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The use of the “negative mass” regime provides stabilization of longitudinal size of dense photoinjector
electron bunches moving through a long undulator. This allows one to increase significantly the power
capabilities of a terahertz source based on coherent spontaneous emission from a short bunch. However,
such type of emission is produced if the bunch length is comparable with the radiation wavelength. This
work discusses the use of the negative mass regime to provide effective compression of dense bunches
down to “terahertz” lengths.
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I. INTRODUCTION

Laser-driven photoinjectors allow formation of fairly
compact and accessible sources of dense electron bunches
with a moderate energy of 3–6 MeV, picosecond pulse
durations, and charges of up to 1 nC and even greater [1–5].
These bunches can be directly exploited for radiation in
the THz frequency range [6–13]. They can be used, in
particular, for realization of comparatively simple and
compact sources operating in the regime of spontaneous
coherent undulator radiation. This type of radiation is
realized when the effective axial length of bunches in
the radiation section is shorter than the wavelength. In
this situation, the wave packets emitted by each of the
electrons add up basically in phase.
Evidently, the length of the operating region of such a

source is strictly limited by the Coulomb repulsion leading
to an increase in the axial size of the bunch. The process
of spontaneous coherent radiation stops when the bunch
becomes longer than the radiation wavelength. Paper [12]
describes a method of significant weakening the axial
repulsion and, simultaneously, of confining particles in
the axial direction by means of using the undulator with
strong axial uniform magnetic field. In this system, the
“negative-mass” effect occurs when the electron cyclotron
frequency corresponding to the guiding magnetic field
exceeds the bounce frequency of oscillations in the periodic
undulator field [14–16]. The term “negative mass” denotes
a situation, when an increase/decrease in the kinetic energy
of the particle [determined by the relativistic Lorents
factor, γ ¼ ð1 − v2=c2Þ−1=2] leads to the opposite change

(decrease/increase, respectively) in its axial velocity, vz,
so that δvz=δγ < 0. Axial Coulomb repulsion results in
acceleration of electrons moving in the front of the bunch
and in deceleration of particles moving in the tail (Fig. 1).
Since the change in the axial velocity is opposite to the
change in energy in the negative-mass regime, the tail of the
bunch moves faster than the head. Thus, the Coulomb
interaction between the electrons leads to their mutual
attraction. This is very similar to the negative-mass effect in
electron beams used in cyclotron masers [17–21]. It is
shown in works [12,13] that the use of the negative-mass
stabilization of an electron bunch provides significant
power enhancement and spectrum narrowing for a THz
radiation source based on the spontaneous coherent undu-
lator emission from a short bunch.
Naturally, the spontaneous coherent character of emis-

sion is provided, if the length of the bunch is comparable (at
least) with the radiation wavelength. However, achieving
“terahertz” (0.3 mm and shorter) lengths of electron
bunches at a high density (and high Coulomb fields) is a
complicated problem. On the other hand, since the use of
the negative-mass regime solves the problem of the
Coulomb repulsion, it is natural to use such a regime to
provide effective compression of a relatively long electron
bunch down to terahertz lengths. In this case, the rf source
based on the spontaneous coherent undulator emission
from a short bunch should include two negative-mass
undulators (Fig. 1). The first one plays the role of a
compressor of the electron bunch. In this undulator, the
effective axial mass of electrons is negative and small, so
that δvz=δγ < 0 and vz change fast enough with the change
in γ. In this situation, the Coulomb attraction of electrons is
strong, and the axial size of the bunch decreases rapidly
in the process of the motion of the bunch through this
undulator. In the point of the minimal size, the undulator
period is changed to provide the regime of an “infinitely
high axial mass” of electrons. This means that the effective
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axial mass of electrons stays negative (δvz=δγ < 0), but the
change in electron energy results in a very slow change in
the axial electron velocity (jδvz=δγj → 0). In this regime,
the Coulomb attraction of electrons is very weak, and the
axial bunch size is approximately stabilized. Therefore,
the second section operates as a radiator providing a
long-length process of the spontaneous coherent undulator
emission from a short and stable bunch.
Naturally, the negative-mass compression of electron

bunches may be of value in itself, then there is no further
use for realization of a THz source based on spontaneous
coherent emission from compressed bunches. Therefore,
the subject of this paper is limited to the consideration only
of the process of the negative-mass compression. Section II
describes a simplified model of a short electron bunch
used in this consideration. In Sec. III, a simple two-particle
approximation is used to illustrate the behavior of an
electron bunch moving through the negative-mass undu-
lator by means of the quasianalytical phase-plane approach.
Several examples of numerical simulations of the motion
of an electron bunch through the negative-mass undulator
are given in Sec. IV.

II. MODEL OF A SHORT ELECTRON BUNCH
MOVING IN THE NEGATIVE-MASS

UNDULATOR

We consider the motion of particles of a short dense
bunch along a helically polarized undulator with a strong
guiding magnetic field [Fig. 2(a)]. In the relativistic
equation of motion,

dP
dt

¼ − e
c
v × ðBu þB0Þ − eE; ð1Þ

we take into account three kinds of fields. First, the periodic
magnetic field of the helically polarized undulator is
described by the following formula:

Bu ¼ Bu½x0 cosðhzÞ þ y0 sinðhzÞ�: ð2Þ

Here, we neglect transverse inhomogeneity of the
undulator field in the scale of the transverse cross section
of the electron bunch. Second, there exists a uniform
guiding magnetic field:

B0 ¼ B0z0:

Finally, electric field E in Eq. (1) describes the mutual
Coulomb interaction of particles in the electron bunch. We
take into account only axial Coulomb interaction between
electrons, E ¼ z0E, having assumed that the Coulomb
distraction of electrons in the transverse direction is
compensated by the magnetic interaction of the relativistic
particles, as well as by the presence of the axial magnetic
field and focusing action of the undulator.
In order to calculate the axial electric field inside the

bunch, we represent the bunch as a discrete set of N
fractions [thin “pancakes,” Fig. 2(b)]; each of them has the
electric charge q ¼ Q=N, whereQ is the total charge of the
bunch. In the reference system related with the electron
bunch, the axial electric field of the jth “pancake” at the
axis of the symmetry [Fig. 2(c)] is determined by the
following formula:

Eðz0−z0jÞ¼
−2πq
S

×signðz0−z0jÞ×
�
1− 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þR2=ðz0−z0jÞ2
q �

:

Here, z0 is the axial coordinate in the corelated system, z0j
is the coordinate of the jth pancake, R is the radius of the
electron bunch, and S ¼ πR2 is the area of the cross section
of the bunch. We assume that the same electric field acts to
all particles of the ith pancake. Then, the field acting from
the jth pancake to the ith pancake is determined by the
following formula:

Fc
δvz Fc

δvz

d d1 >d

δvz/δγ <0

δγ <0 δγ >0 vz

Compressing 
undulator

Radiation
undulator

δvz/δγ →0

e

FIG. 1. Schematic of a rf source based on spontaneous coherent
emission from short electron bunches, which includes compres-
sion and radiation sections.
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FIG. 2. (a) Electron bunch moving in a helical undulator with
guiding magnetic field. (b) The model of a bunch in the form of a
set of charged pancakes. (c) Electric field acting from the jth
pancake to the ith one.
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Ej→i¼
−2π
S

×
Q
N
signðzi−zjÞ×

�
1− 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þR2=γ2jðzi−zjÞ2
q �

:

Here, γ is the relativistic electron Lorentz factor, and the
Lorentz reduction of the axial coordinate is taken into
account. Thus, the total electric field acting to the ith
pancake is found as a sum over all pancakes:

Ei ¼
XN
j¼1

Ej→i

¼ −2πQ
S

×
1

N

XN
j¼1

signðzi − zjÞ

×

�
1 − 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ R2=γ2jðzi − zjÞ2
q �

: ð3Þ

For illustration, let us estimate the rate of expanding of
the electron bunch in the case, when the undulator is absent.
In this case, electron motion has only axial character,

mγ3
dvz
dt

¼ −eE;

and the current length of the bunch (the distance between
the two particles moving in the front and in the tail of the
bunch) is described as follows:

mγ3
d2l
dt2

¼ 2ejE0j; ð4Þ

where jE0j is the absolute value of the electric field at the
edges of the bunch. According to Eq. (3), if the bunch is
short enough (γl ≪ R), then this field can be approximated
as the field of an infinite charged plane, jE0j ≈ 2πQ=S. This
leads to the following estimation for the ratio between the
current length of the bunch and its initial length:

δl
l0
≈

z2

R2
γ−3 2I

IA
: ð5Þ

Here, δl ¼ l − l0 is the change in the bunch length,
z ¼ vt ≈ ct is the current axial coordinate of the bunch,
I ≈ cQ=l0 is the initial electron current in the bunch, and
IA ¼ mc3=e ≈ 17 kA is the Alfven current.
As an example, let us consider 0.5 nC=1 ps electron

bunch (I ¼ 500 A and l0 ¼ 0.3 mm) with a radius of
R ¼ 1 mm, which is accelerated up to an energy of
5 MeV (γ ≈ 11). In this situation, the electron bunch
becomes twice as long (δl=l0 ≈ 1) at the distance
z ≈ 15 cm, and it becomes 3 times as long (δl=l0 ≈ 2) at
the distance z ≈ 20 cm.

III. ILLUSTRATION OF THE NEGATIVE-MASS
EFFECT ON THE BASIS OF THE

TWO-PARTICLE MODEL

A. Averaged equations of the motion

Let us consider the simplest model of the electron bunch,
which consists of two particles (pancakes), i ¼ 1 and 2,
placed at a distance lðtÞ ¼ z1ðtÞ − z2ðtÞ. As a first approxi-
mation, we consider motion of the particles in the undulator
field, which is not perturbed by the Coulomb interaction
between the two particles. We introduce the complex
transverse velocity, vþ ¼ vx þ ivy. Then, motion Eq. (1)
leads to the following equations for the normalized com-
plex transverse momentum pþ ¼ γvþ=c, the normalized
axial momentum pz ¼ γvz=c, and for the relativistic
Lorentz factor γ:

dpþ
dt

− i
Ω
γ
pþ ¼ −i evz

mc2
Bu expðihzÞ;

dpz

dt
¼ 0;

dγ
dt

¼ 0.

ð6Þ

Here, Ω ¼ eB0=mc is the nonrelativistic cyclotron fre-
quency corresponding to the axial magnetic field B0.
We find the forced solution of Eq. (6), which describes

only the undulator oscillations of particles,

pþ ¼ −pu expðihzÞ:
As for the free cyclotron oscillations of particles in the

axial magnetic field, their appearance can be avoided by the
use of a smooth entry of electrons into the undulator.
In this case, the amplitude of transverse oscillations of
particles in the undulator field is determined by the
following formula [14–16]:

pu ¼
K
Δ
; ð7Þ

where Δ ¼ 1 − Ω=γhvz describes the difference between
the relativistic cyclotron frequency Ω=γ and the undulator
frequency hvz, and K ¼ eBu=mc2h is the undulator factor,
which coincides with the normalized undulator momentum
of electrons, pu ¼ K, in the case, when the axial magnetic
field is absent (Δ ¼ 1).
In the approximation of the zero Coulomb interaction, the

normalized axial electron momentum pz and the relativistic
Lorentz factor γ stay constant.Naturally, in this case, the axial
velocity is also constant, vz;1 ¼ vz;2 ¼ vz0, and the axial size
of the bunch l ¼ z1 − z2 does not change.
The Coulomb interaction leads to a change in both axial

velocities and energies of electrons:

dzi
dt

¼ vz;i ¼ vz0 þ cμ × ðγi − γ0Þ; i ¼ 1 and 2: ð8Þ

Here, μ ¼ 1
c
dvz
dγ describes the change in the axial electron

velocity caused by a change in the relativistic electron
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energy. Therefore, the evolution of the distance between the
two particles, l ¼ z1 − z2, is described by the following
equation:

dl
dz0

¼ c
vz0

μ × ðγ2 − γ1Þ ≈ μ × δγ: ð9Þ

Here, z0 ¼ vz0t is the distance passed by the electron
bunch in the case, when the Coulomb interaction is absent,
and δγ ¼ γ2 − γ1 is the difference in energies of the two
particles. The evolution of energies of the two particles is
described by the following equation:

mc2
dγi
dt

¼ −evz;iEi ≈ −evz0Ei; i ¼ 1 and 2: ð10Þ

Since the Coulomb forces acting between the two
macroparticles (pancakes) have the same absolute values,

E1 ¼ −E2 ≈
−2πQ
S

× signðlÞ ×
�
1 − 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ R2=γ20l
2

p �
;

Eq. (10) leads to the following equation for the differ-
ence δγ ¼ γ2 − γ1 in energies of the two particles:

dδγ
dz0

¼ α

l0
× signðlÞ × fðlÞ: ð11Þ

Here, α ¼ 4πeQl0
mc2S ¼ 4I

IA

l2
0

R2 is the normalized electric charge
of the electron bunch, and

fðlÞ ¼
�
1 − 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ R2=γ20l
2

p �

is a function describing the transverse inhomogeneity of
the bunch.
Let us introduce the relative length of the bunch,

L ¼ l=l0, as well as the normalized axial coordinate
Z ¼ z0=l0. Then Eqs. (9) and (11) form the following set:

dL
dZ

¼ μ × δγ;
dδγ
dZ

¼ α × signðLÞ × fðLÞ; ð12Þ

with the initial conditions Lð0Þ ¼ 1 and δγð0Þ ¼ 0.
In Eq. (12), the transverse inhomogeneity of the bunch is

described by the following function:

fðLÞ ¼
�
1 − 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ r2=L2
p �

;

where r ¼ R=γ0l0 is the normalized radius of the bunch,
which represents the ratio between the radius R and the
initial length of the bunch in the corelated system,
l00 ¼ γ0l0. The case of r ≫ 1 corresponds to the situation,
when the charged panсake can be considered as an infinite

charged plane, so that its electric field is independent
on the axial coordinate, fðLÞ ≈ 1. In the opposite case,
r ≪ 1, the electric field of the pancake decreases with
the distance similar to the field of a pointlike particle,
fðLÞ ≈ r2=2L2. In general, function fðLÞ is limited by the
following interval:

0 < fðLÞ < 1:

Let us find the factor μ ¼ 1
c
dvz
dγ , which can be considered

as the inversed effective mass of the particle, μ ∝ M−1
eff . We

take into account that normalized components of the
electron velocity βz;u ¼ vz;u=c ¼ pz;u=γ are related with
the Lorentz factor by the following general relativistic
formula:

β2z ¼ 1 − γ−2 − β2u; ð13Þ

and the undulator velocity is determined by Eq. (7):

βu ¼
K
γΔ

¼ K
γ − b=βz

; ð14Þ

where b ¼ Ω=hc ≈ γð1 − ΔÞ is the normalized axial mag-
netic field. Having applied operator d=dγ to Eq. (13), one
obtains

βz
dβz
dγ

¼ γ−3 þ K2

ðγ − b=βzÞ3
×

�
1þ b

β2z

dβz
dγ

�
: ð15Þ

In the case of relativistic electrons (βz → 1, γ ≫ 1) and
small enough undulator factor K, Eq. (15) leads to the
following formula for the factor μ:

μ ¼ dβz
dγ

≈ γ−3
�
1þ K2

Δ3

�
: ð16Þ

B. Negative-mass effect

According to Eq. (12), the dynamic of the mutual motion
of the two particles at the beginning of their interaction
(Z → 0) is determined by the sign of the factor μ:

LðZÞ ≈ 1þ μ × α × fð1Þ × Z2

2
:

In the positive-mass regime (μ > 0), the Coulomb
interaction leads to repulsion of the electrons, so that the
axial bunch size increases, LðZ > 0Þ > 1. In contrast, in
the negative-mass regime (μ < 0) the axial size decreases
[LðZ > 0Þ < 1], because in this case the Coulomb inter-
action leads to attraction of the particles.
Let us describe this effect in detail. The Coulomb

interaction leads to an increase in the energies of the
particle placed in the bunch front and to a decrease in the
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energies of the electron moving in the bunch tail. In the
normal, “positive-mass” regime, when μ ¼ 1

c
dvz
dγ > 0, the

increase/decrease in the electron energy corresponds to
the increase/decrease in its axial velocity. In this case, the
Coulomb interaction results in repulsion of the particles
and, therefore, in degradation of the bunch [Fig. 3(a)].
In the negative-mass regime (μ ¼ 1

c
dvz
dγ < 0), the increase/

decrease in the electron energy corresponds to the decrease/
increase in its axial velocity. According to Eq. (16), this
situation is realized when the relative difference between
the relativistic cyclotron frequency and the undulator
frequency, Δ ¼ 1 − Ω=γhvz, is negative, and its absolute
value is small enough:

jΔj < K2=3; Δ < 0: ð17Þ

This means that the cyclotron frequency should slightly
exceed undulator frequency, Ω=γ > hvz and Ω=γ ∼ hvz.
The existence of the negative-mass regime is due to the

resonance-like dependence of the velocity of transverse
undulator oscillations of a particle on the cyclotron fre-
quency [Fig. 3(b)]. Actually, the undulator is a source of a
periodic force acting to a particle, which moves in axial
magnetic field and, therefore, can be considered as a free
cyclotron oscillator. Due to this fact, the amplitude of the
forced undulator oscillations is inversely proportional
to the difference between the frequencies of forced and
free oscillations, jvuj∝ ðhvz−Ω=γÞ−1 ∝Δ−1 [see Eq. (14)].
In the negative-mass range of parameters, when
Ω=γ > hvz, the undulator velocity decreases with an
increase in the cyclotron frequency. In this situation, an
increase in the energy of a particle moving in the front of
the electron bunch shifts the cyclotron frequency closer to
the undulator frequency, Ω=γ → hvz, so that jΔj decreases.
According to Eqs. (13) and (14), this leads to an increase in
its oscillatory velocity and to a decrease in the axial
velocity. As for the particle moving in the tail of the
bunch, a decrease in its energy due to the Coulomb
repulsion leads to an increase in its axial velocity.

Therefore, both particles shift to the center of the electron
bunch [Fig. 3(c)]. This effect is proposed earlier [12,13] in a
straightforward way for stabilization of the dense electron
bunch moving through a relatively long undulator. In this
paper, we consider a possibility to use the negative-mass
effect to provide axial compression of the electron bunch.

C. Phase-plane analysis

Let us analyze the motion of particles on the phase plane
(δγ, L). In the negative-mass regime (μ < 0), Eq. (12) can
be rewritten in the following form:

δγ × dðδγÞ ¼ −α
jμj × signðLÞ × fðLÞ × dL: ð18Þ

First, we consider the case r ¼ R=γ0l0 ≫ 1, when the
electron bunch is so short that the Coulomb electric field
inside the bunch is independent on the axial coordinate,
fðLÞ ≈ 1. Then Eq. (18) has the following solution satisfy-
ing the condition δγ ¼ 0 at L ¼ 1:

δγ ¼ �W ×

� ffiffiffiffiffiffiffiffiffiffiffiffi
1 − L

p
; L > 0ffiffiffiffiffiffiffiffiffiffiffiffi

1þ L
p

; L < 0:
ð19Þ

Here,W ¼
ffiffiffiffi
2α
jμj

q
. According to formula (19), evolution of

the bunch consisting of the two particles is described on the
phase plane (δγ, L) as periodic oscillations (motion along a
finite trajectory) of the system. These oscillations corre-
spond to counterphase oscillations of the two particles
around the moving center of the bunch. In this process, the
variation of the normalized distance between the particles
stays within the interval −1 ≤ L ≤ 1, whereas the differ-
ence in energies of the particles is changed within the
interval −W ≤ δγ ≤ W (Fig. 4).
The initial state of the bunch (L ¼ 1 and δγ ¼ 0)

corresponds to the point A on the phase plane (Fig. 4).
Attraction of electrons leads to transition to the point B,
where electrons have equal axial coordinates (L ¼ 0) but
different energies. Actually, the first electron (moving in the
front) is accelerated by the Coulomb electric field, whereas
the second electron (moving in the tail) is decelerated, so
that the difference δγ ¼ γ1 − γ2 ¼ W is positive.
The transition from stage A to stage B is the first quarter

period of the oscillation of the system on the phase plane.
The axial distance passed by the electron beam during this
quarter period can be easily found from Eq. (12):

ZA→B ¼
ffiffiffiffiffiffiffiffi
2

jμjα

s
¼ 2

jμjW : ð20Þ

In the process of the second quarter period of the motion
along the finite trajectory on the phase plane (B → C), the
two particles continue their movement without changing
direction with respect to the bunch center; namely, the first

Fc

μ >0

δγ2 <0 δγ1 >0
e

δvz,1 >0δvz,2 <0

vz0

Fc

vz0

e-bunch e-bunch

δγ1 >0δγ2 <0

μ <0

δvz,1 <0δvz,2 >0

vu

Ω/γhvz

δγ <0
δvu>0

δγ >0
δvu<0

(a)

(b)

(c)

FIG. 3. The model of an electron bunch consisting of two
particles. (a) Coulomb repulsion of the two particles in the
positive-mass regime. (b) Typical dependence of the oscillatory
(undulator) velocity of a particle on the cyclotron frequency.
(c) Coulomb attraction of the two particles in the negative-mass
regime.
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electron goes in the negative direction, whereas the second
one goes in the positive direction. As a result, L ¼ −1 and
δγ ¼ 0 in point C. This means that energies of both
particles are the same again, the first particle arrives at
the initial position of the second particle, and vice versa.
After the third and fourth quarter periods (C → D → A),
the system returns to the initial state.
Note again that Eq. (19) described the phase trajectory of

the system only in the approximation of an infinitely short
electron bunch, r ¼ R=γ0l0 → ∞1. In the general case,
Eq. (19) should be transformed as follows:

δγ ¼ �W ×

(
½1 − Lþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ r2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
�1=2; L > 0

½1þ Lþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ r2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
�1=2; L < 0:

ð21Þ

In this case, evolution of the bunch is described on the
phase plane (δγ, L) as periodic oscillations along finite
trajectories, whose forms depend on the factor of the
transverse inhomogeneity r, but they are quite similar to
the phase-plane trajectory in the case of r → ∞ (Fig. 5).
The variation of the normalized distance between the
particles stays within the interval −1 ≤ L ≤ 1 independ-
ently on the factor r. As for the difference in energies of the

two particles, it is changed within the interval −Wr ≤
δγ ≤ Wr, where

Wr ¼ W × FðrÞ; FðrÞ ¼ ½1þ r −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
�1=2: ð22Þ

The amplitude of oscillations of the difference in
energies of the two particles decreases with a decrease
of r (this corresponds to an enhancement of the transverse
inhomogeneity of the electron bunch). This is described by
a decrease in the value of function FðrÞ from Fð∞Þ ¼ 1

down to FðrÞ ≈ ffiffiffi
r

p
at r ≪ 1.

D. Estimation for the compression distance
and the energy spread

Evidently, the optimal compression of the bunch is
provided during the first quarter period of the motion of
the system along the phase-plane trajectory A → B (Fig. 4).
In the simplest two-particle model considered above, the
length of the electron bunch is compressed in point B down
to zero. Naturally, this statement should be corrected by
simulations of behavior of an electron bunch consisting of a
more complicated ensemble of electrons. However, the
two-electron model can be used to get estimations for the
distance required to provide the effective compression of
the bunch, as well as for the spread in electron energy
encountered in the process of the compression.
The length of the compression region can be estimated

from Eq. (20) that needs to be updated taking into account
the transverse inhomogeneity:

zcomp

l0
≈

2

jμjWr
¼ 1

FðrÞ

ffiffiffiffiffiffiffiffi
2

jμjα

s
:

This leads to the following estimation for the length of
the compressing region:
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FIG. 4. The model of an electron bunch consisting of two
particles. Phase plane describing the evolution of the bunch in the
negative-mass undulator, as well as axial positions and energies
of the two electrons at different moments of the time, including
the initial state (A) and the point of the maximal axial com-
pression (B).
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FIG. 5. The model of an electron bunch consisting of two
particles. Phase planes describing the evolution of the bunch in
the negative-mass undulator at different factors of the transverse
inhomogeneity r.
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zcomp ≈
R

FðrÞ ×
γ3=2ffiffiffiffiffiffi
μΔ

p ×

ffiffiffiffiffi
IA
2I

r
: ð23Þ

Here, μΔ ¼ j1þ K2

Δ3 j ¼ K2

jΔj3 − 1 is the factor taken from

Eq. (16); it describes the influence of the proximity of the
undulator and cyclotron frequencies on the effective longi-
tudinal mass of electrons. Equation (22) gives the following
estimation for the spread in energy encountered in the
process of the compression:

δγ

γ
≈ FðrÞ × γ1=2ffiffiffiffiffiffi

μΔ
p ×

l0
R
×

ffiffiffiffiffi
8I
IA

s
: ð24Þ

As a special example, let us study the behavior of
estimations (23) and (24) in the situation when the initial
bunch length l0 increases, whereas the total charge of the
bunch Q ≈ Il0=c stays constant. In the case of a long
electron bunch (r ¼ R=γ0l0 ≪ 1), the factor of the weak-
ening of the Coulomb field decreases with an increase in
the bunch length as follows: FðrÞ ≈ ffiffiffi

r
p

≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R=γ0l0

p
. In this

situation, the compression length is proportional to the
initial length of the bunch, whereas the relative spread in
energy encountered in the process of the compression is
independent on both the initial l0 and the initial electron
energy:

zcomp ≈ l0 × γ2 ×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IAR

2μΔQc

s
;

δγ

γ
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8Qc
μΔIAR

s
: ð25Þ

Note that the simplest model considered in this section
predicts the zero compression factor l=l0 for the “bunch”
consisting of two particles, which is achieved at the
distance equal to the quarter period of the motion along
the phase-plane trajectory determined by Eq. (23). In order
to develop this analysis to the case of a multiparticle bunch,
one should consider separately the motion of every pair of
particles, which are placed initially inside the bunch
symmetrically (with respect to the bunch center) and have
a distance between themselves δz0 < l0 [Fig. 6(a)]. In this
case, one should use in Eq. (11) normalization not to the

total length of the bunch l0 but to the initial between these
two particles δz0. In addition, the normalized Coulomb
electric field acting to these two particles, α, is determined
not by the total bunch charge Q but by the charge of
the section of the bunch between these two particles,
q ¼ Qδz0=l0 ≈ Iδz0=c:

α ¼ 4πe
mc2S

× qδz0 ¼
4I
IA

δz20
R2

:

This leads to the formula for the quarter period of the
motion of these two particles along the phase-plane
trajectory (the distance required for the “meeting” of these
two particles) that differs from formula (23) the only by
factor of transverse inhomogeneity of the bunch, F:

zcompðδz0Þ ≈
R

FðrÞ ×
γ3=2ffiffiffiffiffiffi
μΔ

p ×

ffiffiffiffiffi
IA
2I

r
; r ¼ R=γ0δz0: ð26Þ

Thus, two particles placed initially inside the bunch meet
each other before the pair of particles on the edges of the
bunch [Figs. 6(b) and 6(c)]:

zcompðδz0Þ
zcompðl0Þ

¼ FðR=γ0l0Þ
FðR=γ0δz0Þ

< 1: ð27Þ

The relative spread in optimal distances corresponding to
different pairs of particles is determined by the function F
describing the transverse inhomogeneity,

zcompðl0Þ − zcompð0Þ
zcompðl0Þ

¼ 1 − FðR=γ0l0Þ; ð28Þ

and this spread is one of the factors limiting the minimal
possible compression ratio l=l0. Evidently, this factor is
important, when the initial length of the bunch in the
corelated system is comparable with the transverse size of
the bunch, γ0l0 ∼ R; at long bunch lengths (γ0l0 ≫ R) this
spread limits to 100%:

γ

γ0

z

Q, l0

q, δz0 γ

z

(a) (b) γ

z

(c)

zbunch=0 zbunch=zcomp(l0)zbunch=zcomp(δz0)

FIG. 6. Different motion of two pairs of electrons, namely, the pair of particles initially placed on the edges of the bunch and a pair of
electrons initially placed inside the bunch: (a) initial state, (b) the “meeting point” of the inner pair, and (c) the meeting point of the two
edge particles.
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zcompðl0Þ − zcompð0Þ
zcompðl0Þ

≈ 1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R=γ0l0

p
:

One more factor limiting the minimal possible compres-
sion ratio l=l0 is not taken into account in this simplest
model; this is initial spread in electron velocity. Evidently,
the importance of this factor increases with the increase in
the axial distance required to achieve the effective com-
pression of the bunch. According to estimations (25), if the
bunch charge is fixed, then the compression distance is
proportional to the initial length of the bunch, zcomp ∝ l0.
Therefore, this factor should also lead to a deterioration of
the compression process with increasing initial bunch
length.

IV. NUMERICAL SIMULATION OF DYNAMICS
OF A SHORT ELECTRON BUNCH IN THE

NEGATIVE-MASS UNDULATOR

A. Parameters of simulated system

The proposed regime of the compression of electron
bunches has been numerically simulated on the basis of
Eqs. (1)–(3). We have studied the motion of the electron
bunch with the parameters close to those discussed for the
Israeli THz Source [13]: an initial charge of 0.3 nC,
diameter 1 mm, an initial length of 0.1–1.0 mm, and the
Lorentz factor γ ¼ 12 in the helical undulator with a period
of 2.5 cm and the undulator parameter K ¼ 0.5.
We assume that at the beginning of the compression

process, electrons are distributed uniformly the length of
the bunch, 0 ≤ z0 ≤ l0, and there is a spread in initial
electron energy, δγ0=γ0 ¼ 0.01. It is assumed that the initial
state of every electron is its oscillation in the undulator field
unperturbed by the Coulomb interaction, which is deter-
mined by the forced solution of Eq. (6):

pþðt¼0Þ¼−pu expðihz0Þ; pu¼
K
Δ
; Δ¼1−Ω=γ0hvz0:

This corresponds to the situation when the electron
bunch enters into the undulator via an entry region, where
the undulator factor smoothly increases from zero up to the
nominal value, and the Coulomb interaction is neglected
inside this region. The smooth entry of electrons into the
undulator ensures the absence of the free cyclotron oscil-
lations of particles in the regular undulator.
Note that the existence of the nonregular entry region

leads also to an additional axial compression of the bunch.
This is due to the fact that if the undulator field increases
with the coordinate, then the bunch head is wiggled by a
stronger undulator field (as compared to the bunch tail),
and, therefore, it has smaller axial velocity, so that the tail
“catches up” with the head. Naturally, this is a useful effect,
but we have excluded it from consideration in this article.

B. Axial compression of the electron bunch

In order to characterize the axial compression of the
bunch in simulations, we introduce the following com-
pression factor:

lðtÞ=l0 ¼
D½zðtÞ�
D½zð0Þ�:

Here,

D½zðtÞ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

0.9N

X
j

½zjðtÞ − hzðtÞi�2
s

is the dispersion of axial positions of electrons. In this
formula,

hzðtÞi ¼ 1

0.9N

X
j

zjðtÞ

is the averaged current coordinate of the bunch, N is the
number of particles in the bunch, and the summation is
made over 90% of electrons, so that we have excluded
from the consideration 10% of the “lost” particles (5%
with largest axial coordinates zj and 5% with smallest
coordinates).
Figure 7 illustrates results of simulations for electron

bunches with different initial lengths, l0 ¼ 0.1 mm,
0.5 mm and 1 mm. Figure 7(a) shows dependencies of
the minimal compression factors l=l0 versus the normalized
difference between undulator and cyclotron frequencies,
Δ ¼ 1 − Ω=γ0hvz0. The length of the compressing undu-
lator required to achieve these compression factors is
shown in Fig. 7(b). Note that in the negative-mass regime
Δ is negative, and its absolute value is a characteristic of the
value of the axial magnetic field used in this system,

B0 ¼ Bres × ð1þ jΔjÞ;

where Bres is the magnitude of the guiding magnetic field
corresponding to the exact resonance (to the equality of
the two frequencies, Δ ¼ 0). In the case of parameters
considered in these simulations, Bres ≈ 5 T.
According to simulations, the optimal normalized differ-

ence between undulator and cyclotron frequencies is
jΔj ¼ 0.3–0.4. At bigger differences the negative-mass
effect becomes weaker, and at jΔj > K2=3 ≈ 0.62 [see
Eq. (16)] the effective electron mass becomes positive
(μ > 0), so that the negative-mass Coulomb attraction is
changed to the positive-mass Coulomb repulsion. At small
jΔj the effective mass becomes too small (μ → −∞), and
the strong negative-mass Coulomb attraction of electrons
leads to a significant change in their energies. In this
situation, the simplified model considered in Sec. III does
not describe the behavior of the system, because the
Coulomb perturbations of electron motion in the undulator
field cease to be small.
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Figures 8 and 9 illustrate the dynamic of electron
bunches with initial lengths 0.1 and 1.0 mm, respectively.
At the input (point 1), electrons are distributed uniformly
over the initial length, 0 ≤ z0;j ≤ l0, a spread in initial
electron energy, δγ0=γ0 ¼ 0.01, is introduced. At the initial
stage of the motion (point 2), the Coulomb attraction of
electrons leads to a decrease in the axial size of the bunch.
In point 3 of the maximal compression, the effective bunch
lengths in both cases are reduced down to a value of
l=l0 ≈ 0.3. Note that the initial points 1 and the maximal
compression points 3 in Figs. 8 and 9 correspond to points
A and B on the phase plane shown in Fig. 4.
The simulation results are in good accordance with

estimations for the length of the compressing region and
for the spread in energy encountered in the process of the
compression [formulas (23) and (24)]. In the case of 0.3 nC
electron bunch, I ¼ 1 kA for l0 ¼ 0.1 mm and I ¼ 100 A
for l0 ¼ 1 mm. The undulator parameter K ¼ 0.5 and the
normalized mismatch between the undulator and cyclotron
frequencies Δ ¼ −0.4 result in μΔ ≈ 3. In the case of the

initial bunch length l0 ¼ 0.1 mm, the factor of the trans-
verse inhomogeneity is r ¼ R=γ0l0 ≈ 0.4, so that according
to Eq. (22) FðrÞ ≈ 0.6. This leads to the following
estimations:

zcomp ≈ 6 cm;
δγ

γ
≈ 0.16:

As for the case of a 10 times longer bunch (l0 ¼ 1 mm),
the factor of the transverse inhomogeneity is 10 times
smaller, r ¼ R=γ0l0 ≈ 0.04, and the factor of the weakening
of the Coulomb field is FðrÞ ≈ ffiffiffi

r
p

≈ 0.2. In this situation,
the compression length and the spread in energy in the
point of the maximal compression are estimated as follows:

zcomp ≈ 55 cm;
δγ

γ
≈ 0.17:

C. Long-length dynamics of the electron bunch
in the negative-mass undulator

After the point of the maximal compression, a decom-
pression of the bunch takes place (points 4 and 5 in Figs. 8
and 9). In principle, this corresponds to the motion of the
system along the segment В-С of the trajectory of the phase
plane shown in Fig. 4(a) due to the inertia of the particles.
However, numerical simulations performed within the
framework of the “multiparticle” model of the electron
bunch show a more complicated (as compared to the “two-
particle” model illustrated by the phase plane shown in
Fig. 4) behavior of the bunch after the point of the maximal
compression.
Figure 10 illustrates three different examples of dynam-

ics of the motion of a bunch with a relatively long initial
length (l0 ¼ 1 mm) through the negative-mass undulator.
These three plots show dependencies of axial positions of
different particles with respect to the averaged center of
the bunch, zj − hzji, versus the current axial coordinate, z.
These three examples differ only in the mismatch between
the undulator and cyclotron frequencies, Δ. Note that the
absolute value of Δ determines the effective strength of the
Coulomb interaction (attraction) of electrons. According to
Eq. (16), a decrease in jΔj leads to an increase in the factor
μ; this results in a stronger negative-mass Coulomb
interaction between electrons.
Figure 10(a) illustrates the case of Δ ¼ −0.55, when

the negative-mass Coulomb interaction between electrons
is relatively small. Although a small fraction of particles
leaves the bunch after passing the point of the maximal
compression, the main part of the bunch stays stable, such
that electrons oscillate around the averaged center of the
bunch in the process of the motion of the bunch through the
undulator. Note that these oscillations are well described by
the simplest two-particle model considered in Sec. III; they
correspond to the motions of electrons along finite trajec-
tories on the phase planes shown in Figs. 4 and 5.

FIG. 7. Minimal compression factors l=l0 (a) and lengths of the
compressing undulator (b) versus the normalized difference
between undulator and cyclotron frequencies, Δ, for electron
bunches with initial lengths, l0 ¼ 0.01, 0.5 and 1 mm.
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However, at a stronger Coulomb interaction between
electron, the simplest two-particle model developed in
Sec. III does not describe the behavior of the electron
bunch after the point of the maximal compression. This is

true especially in the case of a relatively long bunch, which
is illustrated by Figs. 9 and 10. It is shown in Fig. 9 that
after point 3 of the maximal compression, electrons form
two separated quasistable bunches of attracting particles

FIG. 8. Dynamics of the electron bunch with an initial length of 0.1 mm moving through a negative-mass undulator (Δ ¼ −0.4).
Effective bunch length normalized to the initial value, l=l0, versus the axial coordinate of the bunch, as well as distributions of electrons
on the phase planes (energy/axial position) at different stages of the bunch motion.

FIG. 9. Dynamics of the electron bunch with an initial length of 1 mm moving through a negative-mass undulator (Δ ¼ −0.4).
Effective bunch length normalized to the initial value, l=l0, versus the axial coordinate of the bunch, as well as distributions of electrons
on the phase planes (energy/axial position) at different stages of the bunch motion.
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(points 4 and 5 in Fig. 9). Further behavior of these two
“sub-bunches” is determined by the distance between
them acquired after passage of the point of the maximal
compression. If the effective Coulomb interaction is not too
strong (the effective mass of the particles is not too small),
then the behavior of these two sub-bunches is like a
“double planet”; namely, the sub-bunches move together
and oscillate around the common center due to their mutual
attraction [Fig. 10(b), Δ ¼ −0.48]. At even smaller (in
absolute value) mismatches [Fig. 10(c), Δ ¼ −0.46], the
strong Coulomb interaction results in a bigger distance
between the sub-bunches, as well as in a significant
difference between averaged energies of particles in the
sub-bunches. In this situation, the sub-bunches are not
attracted. They stay quasistable and gradually move away

from each other, propagating along the negative-mass
undulator separately with slightly different averaged axial
velocities.

V. CONCLUSION

Short dense electron bunches produced from laser-driven
photoinjectors can be directly exploited for radiation in
the THz frequency range in the regime of spontaneous
coherent radiation. This type of radiation is realized when
the effective axial length of bunches is shorter than the
radiation wavelength. In this situation, there are problems
of formation of dense bunches with short enough length, as
well as stabilization of the axial size of the bunch during its
motion through the radiation region of the THz source.
In this paper we show that the negative-mass undulator

(which was originally proposed to provide the bunch
stabilization in the process of the radiation) can be
interesting also from the point of view of manipulations
with short dense electron bunches, including compression
of the axial size of such a bunch. In this work, we describe
dynamics of a bunch moving in the negative-mass undu-
lator on the basis of a simplified 1D model, where the
bunch is represented as a set of thin pancakes with the
stable transverse size. According to simulations, the axial
compression factors achieved in the simplest uniform
undulator can be as high as 3–5. In simulations we observe
also an interesting effect of a complicated dynamics of a
relatively long electron bunch, namely, splitting a long
bunch into two separated quasistable sub-bunches. This
is an important effect limiting the compression of dense
electron bunches. On the other hand, this effect can be used
in more complicated regimes of the e-bunch manipulation.
The main advantage of the proposed compression

scheme is the possibility for its natural use as a first section
of a THz source based on spontaneous coherent emission
from short bunches moving through a negative-mass
undulator (see Fig. 1). However, the negative-mass com-
pression of electron bunches may be of value in itself.
In principle, the well-developed methods of сompression
of photoinjector bunches based on the energy chirping
allow producing bunches with as short lengths as tens fs
(∼10−2 mm) [22–25]. However, they are successful only
when the Coulomb forces inside the bunch are not so
important. Such a situation takes place either in bunches
with typical “photoinjector” electron energies (several
MeV) and with relatively small charges (at the pC level)
[22], or in bunches accelerated up to a high electron energy
(hundreds MeV of even higher) [23–25]. In this paper, we
study bunches with relatively low energies (∼5 MeV) and
the nС level of the total charge. In this case, the Coulomb
forces are the key problem, as they are so strong that they
lead to a significant destruction of the bunch during its trip
through a distance of the order of tens cm. The proposed
negative-mass method solves this problem by means of the
change of “sign” of these forces. Evidently, this method can

FIG. 10. Long-length dynamic of the electron bunch with an
initial length of 1 mm moving through a negative-mass undulator
at various mismatches between undulator and cyclotron frequen-
cies, (a) Δ ¼ −0.55, (b) Δ ¼ −0.48, and (c) Δ ¼ −0.46. Axial
positions of different particles with respect to the averaged center
of the bunch, zj − hzji, versus the current axial coordinate.
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be improved by the use of additional techniques (such
as energy chirping), but this could be the subject of
future works.
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