in the absence of a kick) LG0 can be written as
LG0 ¼ f3DL0, where L0 ¼ λu=ð4π

ffiffiffi
3

p
ρÞ is the 1D gain

length and f3D ¼ −
ffiffiffi
3

p
=ð2μ̂ð0Þi Þ > 1 is a parameter express-

ing the influence of energy spread and 3D effects. Using
Eq. (1), it is straightforward to show that the fractional
growth rate decrease due to the kick is equal to
ðp0=θcÞ2 ¼ TFϵ

2
1, where TF ¼ f3D=ð4π

ffiffiffi
3

p
ηdxÞ is the

quantity we plot in Fig. 5(a) (recall that the critical angle
is given by θc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λr=LG0

p
). Overall, we observe a some-

what stronger reduction in gain compared to what we
would expect from the Tanaka formula.
A similar comparison involves the optimized coefficient

fopt ≡ ðμ̂ð0Þi þ μ̂ð2Þi Þopt=ðμ̂ð0Þi Þopt, where both numerator and
denominator have been maximized with respect to the
detuning (a scenario relevant for self-amplified spontaneous
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FIG. 4. Comparison between the scaled, local power growth
rate −μ̂zi ¼ −μzi=ð2ρkuÞ and the results of the periodic analysis
(PE). Also shown is the growth rate in the absence of a kick
(results for βex ¼ 30 m and ν̂ ¼ −0.5, as in Figs. 1–3).
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FIG. 5. Comparison of the periodic analysis (PE) results with
the estimates derived from the Tanaka formula [Eq. (1)] for
βex ¼ 30 m. A stronger-than-anticipated reduction of the growth
rate is observed.
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emission). This quantity represents the fractional reduction
in the optimized growth rate due to a kick of given strength.
In Fig. 5(b), we plot fopt versus the ϵ1 parameter and com-
pare its variation with that given by the gain length formula.
The latter is simply 1 − ðp0=θcÞ2 ¼ 1 − f3Dϵ21=ð4π

ffiffiffi
3

p
ηdxÞ,

with f3D involving the frequency-optimized value of the
unperturbed growth rate μ̂ð0Þ. Once again, a stronger gain
reduction (compared to the formula value) is observed. This
conclusion can be quantified in a clearer way by recalling
that fopt is equal to the ratio LG0=LG. Thus, we can rewrite
our results as

LG ¼ LG0

1 − αmðp0=θcÞ2
; ð72Þ

where the dimensionless coefficient αm expresses the
deviation from the value calculated by means of Eq. (1).
In fact, we have αm ≈ 2, for the 30 m beta value, so that the
fractional increase in the gain length is twice as much as that
given by the Tanaka formula. An entirely similar study can
be performed for the average beta values of 15 m
and 60 m. The basic compatibility between the linearized
IVP solution, 3D simulation and periodic analysis is still
preserved while αm is approximately equal to 2.5 and 1.5,
respectively.

IV. CONCLUSIONS

In this paper, we have developed a self-consistent theory
for treating the influence of an angular kick on the operation
of a high-gain FEL in the linear regime of the interaction.
Working within the framework of a Maxwell-Vlasov formal-
ism, we derived a single, three-dimensional equation that
governs the evolution of the slowly varying radiation ampli-
tude along the undulator, taking into account the effect of the
oscillating e-beam centroid. Using an expansion of the
radiation amplitude in terms of an appropriate set of orthogo-
nal transverse modes, we obtained a semianalytical, approxi-
mate solution to the linearized initial value problem which
includes the calculation of key e-beam and radiation param-
eters. The validity of these linearized results is established
through direct comparison with simulation for an LCLS-like
FEL configuration. Furthermore, we presented a periodic
analysis techniquewhich allows us to define anddetermine an
averaged FEL growth rate, suitable for describing the kicked-
beam setup after averaging over the centroid oscillations.
After verifying its results through a comparison with the
asymptotic part of the linearized IVP solution, the periodic
analysis is in turn contrasted with Tanaka’s gain length
formula, revealing a stronger than expected quadratic
decrease of the growth rate with the kick angle.
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APPENDIX: VARIATIONAL TECHNIQUE
FOR DRIVEN EQUATIONS

A typical FEL eigenmode problem is defined by a
homogeneous equation of the form

ðμ0 þ λ0∇2⊥ÞÂ0ðxÞ −
Z

d2xþGKðx;xþ; μ0ÞÂ0ðxþÞ ¼ 0;

ðA1Þ

where Â0ðxÞ is the unknown FEL mode profile, μ0 is the
corresponding complex growth rate (also to be deter-
mined), and λ0 is a constant. The standard variational
technique for such a problem is based on constructing the
functional relation expressed by

Z
d2xÂðxÞ½ðμþ λ0∇2⊥ÞÂðxÞ

−
Z

d2xþÂðxþÞGKðx;xþ; μÞ� ¼ 0; ðA2Þ

which yields a complex number μ given a function ÂðxÞ.
It is evident that substituting the exact mode profile [that
is, ÂðxÞ ¼ Â0ðxÞ] into Eq. (A2) yields the exact growth rate
(i.e. μ ¼ μ0). It can also be shown that, provided that
GKðx;xþ; μ0Þ ¼ GKðxþ;x; μ0Þ, a first order variation
around A0ðxÞ actually results in a second order variation
around μ0 [13]. The details of this proof are similar to the
development presented below so they will be omitted.
The variational solution is thus based on the functional of
Eq. (A2) and a proper choice of trial function.
The question we aim to address is whether a variational

solution can also be found for a driven equation of the form

ðμ0 þ λ0∇2⊥ÞÂ0ðxÞ

−
Z

d2xþGKðx;xþ; μ0ÞÂ0ðxþÞ ¼ FðxÞ; ðA3Þ

where Â0ðxÞ is the unknown mode profile and μ0 is now a
known complex constant (both unrelated to the correspond-
ing parameters of the homogeneous problem). We begin by
constructing the functional

I ¼
Z

d2xÂðxÞ½ðμ0 þ λ0∇2⊥ÞÂðxÞ

−
Z

d2xþÂðxþÞGKðx;xþ; μ0Þ − κFðxÞ�; ðA4Þ

where κ is another constant. Given a trial function ÂðxÞ,
one obtains a complex number I. In view of Eq. (A3), for
ÂðxÞ ¼ Â0ðxÞ, we have

I ¼ I0 ¼ ð1 − κÞ
Z

d2xÂ0ðxÞFðxÞ; ðA5Þ
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which is generally nonzero for κ ≠ 1. Now, we consider the
first order variation of I. For ÂðxÞ → Â0ðxÞ þ Â1ðxÞ, we
have I → I0 þ I1, with

I1 ¼
Z

d2xf2μ0Â0ðxÞÂ1ðxÞ þ λ0Â0ðxÞ∇2⊥Â1ðxÞ

þ λ0Â1ðxÞ∇2⊥Â0ðxÞg −
Z

d2x
Z

d2xþGKðx;xþ; μ0Þ

× fÂ0ðxÞÂ1ðxþÞ þ Â1ðxÞÂ0ðxþÞg

−
Z

d2xκFðxÞÂ1ðxÞ: ðA6Þ

Next, we use the properties

Z
d2xÂ0ðxÞ∇2⊥Â1ðxÞ ¼

Z
d2xÂ1ðxÞ∇2⊥Â0ðxÞ; ðA7Þ

which come from integration by parts, and

Z
d2x

Z
d2xþÂ0ðxÞÂ1ðxþÞGKðx;xþ; μ0Þ

¼
Z

d2xþ

Z
d2xÂ0ðxþÞÂ1ðxÞGKðxþ;x; μ0Þ

¼
Z

d2x
Z

d2xþÂ1ðxÞÂ0ðxþÞGKðx;xþ; μ0Þ; ðA8Þ

which is based on the fact that the integral kernel satisfies
GKðxþ;x; μ0Þ ¼ GKðx;xþ; μ0Þ. With these in mind, we
find

I1 ¼
Z

d2x2Â1ðxÞ
�
μ0Â0ðxÞ þ λ0∇2⊥Â0ðxÞ

−
Z

d2xþÂ0ðxþÞGKðx;xþ; μ0Þ −
κ

2
FðxÞ

�

¼ ð2 − κÞ
Z

d2xÂ1ðxÞFðxÞ: ðA9Þ

If we select κ ¼ 2, we have I0 ≠ 0 but I1 ¼ 0 i.e. the
functional gives a nonzero but stationary value. Thus, a
variational solution can be constructed even for nonhomo-
geneous equations. All of the above conclusions still hold
when ∇2⊥ is replaced by any linear operator L for whichR
d2xÂ0ðxÞLÂ1ðxÞ ¼

R
d2xÂ1ðxÞLÂ0ðxÞ. In our case, the

relevant operator is L ¼ ηdx∂2=∂x2 þ ηdy∂2=∂y2. This
particular form is involved in all the mode equations
encountered in the periodic analysis of the main text.
This includes both the homogeneous result—namely,
Eq. (58)—and the driven versions [Eqs. (62)].
As far as the specific form of the variational trial

functions is concerned, we have the following arguments:
for nondriven mode equations such as Eq. (A1), we deem it
sufficient to use a standard trial function of the form

Â0ðx; yÞ ¼ expð−axx2Þ expð−ayy2Þ for the fundamental
FEL mode, whenever the integral kernel is characterized
by a Gaussian transverse dependence [see, for example, the
relevant expression in Eq. (58)]. This choice is standard
practice for an electron beam with a Gaussian transverse
profile and can be justified on the basis of some of the
arguments given below. For the driven mode equations
such as Eq. (A3), we instead elect to use a modified trial
function of the form Â0ðx; yÞ ¼ λx expð−bx2Þ expð−cy2Þ.
The reasoning for the latter choice can be stated as

follows: suppose Â0 and μ0 satisfy a homogeneous mode
equation of the form

ðμ0 þ λ0∇2⊥ÞÂ0ðxÞ − Uðx; μ0ÞÂ0ðxÞ ¼ 0: ðA10Þ

In fact, this is the limiting form of the general mode
equation for the parallel beam regime (negligible emittance
and focusing effects). If U has a parabolic dependence of
the formUðx; yÞ ¼ u0 − u1x2 − u2y2, the exact solution for
the fundamental mode is actually an asymmetric Gaussian
like the one mentioned above [13,20]. This result is valid
only when the diffraction parameters ηdx and ηdy are
smaller than unity, in which case the radiation sizes are
smaller than the corresponding e-beam sizes and the cutoff
of the parabolic profile can be ignored. Now consider the
functionΦ ¼ λxÂ0, where λ is a constant. It is easily shown
that Φ satisfies the driven equation

ðμ0 þ λ0∇2⊥ÞΦ −Uðx; μ0ÞΦ ¼ 2λ0λ∂Â0=∂x: ðA11Þ

An inspection of Eqs. (62) shows that the above form is
entirely analogous to the parallel beam limit of the driven
equations given in the main text. Indeed, for σ0x → 0 and
σ0y → 0, we have k̂βx, k̂βy → 0, ηεx, ηεy → 0, ϵ → 0, and
~Qð1Þ
�1 → 0, so the driving term on the right-hand side of

Eqs. (62) is simply proportional to ∂Að0Þ
0 =∂x̂ while the

differential operators on the left-hand side of Eqs. (58)
and (62) are identical. In other words, the only remaining
driving term is proportional to the x derivative of the solution
to the homogeneous equation, which is precisely the case
we described above. To recapitulate, in the parallel beam
regime, the solution to the driven problem is simply the
homogeneous solution (an asymmetric Gaussian) multiplied
by x and a constant.Weuse the same functional form tomodel
our trial function for the driven equation in the general case.
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