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Transverse mode coupling instability of a single bunch with space charge (SC) and a wakefield is
considered within the framework of the boxcar model. Eigenfunctions of the bunch without a wake are
used as a basis for the solution of the equations with the wakefield included. A dispersion equation for a
constant wake is presented in the form of an infinite continued fraction and also as the recursive relation
with an arbitrary number of basis functions. Realistic wakefields are considered as well including resistive
wall, square, and oscillating wakes. It is shown that the transverse mode coupling instability threshold of
the negative wake grows in absolute value when the SC tune shift increases. The threshold of the positive
wake goes down at increasing the SC tune shift. The explanation is developed by an analysis of the bunch
spectrum.
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I. INTRODUCTION

Transverse mode coupling instability (TMCI) has been
observed first in PETRA and explained by Kohaupt on the
base of the two-particle model [1]. A lot of papers on this
subject have been published later, including handbooks and
surveys (see, e.g., [2]). It is established that the instability
occurs as a result of a coalescence of the neighboring head-
tail tunes caused by the bunch wakefield.
TMCI with space charge (SC) has been considered first

by Blaskiewicz [3]. The main point of this paper is that the
SC pushes up the TMCI threshold, that is, improves the
beam stability. However, a nonmonotonic dependence of
the TMCI threshold and rate on the SC tune shift has been
sometimes demonstrated in Ref. [3]. It followed from
several examples that the stability and instability areas
can change each other when the SC tune shift increases.
The results have been confirmed later by the same author
with the help of a numerical simulation of the instability
at a modest magnitude of the SC tune shift [4].
The so-called three-mode model has been developed in

Ref. [5] for an analytical description of the TMCI with
space charge, chromaticity, and an arbitrary wake. This
simple model confirms that the TMCI threshold of
negative wakes goes up in modulus when the SC tune
shift increases. However, only the case of modest SC has
been investigated in Ref. [5], though the proposed equa-
tions allow one to suggest that a sudden kink of the
threshold curve is possible at the higher shift. Therefore,

the field of application of the three-mode model is still an
open question.
The case of very high space charge has been considered

in Refs. [6,7]. It was confirmed in both papers that the space
charge heightens the TMCI threshold until the ratio of the
SC tune shift to the synchrotron tune reaches the border in
several tens or a hundred units. However, the authors have
expressed different opinions about the further behavior of
the threshold. As it follows from Ref. [7], the threshold
growth should continue at higher SC as well. On the
contrary, it was suggested in Ref. [6] that the threshold
growth can cease and turn back over the mentioned border.
The last statement has been supported recently in

Ref. [8]. I have used the known eigenfunctions of the
boxcar bunch [9] to get a convenient basis for investigation
of the TMCI problem in depth. However, a disclosure of
some errors at the numerical solutions of the obtained
equations forces me to revise the conclusions. The equa-
tions are recomputed in the present paper at any value of the
SC tune shift and different wakes including the resistive
wall, square, and oscillating ones. The increase of the
TMCI threshold by the SC is observed in all the cases.

II. BASIC EQUATIONS AND ASSUMPTIONS

The terms, basic symbols, and equations of Ref. [5] are
used in this paper. In particular, linear synchrotron
oscillations are considered here being characterized by
amplitude A and phase ϕ or by the corresponding Cartesian
coordinates:

θ ¼ A cosϕ; u ¼ A sinϕ: ð1Þ

Thus, θ is the azimuthal deviation of a particle from the
bunch center in the rest frame, and variable u is propor-
tional to the momentum deviation about the bunch central
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momentum (the proportionality coefficient plays no part
in this paper). A coherent transverse displacement of the
particles in some point of the longitudinal phase space will
be presented as the real part of the function

XðA;ϕ; tÞ ¼ YðA;ϕÞ exp½−iðQ0 þ ζÞθ − iðQ0 þ νÞΩ0t�;
ð2Þ

where Ω0 is the revolution frequency, Q0 is the central
betatron tune, and ν is the tune addition produced by the
space charge and wakefield. Generally, ζ is the normalized
chromaticity; however, only the case ζ ¼ 0 will be inves-
tigated in this paper. Then the function Y satisfies the
equation [5,7]

νY þ iQs
∂Y
∂ϕþ ΔQðθÞ½Yðθ; uÞ − ȲðθÞ�

¼ 2

Z
∞

θ
qðθ0 − θÞȲðθ0Þρðθ0Þdθ0; ð3Þ

where Fðθ; uÞ and ρðθÞ are the normalized distribution
function and corresponding linear density of the bunch,
respectively, Qs is the synchrotron tune, ΔQðθÞ ∝ ρðθÞ is
the space charge tune shift, and ȲðθÞ is the bunch
displacement in the real space which can be found by
means of the formula

ρðθÞȲðθÞ ¼
Z

∞

−∞
Fðθ; uÞYðθ; uÞdu: ð4Þ

The function qðθÞ is proportional to the usual transverse
wakefield function W1ðzÞ:

qðθÞ ¼ r0RNbW1ð−RθÞ
8πβγQ0

ð5Þ

with r0 ¼ e2=mc2 as the classic radius of the particle,
R as the accelerator radius, Nb as the bunch population,
and β and γ as the normalized velocity and energy,
respectively [2].
A solution of Eq. (3) can be found by its expansion in

terms of the eigenfunctions of the corresponding homo-
geneous equation, which is

νjYj þ iQs
∂Yj

∂ϕ þ ΔQðθÞ½Yjðθ; uÞ − ȲjðθÞ� ¼ 0: ð6Þ

It is easy to check that the functions form an orthogonal
basis with the weight function Fðθ; uÞ. Besides, we will
impose the normalization condition:

ZZ
Fðθ; uÞY�

jðθ; uÞYkðθ; uÞdθdu ¼ δjk; ð7Þ

where the star denotes complex conjugation. Then, looking
for the solution of Eq. (3) in the form

Y ¼
X
j

CjYj; ð8Þ

one can get the expression for the unknown coefficients Cj:

X
j

ðν − νjÞCjYj ¼ 2
X
j

Cj

Z
∞

θ
Ȳjðθ0Þρðθ0Þqðθ0 − θÞdθ0;

ð9Þ

where Ȳj and Yj are also connected by Eq. (4). Multiplying
Eq. (9) by the factor Fðθ; uÞY�

Jðθ; uÞ, integrating over θ and
u, and using normalization condition (7), one can get the
series of equations for the coefficients Cj:

ðν − νJÞCJ ¼ 2
X
j

Cj

Z
∞

−∞
ρðθÞȲ�

JðθÞdθ

×
Z

∞

θ
ρðθ0ÞȲjðθ0Þqðθ0 − θÞdθ0: ð10Þ

III. BOXCAR MODEL

The boxcar model is characterized by the following
expressions for the bunch distribution function and its
linear density:

F ¼ 1

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − A2

p ¼ 1

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − θ2 − u2

p ; ð11aÞ

ρðθÞ ¼ 1

2
at jθj < 1: ð11bÞ

Because the eigenfunctions depend on two variables
ðθ − uÞ (or A − ϕ), it is more convenient to represent j
as a pair of the indexes:

j≡ fn;mg; Yj ≡ Yn;m: ð12Þ

Analytical solutions of Eq. (6) for the boxcar bunch have
been found by Sacherer [9]. The most important point is
that the averaged eigenfunctions Ȳn;m do not depend on the
second index being proportional to the Legendre poly-
nomials: Ȳn;mðθÞ ¼ ȲnðθÞ ∝ PnðθÞ, n ¼ 0; 1; 2;…. At any
n, there are nþ 1 different eigenmodes Yn;mðθ; uÞ satisfy-
ing the equation

ðνn;m þ ΔQÞYn;m þ iQs
∂Yn;m

∂ϕ ¼ ΔQSn;mPnðθÞ; ð13Þ

where m ¼ n; n − 2;…;−n. The space charge tune shift
ΔQ is constant in this model, and the coefficients Sn;m are
added to the right-hand part of the equation to meet the
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normalization condition given by Eq. (7). Details of these
calculations are placed in the Appendix, and several
important examples are represented in Figs. 1 and 2.
The dependence of the eigentunes on the SC tune shift

is shown in Fig. 1. It is seen that all of them start at ΔQ ¼ 0
from the points νn;mð0Þ ¼ mQs. It is the commonly
accepted convention to use the term “multipole” for the
collective synchrotron oscillations of such a frequency; that
is, the index m should be treated here as the multipole
number. Another index n characterizes the eigenfunction
power. This feature is normally associated with a radial
mode number, the lower power corresponding to the lower
number. Because n ≥ jmj in this case, the mode fjmj; mg
should be treated as the lowest radial mode of the mth
multipole.
At ΔQ ≠ 0, the multipoles mix together, and the

eigentunes split into two groups. In the first of them, all

the tunes have a positive value which tends to 0 at
ΔQ=Qs → ∞. By the origin, all of them are the lowest
radial modes fn; ng. The corresponding normalizing coef-
ficients S2m;m → 2nþ 1 at ΔQ=Qs → ∞ (Fig. 2). In the
second group, the tunes are about νn;m ≃mQs − ΔQ, being
weakly dependent on the radial index n. The normalizing
coefficients tend to 0 in this group.
Note that the transient conjugations of some eigentunes

(the line crossing in Fig. 1) is not evidence of the TMCI
instability in the case, because the corresponding eigen-
functions are orthogonal and uncoupled.
With Ȳn;m ¼ Sn;mPnðθÞ, the series (10) for the boxcar

bunch obtains the form

ðν − νN;MÞCN;M ¼ q0S�N;M

X∞
n¼0

RN;n

X
m

Sn;mCn;m ð14Þ

with the matrix

RN;n ¼
1

2

Z
1

−1
PNðθÞdθ

Z
1

θ
Pnðθ0Þwðθ0 − θÞdθ0: ð15Þ

The notation

qðθÞ ¼ q0wðθÞ ð16Þ

is used here and later to separate the wake strength from its
form and to furnish the relation

R0;0 ¼
1

2

Z
2

0

ð2 − θÞwðθÞdθ ¼ 1: ð17Þ

Besides, we will use the designations

Zn ¼
X
m

Sn;mCn;m; ð18aÞ

WnðνÞ ¼
X
m

jSn;mj2
ν − νn;m

: ð18bÞ

Then series (14) obtains the most compact form:

ZN ¼ q0WN

X∞
n¼0

RN;nZn: ð19Þ

IV. CONSTANT WAKE

Several realistic examples of the wake will be considered
in Sec. V. However, the simplest model is preliminarily
investigated in this section to discover the main features
of the effect. This simulative wake has a constant value
within the bunch and decays after it; that is, wðθÞ ¼ 1 in
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FIG. 2. Normalizing coefficients of the boxcar bunch. The
rising lines refer to the case m ¼ n.
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FIG. 1. Eigentunes of the boxcar bunch without a wake. At
any n, there are nþ 1 eigentunes starting at ΔQ ¼ 0 from the
points νn;m ¼ mQs, m ¼ n, n − 2;…;−n.
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Eqs. (15)–(17). Though the wakes are negative in most
cases [2], a positive wake is possible as well, and it was
observed in practice [10,11]. Therefore, both signs of the
parameter q0 are analyzed in this section.
It is easy to verify that, at w ¼ 1 and N ≠ 0, the matrix

RN;n is

RN;n ¼ −
δN−1;n

ð2N − 1Þð2N þ 1Þ þ
δNþ1;n

ð2N þ 1Þð2N þ 3Þ ð20Þ

(its small fragment is shown in Table I).
A series of linear equations like Eq. (19) is resolvable if

its determinant is zero: DðνÞ ¼ 0. It is easy to check the
relations ν0;0 ¼ 0, S0;0 ¼ 1, that is, W0 ¼ 1=ν. Using these
features and applying the mathematical induction method,
one can represent the resolvability condition of series (19),
that is, the dispersion equation for the bunch eigentunes, in
terms of an infinite continued fraction

DðνÞ ¼ ν − q0 þ
ðq0=3Þ2W1

1þ ðq0=15Þ2W1W2

1þðq0=35Þ2W2W3
1þ…

¼ 0: ð21Þ

This expression has to be truncated in reality by applying
the assumption Wn ¼ 0 at n ≥ nmax. Assigning the trun-
cated left-hand part of Eq. (21) as Dnmax

ðνÞ and applying
again the mathematical induction method, one can write the
approximate dispersion equation as

Dnmax
ðνÞ ¼ 0 ð22Þ

with the following recurrent relations:

Dn ¼ Dn−1 þDn−2
q20Wn−1Wn

ð4n2 − 1Þ2 ðn ≥ 2Þ: ð23Þ

It is shown in Eq. (A15) of the Appendix that

W1ðνÞ ¼
3ðνþ ΔQÞ

νðνþ ΔQÞ −Q2
s
: ð24Þ

Therefore, the initial conditions of the series (23) are

D0 ¼ ν − q0; ð25aÞ

D1 ¼ ν − q0 þ
�
q0
3

�
2 3ðνþ ΔQÞ
νðνþ ΔQÞ −Q2

s
: ð25bÞ

A. Three-mode approximation

Equation (22) is trivial at nmax ¼ 0: D0ðνÞ ¼ 0 means
ν ¼ q0, as it follows from Eq. (25a). It describes the wake
contribution to the tune of the lowest (rigid) head-tail mode
of the bunch. Of course, the TMCI cannot appear in this
approximation, and the simplest equation to disclose it is
D1ðνÞ ¼ 0; that is, in accordance with Eq. (25b),

ðν − qÞ
�
ν −

Q2
s

νþ ΔQ

�
¼ −

q20
3
: ð26Þ

This third-order equation exactly coincides with Eq. (7.3)
of Ref. [5] (without chromaticity) despite the fact that
very different concepts have been used to derive them.
However, the examples presented in Ref. [5] have been
restricted by the modest SC tune shift: ΔQ=Qs < 3. The
situation beyond this region will be explored here for the
best understanding of the phenomenon and for further
development of the technique.
The imaginary part of a solution of Eq. (26) is plotted in

Fig. 3 against the wake strength at different SCs. According
to the plot, the instability threshold is jqth=Qsj ¼ 0.567 at
ΔQ ¼ 0 (black lines). Its dependence on ΔQ=Qs is shown
in Fig. 4. The plot is very simple at q0 > 0: the threshold
goes down monotonically, tending to 0 when the space
charge increases. The case of a negative wake is more
complicated and requires a special comment. The absolute

TABLE I. Fragment of the matrix RN;n. Its general form is
given by Eqs. (13) and (16).

n → 0 1 2 3 4 5

N ¼ 0 1 1=3 0 0 0 0
N ¼ 1 −1=3 0 1=15 0 0 0
N ¼ 2 0 −1=15 0 1=35 0 0
N ¼ 3 0 0 −1=35 0 1=63 0
N ¼ 4 0 0 0 −1=63 0 1=99
N ¼ 5 0 0 0 0 −1=99 0

−6 −5 −4 −3 −2 −1 0 1 2

q0/Qs

−2

−1

0

1

2

Im
(ν

/Q
s)

ΔQ/Qs=0
3.46
3.50
3.69
4.00
100

FIG. 3. Imaginary part of the boxcar eigentunes against the
wake strength at different values of the space charge tune
shift. There are two regions of instability if the wake is
negative and 3.46 < ΔQ=Qs < 3.69.
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value of its threshold increases with ΔQ, reaching
qth=Qs ≃ −4 at ΔQ=Qs ¼ 3.46 (blue parabola in
Fig. 3). The picture crucially changes after that, because
a new region of instability arises whose initial position is
shown as the blue point in Fig. 3. Then it quickly expands,
stepping through the green oval to the brown one and
joining with the primary region of instability (brown
parabola) at ΔQ=Qs ¼ 3.69. The barrier between the parts
tears at higher ΔQ, resulting in a single region of instability
(red). Its right-hand border goes to the right—that is, the
TMCI threshold goes down—if the SC tune shift continues
to grow.

B. Higher approximations

Higher approximations should be involved to validate
the three-mode model, to establish its applicability limit,
and to go beyond it.
The first step in this way is an investigation of the

equation D2ðνÞ ¼ 0. According to Eq. (23), its expanded
form is

ν − q0 þ
q20W1ðνÞ

9
þ q20ðν − q0ÞW1ðνÞW2ðνÞ

225
¼ 0; ð27Þ

where W1ðνÞ is given by Eq. (24) and

W2ðνÞ ¼
jS2;−2j2
ν − ν2;−2

þ jS2;0j2
ν − ν2;0

þ jS2;2j2
ν − ν2;2

: ð28Þ

The required parameters have to be obtained by the solution
of Eq. (13) with n ¼ 2 as described in the Appendix. With
the notations νn;m ¼ ν̂n;mQs − ΔQ, the eigentunes appear
as all roots of the dispersion equation

ν̂2;mðν̂22;m − 4Þ ¼ ΔQ
Qs

ðν̂22;m − 1Þ; ð29aÞ

jS2;mj2 ¼
5ðν̂22;m − 1Þ2

ν̂42;m þ ν̂22;m þ 4
: ð29bÞ

The substitution of the functions W1−2ðνÞ into Eq. (27)
results in the equation of sixth power:

ðν − q0Þ
�
ν −

Q2
s

νþ ΔQ

�
þ q20

3

¼ −
q20ðν − qÞ

75

� jS2;−2j2
ν − ν2;−2

þ jS2;0j2
ν − ν2;0

þ jS2;þ2j2
ν − ν2;þ2

�
:

ð30Þ

This equation has six roots, which are different real numbers
inside the stability area. However, at least two of them should
be coinciding at the border of this area, which feature can be
used for the search of the instability threshold. The corre-
sponding threshold of the negative wake is presented in
Fig. 5 by themagenta line. The case q0 > 0 is not considered
in this subsection, because the result almost does not depend
on nmax and can be reasonably described by the three-mode
approximation, Eq. (25).
A similar method can be used for the analysis of higher

approximations, though the corresponding formulas are
essentially more cumbersome. Generally, the case involves
ðnmax þ 1Þðnmax þ 2Þ=2 basis vectors and leads to an
algebraic equation of the same power, where nmax is the
order of the highest used Legendre polynomial.
The results of the calculations are collected in Fig. 5 at

nmax ¼ 1�12 (dispersion equation of 3–91 power). It is
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ΔQ/Qs
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−2

−1

0

1

q th
  /

Q
s

(0,0)+(1,−1)
(0,0)+(1,1)
Transition

S T A B I L I T YS T A B I L I T Y

q0<0

(0,0)+(1,1) at q0>0

FIG. 4. Instability threshold of the boxcar bunch against the SC
tune shift (positive and negative wakes). Indexes of the coalesced
modes are shown for each part of the threshold line.
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FIG. 5. Threshold curve of the boxcar bunch in different
approximations. The index nmax means maximal power of the
Legendre polynomial in the expansion. The left-hand line shows
the TMCI threshold, and the right-hand rising lines are unphys-
ical because of an absence of the convergence.
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seen that, at a rather small SC, the absolute value of
the threshold rises with ΔQ, different approximations
provide actually coinciding results in their region of
applicability, and each additional step simply expands this
region. For example, the three-mode approximation
(nmax ¼ 1) provides the correct magnitude of the threshold
at ΔQ=Qs ≤ 3.46, but at least nmax ¼ 12 (91-mode
approximation) is needed to get proper results within the
range ΔQ=Qs ¼ 0�12.
The sequential decrease of the threshold cannot be

treated as a physical effect because of the absence of the
convergence. The opposite assumption which has been
admitted in Ref. [8] was coming from an insufficient
accuracy of numerical calculations which has led to an
incomplete separation of numerous and very tightly spaced
radial modes.

C. The bunch spectrum

The inadequate convergence of the curves in Fig. 5
remains the open question: which is the TMCI threshold of
the negative wake at a very large magnitude of ΔQ=Qs,
such as several tens or more? There is related information in
Ref. [7]: at such conditions, the TMCI cannot be caused by
a coalescence of positive eigentunes of the bunch. The last
reservation is important, because only a part of the boxcar
modes has been used for the analysis in Ref. [7]. Tunes of
these modes are located in the upper part of Fig. 1.
Therefore, a more detailed examination of the bunch
spectrum is needed with the wake to check the results,
including all bunch tunes νthðΔQÞ at the frontier of the
TMCI area.
The very first example of this has been given in Fig. 4,

where indexes of the coalesced modes are specified for
the three-mode approximation. The more detailed view is
represented in Fig. 6, where the full spectrum of the bunch
is plotted at nmax ¼ 5 (21-mode approximation). The most
important spectral lines are displayed by special colors:
blue for the modes f0; 0g and f1;−1g and red for the
modes f5; 5g and f4; 4g. According to the picture, the
coalescence of these modes is responsible for the TMCI at
ΔQ=Qs < 6 or > 6, correspondingly. Just switching from
the lower pair to the upper one causes the sharp kink of the
threshold curve, which is shown in the plot by a dashed
line. An incidental interference of other modes slightly
affects the curve but does not change its general contour.
Other examples are given in Fig. 7, where the most

important spectral lines are plotted at three different
approximations: nmax ¼ 6, 9, 12. The lower curves re-
present tunes of the modes f0; 0g þ f1;−1g, which are
coalesced in the beginning and are closely located later. The
convergence manifests itself in the fact that the coalesced
part of the curves expands when nmax increases.
The upper curves in Fig. 7 represent the tunes

fnmax; nmaxg þ fnmax − 1; nmax − 1g:

It is seen that the lines of the same color merge at rather
large ΔQ=Qs. However, it is a divergent process, because
the junction point does not tend to a certain limit when nmax
increases. It inevitably leads to the conclusion that the
junction of the positive tunes in Figs. 6 and 7, as well as
the associated leap of the threshold, is not a physical effect.
The engaging of Ref. [7] allows one to assert that this
statement should be true in any approximation.
Therefore, a monotonic rising of the TMCI threshold

looks like the most credible assumption. It also complies
with the behavior of the low crucial modes, which are

ν0;0 ∼ q0; ν1;−1 ≃ −Qs − ΔQ:
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FIG. 6. The bunch spectrum in the TMCI frontier at nmax ¼ 5
(21-mode approximation). The most important modes are shown
by blue and red lines. The TMCI threshold is represented by the
dashed black line.
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FIG. 7. The most important spectral lines in different approx-
imations. Lower lines, modes f0; 0g and f1;−1g; upper ones, the
highest observed tunes allowed by considering approximation.
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According to this, the instability condition ν0;0 ¼ ν1;−1
should result in the threshold relation qth ∼ −ΔQ.

V. TMCI WITH A REALISTIC WAKE

The series of equations (19) with matrix RN;n given by
Eq. (15) is applicable at any wake function qðθÞ ¼ q0wðθÞ.
However, dispersion equation (21) and its approximate
forms provided by Eqs. (22)–(24) are valid only with a
constant wake. Therefore, more standard procedures should
be generally used for the solution of Eq. (19). It results in
some deterioration of the accuracy and compels one to
restrict the number of used basis vectors. Performed calcu-
lations with a constant wake attest that the “old” and the
“new” results coincide at nmax ≤ 9 (55-mode approxima-
tion); otherwise, some real roots can be lost. This restriction
is accepted below at the calculations with realistic wakes.

A. Resistive wall wake

Resistive wall impedance is the most general and impor-
tant source of transverse instabilities in circular accelerators.
The corresponding wake function has a maximum at
z≃ −b=γ, where b is the beam pipe radius and z is the
distance from the field source to the observation point. If
the bunch length zb satisfies the condition zb ≫ b=γ and the
pipe wall is rather thick, the simplest expression for the
resistive wake function can be used [2]:

W1ðzÞ ¼ −
4R
b3

ffiffiffiffiffiffiffiffi
c

σjzj
r

; ð31Þ

where σ is the pipe wall conductivity. Taking into account
Eqs. (5) and (17), one can represent the normalized wake
function as q ¼ q0wðθÞ with

q0 ¼ −
4r0R2Nb

3πγβb3Q0

ffiffiffiffiffiffiffi
c
σzb

r
; wðθÞ ¼ 3

4
ffiffiffiffiffi
2θ

p : ð32Þ

Then series (19) is applicable with the matrix RN;n whose
part is represented in Table II. Note that R0;0 ¼ 1 due to the
special choice of the coefficients in Eq. (32). The threshold
of this instability is plotted with different approximations in
Fig. 8, which is very similar to Fig. 5 (constant wake) both in
the form and in the magnitude.

Generally speaking, the resistive wake can cause multi-
turn collective effects as well. However, their influence on
the TMCI threshold is negligible for a single bunch at the
condition zb ≪ 2πR [5].

B. Short square wake

A square wake can be created by a strip-line beam
position monitor or by a traveling-wave kicker [2]. The
long (constant) square wake has been considered above in
detail. However, the wake can be shorter than the bunch,
in practice. In accordance with Eq. (17), its normalized
strength should be represented in the form

qðθÞ ¼ q0wðθÞ ¼
4q0

θwð4 − θwÞ
at 0 < θ < θw; ð33Þ

where θw < 2 is the wake length (recall that the bunch
length is 2 in these units). Several examples are represented
in Fig. 9 at nmax ¼ 9. Note that the horizontal lines have no
physical sense and are added to mark the end of the curve
applicability (the calculations were not carried out after
that). Because of the normalization, the threshold depend-
ence on the SC tune shift is not very significant, especially

0 2 4 6 8 10

ΔQ/Qs

−12

−10

−8

−6

−4

−2

0

q th
/Q

s

nmax=2
nmax=3
nmax=4
nmax=5
nmax=6
nmax=7
nmax=8
nmax=9

FIG. 8. Stability region of the boxcar bunch with a resistivewall
wake. The normalized magnitude of the wake is given by
Eq. (32), and index nmax means maximal power of the Legendre
polynomial in the expansion. The left-hand line shows the TMCI
threshold, and the right-hand (rising) curves are unphysical.

TABLE II. Fragment of the matrix RN;n for a resistive wake.

n → 0 1 2 3 4 5

N ¼ 0 1 0.20000 −0.02857 0.00952 −0.00433 0.00233
N ¼ 1 −0.20000 0.14286 0.06667 −0.01299 0.00513 −0.00260
N ¼ 2 −0.02857 −0.06667 0.06494 0.03590 0.00779 0.00332
N ¼ 3 −0.00952 −0.01299 −0.03590 0.03896 0.02323 −0.00533
N ¼ 4 −0.00433 −0.00513 −0.00779 −0.02323 0.02666 0.01659
N ¼ 5 −0.00233 −0.00260 −0.00332 −0.00533 −0.01659 0.01970
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at ΔQ=Qs < 5. However, the area of applicability of the
result decreases at the wake shortening.

C. Oscillating wake

There are several models considering the wakefield
source as a resonator of frequency f ¼ c=λ [2]. It creates
an oscillating wake ∝ cosð2πz=λÞ having the phase
advance ϕ ¼ 2πzb=λ within the bunch. We consider the
case ϕ < 2π and represent the wake in the form satisfying
the normalization condition (17):

qðθÞ ¼ q0wðθÞ; wðθÞ ¼ ϕ2 cosðϕθ=2Þ
2ð1 − cosϕÞ : ð34Þ

Several examples are represented in Fig. 10 at nmax ¼ 7 to
demonstrate that SC produces a stabilizing effect in these
cases as well.

VI. CONCLUSION

Being stable in themselves, the eigenmodes of the boxcar
bunch with space charge form a convenient and effective
basis for the investigation of the bunch instability with the
space charge and wakefields. A series of equations is
derived in this paper using this expansion technique. For a
constant wake, the dispersion equation is represented in the
form of an infinite continued fraction as well as in the form
of a recursive relation with an arbitrary number of basis
functions involved.
It is shown that theTMCI threshold of thenegative constant

wake grows in absolute value when the SC tune shift
increases. An enlargement of the number of the used basis
vectors expands the area of applicability of this statement but
does not change the results obtained before. This statement is
confirmed in this paper by the straightforward calculation of
the threshold atΔQ=Qs ≤ 12 using the basis set including up
to 91 eigenfunctions. A very good convergence of different
approximations is obtained in this region. However, the
convergence of the solutions is not achieved at a higher
SC, because a very large number of eigenfunctions is required
for the separation of different radial modes. Nevertheless, an
additional analysis of the bunch spectrum allows one to
extend the statement to any tune shift.
Similar results are obtained with realistic wake functions

including the resistive wall, the short square, and the
oscillating forms. A monotonic increase of the TMCI thresh-
old with a SC tune shift has been demonstrated earlier by
Blaskiewicz, whowas using themodel of a hollow bunch in a
square potential well with an exponential wake [3].
The threshold of the positive wake goes down when the

SC tune shift increases, and the effect can be satisfactorily
described by the three-mode approximation.
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APPENDIX: CALCULATION OF THE
NORMALIZING COEFFICIENTS AT EQ. (13)

Using the notation

ν̂n;m ¼ νn;m þ ΔQ
Qs

; Δ̂Q ¼ ΔQ
Qs

;

PnðθÞ ¼
Xn
l¼0

pnlθ
l; ðA1Þ

one can rewrite Eq. (13) in the form

ΔQ/Qs

0 2 4 6 8 10
−14

−12

−10

−8

−6

−4

−2

0

q th
/Q

s

θw=1.75
θw=1.25
θw=0.75
θw=0.25

FIG. 9. TMCI threshold of a short square wake against a SC
tune shift. The length of the wake is θw, and the bunch length is 2.
The approximation with nmax ¼ 9 (55 modes) is used; the
horizontal lines mark the end of the applicability area.
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FIG. 10. TMCI threshold of an oscillating wake with phase
advance ϕwithin the bunch of lengthΔθ ¼ 2. The approximation
with nmax ¼ (36 modes) is used; the horizontal lines mark the end
of the applicability area.
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ν̂n;mYn;m þ i
∂Yn;m

∂ϕ ¼ Sn;mΔQ̂
Xn
l¼0

pn;lðA cosϕÞl: ðA2Þ

Its solution is

Yn;m ¼ Sn;mΔQ̂
Xn
k¼−n

exp ikϕ
ν̂n;m − k

Xn
j¼0

Un;k;jAkþ2j; ðA3Þ

where

Un;k;j ¼
pn;kþ2j

2kþ2j

�
kþ 2j

j

�
×

�
1 at kþ j ≥ 0;

0 at kþ j < 0:
ðA4Þ

This function should satisfy the normalization condition
represented by Eq. (7) with j≡ fn;mg and distribution
function (11a). The substitution results in the relation

1

S2n;mΔQ̂2
¼

Xn
k¼−n

1

ðν̂n;m − kÞ2

×
Xn
j1¼0

Xn
j2¼0

Un;k;j1Un;k;j2A
2ðkþj1þj2Þ; ðA5Þ

where A2j is the amplitude power averaged over the
distribution:

A2j ¼
Z

1

0

A2jþ1dAffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − A2

p ¼
Xj

l¼0

�
j
l

� ð−1Þl
2lþ 1

: ðA6Þ

In principle, involved eigentunes νn;m could be obtained by
the substitution of Eq. (A3) into Eq. (4) with the functions
Y and Ȳ being taken from this Appendix. Because a similar
calculation has been actually accomplished in Ref. [9],
we represent here only the resulting equation for the
eigentunes:
(i) Lower powers.—

ν̂0;0 ¼ ΔQ̂; ν̂21;�1 − 1 ¼ ΔQ̂ν̂1;�1: ðA7Þ

(ii) Higher even powers.—

ν̂n;m½ν̂2n;m − 4�…½ν̂2n;m − n2�
¼ ΔQ̂½ν̂2n;m − 1�…½ν̂2n;m − ðn − 1Þ2�: ðA8Þ

(iii) Higher odd powers.—

½ν̂2n;m − 1�…½ν̂2n;m − n2�
¼ ΔQ̂ν̂n;m½ν̂2n;m − 4�…½ν̂2n;m − ðn − 1Þ2�: ðA9Þ

Someofthevaluesνn;m=Qs ¼ ν̂n;m − ΔQ̂areplotted inFig.1.
Factors S2n;m can be found from Eq. (A5) with the known
eigentunes substituted. Some results are represented below:

S20;0 ¼ 1; S21;�1 ¼
3ν̂21;�1

ν̂21;�1 þ 1
; ðA10Þ

S22;m ¼ 5ðν̂2;m − 1Þ2
ν̂42;m þ ν̂22;m þ 4

; m ¼ 2; 0;−2; ðA11Þ

S23;m ¼ 7ν̂23;mðν̂23;m − 4Þ2
ν̂63;m − 2ν̂43;m þ 13ν̂23;m þ 36

; ðA12Þ

etc.
Solutions of the second equation in Eq. (A7) are

ν̂1;�1 ¼
ΔQ
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔQ2

4
þ 1

r
;

ν1;�1 ¼ −Qsν̂1;∓1: ðA13Þ
Applying it to the second equation in Eq. (A10), we
obtain

S21;1 þ S21;−1 ¼ 3; ν̂1;1S21;−1 þ ν̂1;−1S21;1 ¼ 0: ðA14Þ

The relation for the coefficient W1ðνÞ follows from this:

W1ðνÞ ¼
jS1;1j2
ν − ν1;1

þ jS1;−1j2
ν − ν1;−1

¼ 3ðνþ ΔQÞ
νðνþ ΔQÞ −Q2

s
; ðA15Þ

which expression is used in the main text as Eq. (24).
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