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A detailed analysis is carried out of the optical properties of synchrotron radiation emitted by multipole
wigglers, concentrating on the effective source size and brightness and the so-called “depth of field” effects,
concerning which there has been some controversy in the literature. By comparing calculations made with
both geometrical optics and wave optics methods we demonstrate that the two approaches are not at
variance, and that the wave optics results tend towards those of geometrical optics under well-defined
conditions.
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I. INTRODUCTION

The optical properties of synchrotron radiation sources
have been studied for many years. Sabersky investigated
the imaging of bending magnet radiation using geometrical
optics and phase space techniques and pointed out that
because of the length of arc seen by the observer the image
is subject to depth of field errors [1]. Green continued this
work, producing expressions also for the brightness of the
radiation, i.e. the photon flux density in four-dimensional
phase space [2]. Later Coisson et al. extended the analysis
to wiggler sources and showed that projecting the radiation
to the center of the device produces a complex pattern and
also that there is a significant increase in source size as a
function of angular acceptance due to depth of field effects
[3]. The authors also considered the conditions under which
interference effects that are present in a periodic magnetic
field device can be neglected.
Further studies of depth of field effects in wigglers, using

the same geometrical optics approach, were reported in
Refs. [4–8]. The effects are well known, namely the
increase in horizontal source size as a function of off-axis
viewing angle, or angular acceptance, as well as the
decrease in brightness resulting in a less than linear
dependence on device length. Unfortunately, few direct
measurements of such effects have been reported in the
literature, however the few that exist do show agreement
with expectations [9,10].
Studies of the properties of radiation emitted by undu-

lators developed in parallel to that of wigglers. Although
the spectral and angular properties of undulators were well

understood from the beginning [11,12], difficulties arose in
addressing the source size and brightness and there was
some confusion over whether depth of field (i.e. geomet-
rical optics) effects should be treated separately from
diffraction (i.e. wave optics) effects [13,14]. Later Kim
[15] and Coisson and Walker [16] showed that the effects
are in fact the same and should not be added. At the same
time a more rigorous approach to calculating brightness
was proposed based on the Wigner distribution [15,16],
which has been followed by several papers on the subject
[17–24].
Although the wave optics approach to undulator sources

is well developed and accepted, the application to wiggler
sources is less advanced, mainly as a result of the computa-
tional difficulty. One of the first studies of wigglers using
wave optics was Ref. [21] where it was shown that “the
intensity distributions are considerably affected by the
‘depth of field’ effect.”More recently however Geloni et al.
[24] also examined wiggler radiation using a wave optics
calculation but their surprising conclusion that “according
to electrodynamics, depth-of-field effects do not exist,” and
that they are a “misconception,” is clearly at odds with
previous work. Stimulated by this and other similarly robust
and challenging assertions, we present in this article a more
complete comparison of the wave optics and geometrical
optics methods in relation to wiggler sources and we show
categorically for the first time that under appropriate con-
ditions the two methods are indeed consistent.
Section II first outlines the geometrical optics model,

with some new aspects compared to previous work.
Section III outlines a simplified wave optics approach that
has been developed in order to allow different features to
be more easily incorporated compared to existing codes.
Section IV then makes a detailed comparison of the two
methods, for both the source size distribution and radiation
brightness, and finally Secs. V and VI discuss the results
and present conclusions. In order to be able to make a direct
comparison with Ref. [24], most of the calculations
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reported here will use the same wiggler and electron beam
parameters which are given in Table I.

II. GEOMETRICAL OPTICS MODEL

A. Expressions for brightness
and spatial distribution of intensity

A geometrical optics model for a wiggler was described
in [8] so will not be repeated in full here. We assume a
plane periodic wiggler magnet with sinusoidal vertical field
distribution of amplitude Bo and period length λo leading
to the following trajectory in the horizontal plane:

xcðsÞ ¼ a sinðksÞ ¼ K
γ

λo
2π

sinðksÞ; x0cðsÞ ¼
K
γ
cosðksÞ;

where k ¼ 2π=λo, K ¼ eBoλo=2πmc. If a particular elec-
tron has offset and angle at the center of the device given
by xo; x0o; yo; y0o, and emits photons at position s at angle
θx; θy, with respect to the tangent to the trajectory at that
point, the projection of this ray to the center of the device,
s ¼ 0, gives the following phase space coordinates:

x ¼ xo þ xcðsÞ − x0cðsÞs − θxs x0 ¼ x0o þ x0cðsÞ þ θx

y ¼ yo − θys y0 ¼ y0o þ θy:

In the horizontal plane terms in θx can be neglected
compared to those in x0c since we assume K ≫ 1. It follows
that the photon flux density in phase space at the center of
the wiggler is then

d4Φðx; x0; y; y0Þ
dxdx0dydy0

¼
ZL=2

−L=2

ds
ρðsÞ

Z∞

−∞
dθy

d2Φðs; θyÞ
dΩ

× PðxoÞPðx0oÞPðyoÞPðy0oÞ;
where d2Φ=dΩ is the angular and spectral flux density, i.e.
photons/(s unit bandwidth unit solid angle), for a single

bending magnet which is given by the well-known expres-
sion, e.g. Ref. [8]:

d2Φ
dΩ

¼ 3α

4π2
I
e
γ2
�
ω

ωc

�
2

× ½ð1þ X2Þ2K2
2=3ðξÞ þ X2ð1þ X2ÞK2

1=3ðξÞ� ð1Þ

where X ¼ γθy, ξ ¼ 0.5ðω=ωcÞð1þ X2Þ3=2, I is the beam
current and ωc is the critical frequency. The functions P
are Gaussian distributions for the electron beam size and
divergence in the horizontal and vertical planes [i.e.
PðzÞ ¼ exp−ðz2=2σ2zÞ=

ffiffiffiffiffiffi
2π

p
σz] with rms values given by

σx ¼
ffiffiffiffiffiffiffiffiffi
εxβx

p
, σx0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
εx=βx

p
etc., where εx; εy are the

electron beam emittances, and we assume for simplicity
that the wiggler is located at a symmetry point in the ring.
Proceeding as in [8], by assuming the horizontal accep-

tance angle is relatively small so that the emission occurs
essentially close to the pole centers s ¼ si and integrating
over the vertical emission angle assuming a Gaussian
distribution with rms value σψ , allows the following expres-
sion to be derived for the flux density in phase space, i.e. the
brightness, as a summation over the number of poles:

ℬ ¼ d4Φðx; x0; y; y0Þ
dxdx0dydy0

¼ d2Φ
dΩ

����
θy¼0

ffiffiffiffiffiffi
2π

p
σψ

XNpoles

i¼1

1ffiffiffiffiffiffi
2π

p ðσ2x þ σ2x0s2i Þ1=2

× exp

�
− ðx� aþ x0siÞ2

2ðσ2x þ σ2x0s2i Þ
�

1

2πε1=2

× exp

�
− γy2 þ 2αyy0 þ βy02

2ε

�
ð2Þ

where

α ¼ siσ2ψ β ¼ σ2y þ s2i σ
2
ψ γ ¼ σ2y0 þ σ2ψ

ε ¼ s2i σ
2
y0σ2ψ þ σ2yσ

2
ψ þ σ2yσ

2
y0 :

In the following we use the standard definition for σψ
which gives the correct relation between the peak and
integrated spectral flux density:

ffiffiffiffiffiffi
2π

p
σψ ¼ dΦ

dθx
=
d2Φ
dΩ

����
θy¼0

:

It follows that the expression for the central brightness of
the radiation is given by the following:

ℬo ¼
d4Φð0; 0; 0; 0Þ
dxdx0dydy0 ¼ dΦ

dθx

XNpoles

i¼1

1ffiffiffiffiffiffi
2π

p ðσ2x þ σ2x0s2i Þ1=2

× exp

�
− a2

2ðσ2x þ σ2x0s2i Þ
�

1

2πε1=2
: ð3Þ

TABLE I. Wiggler, electron and photon parameters used for
simulations, unless othewise stated, following Ref. [24].

Period length (λo) 0.12 m
Number of periods (N) 28
Length (L) 3.36 m
Field amplitude (Bo) 1.097 T
Deflection parameter (K) 12.3
Electron energy (E) 3 GeV
Beam current (I) 0.275 A
Horizontal emittance (εx) 10−9 m rad
Vertical emittance (εy) 10−11 m rad
Beta functions (βx, βy) 1.0 m, 1.0 m
Relative energy spread (σε) 0.001
Critical photon energy 6.56 keV
Photon energy for calculations 938 eV
Harmonic number (n) 101
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An equivelant expresion was given by Kim [4]. This can be further approximated in the limit L ≤ 4βy; L ≤ 2βx; a ≤
σx; σy0 ≤ σψ=2 as follows [8]:

ℬo ≃ dΦ
dθx

Npoles

ð2πÞ3=2ðσ2x þ a2 þ σ2x0L
2=12Þ1=2ðσ2y þ σ2y0L

2=12Þ1=2ðσ2y0 þ σ2ψÞ1=2
: ð4Þ

As well as examining the validity of these expressions
for brightness, we are also particularly interested in the
source size distribution which can be approximated as
follows:

d2Φðx; yÞ
dxdy

¼
ZΘx

−Θx

ZΘy

−Θy

ℬðx; x0; y; y0Þdx0dy0

where �Θx;�Θy are the horizontal and vertical acceptance
angles.
A relevant point that has not been discussed in previous

work is the fact that the horizontal source size distribution
depends on how the vertical plane is treated. There are
several different ways of proceeding, as discussed
below.

1. Integrate over all vertical angles and all
vertical positions

In this case we have

dΦðxÞ
dx

¼ dΦ
dθx

XNpoles

i¼1

ZΘx

−Θx

dx0
1ffiffiffiffiffiffi

2π
p ðσ2x þ σ2x0s2i Þ1=2

× exp

�
− ðx� aþ x0siÞ2

2ðσ2x þ σ2x0s
2
i Þ

�
: ð5Þ

Further analysis leads to estimates for the rms of the
distribution at a given angle θx:

Σx ¼ ðσ2x þ a2 þ L2σ2x0=12þ L2θ2x=12Þ1=2 ð6Þ

and when integrated over the angle �Θx:

Σx ¼ ðσ2x þ a2 þ L2σ2x0=12þ L2Θ2
x=36Þ1=2: ð7Þ

Although these latter two equations approximate
Eq. (5) well, it is well known that the distribution function
Eq. (5) can be highly non-Gaussian, with significantly wide
“tails” such that the rms value is not a very satisfactory
measure of the overall source size and so must be used with
caution.

2. Integrate over a given vertical angular acceptance,
horizontal cut at y = 0

In this case we have

d2ΦðxÞ
dxdy

����
y¼0

¼ dΦ
dθx

XNpoles

i¼1

ZΘx

−Θx

ZΘy

−Θy

dx0dy0
1ffiffiffiffiffiffi

2π
p ðσ2xþσ2x0s2i Þ1=2

×exp

�
−ðx�aþx0siÞ2

2ðσ2xþσ2x0s2i Þ
�

1

2πε1=2
exp

�
−βy02

2ε

�
:

ð8Þ

It is clear that the additional vertical terms in the
summation compared to Eq. (5) have a different depend-
ence on si, and so will influence the depth-of-field effects.

3. Integrate over a given vertical angular acceptance,
integrate over all vertical positions

In this case we have

dΦðxÞ
dx

¼ dΦ
dθx

X
i

ZΘx

−Θx

dx0
ZΘy

−Θy

dy0
1ffiffiffiffiffiffi

2π
p ðσ2x þ σ2x0s2i Þ1=2

× exp

�
− ðx� aþ x0siÞ2

2ðσ2x þ σ2x0s2i Þ
�

1ffiffiffiffiffiffi
2π

p
γ1=2

exp

�
− y02

2γ

�

which because γ is independent of s, leads to the same
horizontal distribution, in relative units, as case 1 above.

B. Comparison of the geometrical optics model
with measurements

Berman and Yin measured the horizontal source size of
nonmonochromatized radiation as a function of horizontal
angle in the X25 wiggler [10]. Figure 1 reproduces this data
which shows clear evidence of a broadening of the
horizontal size as a function of the off-axis viewing angle
and also that the geometrical optics model is in good
agreement with the measured data. In this case the
geometry used for the measurements corresponds to case
3 above, and hence Eq. (5) has been used for the analysis.
The source size is defined as the region bounded by the
10% and 90% boundaries of the integrated intensity profile
produced by scanning a slit across the beam, as in Ref. [10].
It can also be seen that the approximation Eq. (6),
when scaled appropriately assuming a Gaussian intensity
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distribution, is also in good agreement, reflecting the fact
that the wiggler is relatively short (1.62 m) and hence
the intensity distribution still approximates a Gaussian
function.

III. SIMPLIFIED WAVE OPTICS MODEL

A. Angular and spatial distributions

In this section we introduce a simplified wave optics
model based on the “dipole series model” [25], in which a
periodic magnet is represented by a series of dipole magnet
sources with the appropriate phase relationship between
them, which has been shown in Refs. [25,26] to be
sufficiently accurate compared to more exact methods of
calculation. The advantages of this approach are first that it
allows a simple way of identifying the physical cause for
the various features that are observed, and second that
it is computationally efficient and so allows other crucial
aspects to be included relatively easily, particular energy
spread and multiple harmonics.
We start by rewriting the expression for the spectral and

angular flux density from a single bending magnet, Eq. (1),
as follows:

d2Φ
dΩ

¼ α
I
e

�
2cεo
e

�
2

½jExj2; jEyj2�;

where Ex; Ey are the electric fields in the angular repre-
sentation [18] polarized in the horizontal and vertical
planes respectively, which are given by

½ExoðθÞ; EyoðθÞ� ¼
ffiffiffi
3

p
eγ

4πεoc

�
ω

ωc

�
½−ð1þ XÞ2K2=3ðξÞ;

iXð1þ X2Þ1=2K1=3ðξÞ�:

The “dipole series model” [25] is obtained by adding
together the amplitudes from a series of such dipoles, with

appropriate phase factors eiδ, where δ ¼ ωðt − θ · r=cÞ, r is
the electron trajectory and θ ¼ ½θx; θy; 1 − ðθ2x þ θ2yÞ=2� is
the direction of emission:

½ExðθÞ; EyðθÞ� ¼ ½ðeiδ1 − eiδ2ÞExo; ðeiδ1 þ eiδ2ÞEyo�

×
XN=2−1

m¼−N=2

ei2πmω=ω1 :

The two phase factors involving δ1; δ2 correspond to the
two poles within one period, while the summation is over
the N periods in the device. The phase factor when the
electron is emitting radiation at horizontal angle α ¼ γθx=K
is in general given by

δ ¼ ω

ω1

�
2πs
λo

− 2αK2

A
sinðksÞ þ K2

4A
sinð2ksÞ

�
;

where A ¼ 1þ K2=2þ γ2θ2 and θ2 ¼ θ2x þ θ2y. This dif-
fers from Ref. [25] only in the choice of a trajectory based
on a sine function rather than cosine, which guarantees that
δ ¼ 0 at the center of the device, s ¼ 0.
The two points of emission corresponding to angle α are

ks1 ¼ cos−1ðαÞ and ks2 ¼ 2π − cos−1ðαÞ. Inserting these,
summing up the geometric series of phase factors and
simplifying yields the following:

½ExðθÞ; EyðθÞ� ¼ 2½iExo sinðΔÞ; Eyo cosðΔÞ�
sinNπω=ω1

sin πω=ω1

;

ð9Þ

where Δ ¼ ω
ω1
ð−π þ cos−1ðαÞ − 3K2

2A αð1 − α2Þ1=2Þ, ω is the
frequency of interest, chosen to correspond to the n th
harmonic on-axis: ω ¼ n½4πcγ2=λoð1þ K2=2Þ�, and ω1

is the fundamental at the angle of emission, θ: ω1 ¼
½4πcγ2=λoð1þ K2=2þ γ2θ2Þ�.
The spatial distribution of radiation amplitude at the

center of the wiggler can then be obtained from this as
follows:

Exðx;yÞ¼
1

λ

ZΘx

−Θx

ZΘy

−Θy

Exðθx;θyÞexp
�
i
2π

λ
ðθxxþθyyÞ

�
dθxdθy

ð10Þ

and similarly for Ey, where again �Θx;�Θy are the
horizontal and vertical acceptance angles. This of course
is an approximation, the full calculation carried out in
Ref. [24] involves calculating the brightness function in the
center of the wiggler, transporting it downstream to an
aperture, applying the aperture then simulating a perfect
lens to form a 1∶1 image of the source. The approximation
used here is however valid when the aperture is sufficiently
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FIG. 1. Horizontal source size (10%–90% of integrated
intensity) as a function of off-axis horizontal angle for the NSLS
X25 wiggler; blue—measured data [10]; red—geometrical optics
model Eq. (5); black—Eq. (6), rms x 2.563.
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large compared to the source size, and that the distance
between source and aperture is large compared to the length
of the wiggler, both of which apply in this case.
The spectral intensity distribution, photons/(smm2 unit

bandwidth), in the center of the wiggler is then obtained as
follows:

d2Φ
dxdy

ðx; yÞ ¼ α
I
e

�
2cεo
e

�
2

½jExðx; yÞj2 þ jEyðx; yÞj2�

although in all cases discussed here the vertical component
can be neglected.
We first show that this simplified wave optics model can

give accurate results in the present case. Figure 2 shows the
spatial distribution in the center of the representative
wiggler (Table I) for two different apertures, in the absence
of electron beam emittance and energy spread. The agree-
ment with Fig. 11 of Ref. [24] is excellent, both qualita-
tively and quantitatively.
The effect of a displacement or angular offset of the

electron beam is simply to move the radiation pattern in

position or angle by the same amount. The electron beam
divergence can therefore be taken into account in this
simplified model by summing the intensities from individ-
ual electrons, with angular limits modified according to the
angle of the electron passing through the wiggler, x0o, y0o:

d2Φ
dxdy

ðx; yÞ ¼ α
I
e

�
2cεo
e

�
2
Z∞

−∞

Z∞

−∞
Pðx0oÞPðy0oÞdx0ody0o

×

���� 1λ
ZΘx−x0o

−Θx−x0o

ZΘy−y0o

−Θy−y0o
Exðθx; θyÞ

×exp

�
i
2π

λ
ðθxxþ θyyÞ

�
dθxdθy

����
2

: ð11Þ

Finally this distribution is then convoluted with the
electron beam size distribution:

d2Φ
dxdy

ðx; yÞ ¼
Z∞

−∞

Z∞

−∞

d2Φ
dxdy

ðx − xo; y − yoÞ

× PðxoÞPðyoÞdxdy: ð12Þ

B. Brightness

As mentioned in the Introduction, the most accepted
definition of brightness using the wave optics model is
based on the Wigner distribution [15–24]:

ℬxðx;x0;y;y0Þ ¼
2εoc
h

1

λ2
I
e

Z∞

−∞

Z∞

−∞
E�
x

�
x0 þθx

2
;y0 þθy

2

�

×Ex

�
x0−θx

2
;y0−θy

2

�

×exp

�
−i2π

λ
ðxθxþyθyÞ

�
dθxdθy: ð13Þ

Here ℬx refers to the brightness of the radiation
polarized in the horizontal plane produced from the
horizontal electric field component Ex as given in the
section above. A similar expression exists for the vertically
polarized component, however in what follows this can be
ignored as it is always much smaller than the horizontal
component. We will therefore drop the subscript x.
We first show the validity of the current method by

comparing the central brightness calculated with Eq. (13)
with the results from the well-known code SPECTRA [27]
under the same conditions. Figure 3 shows the brightness as
a function of harmonic number for the wiggler of Table I
and it can be seen that there is very good agreement
between the two codes, the only small discrepancy appear-
ing at low harmonic numbers where the dipole series model
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FIG. 2. Spatial flux density, photons/(s mm2 0.1% bandwidth),
in the center of the wiggler, horizontal cut at y ¼ 0, with zero
emittance and energy spread. Vertical aperture �0.125 mrad,
horizontal aperture (upper) �0.125 mrad, (lower) �0.25 mrad.
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is known to be less accurate [25]. In passing, we also
compare these results to the analytic result which can be
derived from Eq. (13), e.g. see [18]:

ℬo ¼
Φn

2

4

λ2
; ð14Þ

where Φn is the total flux in the “central cone,” which in
practical units, photons/(s 0.1% bandwidth), is given, for
n ¼ odd, by the well-known formula e.g. [18]:

Φn ¼ 1.431 1014NI
nK2

ð1þ K2=2Þ

×
�
Jn−1

2

�
nK2

4ð1þ K2=2Þ
�
− Jnþ1

2

�
nK2

4ð1þ K2=2Þ
�	

2

:

The factor of 2 in Eq. (14) takes into account that there is
no detuning from the on-axis frequency, and hence only
one-half of the total flux in the central cone contributes.
Figure 3 shows that Eq. (14) is quite accurate for low
harmonics but overestimates the brightness by a factor of 2
at higher harmonics, effectively because it does not take
into account the rapid variation in intensity with horizontal
angle, which in the dipole series model is contained in the
sinðΔÞ term.
In order to include the effect of electron beam emittance

we make use of the “addition theorem” or “brightness
convolution theorem” introduced by Kim [15] and
convolute the brightness function with the electron beam
density distribution. We again assume uncorrelated
Gaussian distributions P for the electron beam in each
phase space coordinate. The central brightness can there-
fore be written as follows:

ℬo ¼
2εoc
h

1

λ2
I
e

Z∞

−∞

Z∞

−∞

Z∞

−∞

Z∞

−∞
PðxoÞPðx0oÞPðyoÞ

× Pðy0oÞdxodx0odyody0o
Z∞

−∞

Z∞

−∞
E�
x

�
x0o þ

θx
2
; y0o þ

θy
2

�

× Ex

�
x0o − θx

2
; y0o − θy

2

�

× exp

�
−i 2π

λ
ðxoθx þ yoθyÞ

�
dθxdθy:

The integrations over xo and yo can be carried out using a
standard integral, and after simplifying we obtain

ℬo ¼
2εoc
h

4

λ2
I
e

Z∞

−∞

Z∞

−∞

Z∞

−∞

Z∞

−∞
Pðx0oÞPðy0oÞ

× PðθxÞPðθyÞdθxdθydx0ody0o
× E�

xðx0o þ θx; y0o þ θyÞExðx0o − θx; y0o − θyÞ; ð15Þ

where PðθxÞ ¼ exp−ð θ2x
2σ2θx

Þ with σθx ¼ λ
4πσx

, and similarly

for the y-plane.
Figure 4 shows the equivalent plot to Fig. 3 with electron

beam emittance included. Again the results are in good
agreement with those obtained with SPECTRA. We also
compare these results with the commonly used approxi-
mate expression for brightness, e.g. [18]:

ℬo ¼
Φn=2

4π2ðσ2x þ σ2RÞ1=2ðσ2y þ σ2RÞ1=2ðσ2x0 þ σ2
R0Þ1=2ðσ2y0 þ σ2

R0Þ1=2
ð16Þ
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FIG. 3. Central brightness, photons/(s mm2 mrad2 0.1% band-
width), as a function of harmonic number, with zero emittance,
zero energy spread; blue circles—Eq. (13); green asterisks—
results obtained using SPECTRA; dashed line—Eq. (14).
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FIG. 4. Central brightness, photons/(s mm2 mrad2 0.1% band-
width), as a function of harmonic number, with nonzero emit-
tance, zero energy spread; blue circles—Eq. (15); green asterisks
—results obtained using SPECTRA; dashed line—Eq. (16).
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where the rms photon beam size and divergence are given
by σR0 ¼ ffiffiffiffiffiffiffiffiffiffiffi

λ=2L
p

and σR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λL=8π2

p
respectively. Again

it can be seen that for low harmonic numbers there is good
agreement between numerical simulations and the simple
formula above, but at large n there is now a factor of 4
difference, which is again due to the additional interference
effects in the horizontal plane and the fact that there is now
a double integration over horizontal angle.
Finally we will also include in some calculations the

effect of electron beam energy spread, again by summing
the brightness of individual electrons:

ℬo ¼
Z∞

−∞
ℬoðεÞPðεÞdε;

where ε is the relative energy deviation, with Gaussian
probability distribution given by PðεÞ ¼ exp−ðε2=2σ2εÞ=ffiffiffiffiffiffi
2π

p
σε.

IV. COMPARISON OF THE GEOMETRICAL
OPTICS AND WAVE OPTICS MODELS

A. Introduction

In examining the validity of the geometrical optics model
it should be remembered that it implicitly assumes a
continuous and smooth distribution of intensity as a
function of horizontal angle, or in other words that the
interference effects, which are present in any periodic
magnet such as an undulator or wiggler, are “smoothed
out” in some way. Smoothing can occur for a variety of
reasons such as the effects of electron beam emittance and
energy spread, the angular acceptance and the degree of
monochromaticity of the radiation, in relation to the
harmonic number. We will now proceed to make detailed
comparisons between the geometrical optics and wave
optics methods of calculation, first regarding the spatial
distribution in the horizontal plane, and then the radiation
brightness, using unless otherwise stated the same case
examined in Ref. [24], see Table I.

B. Source size

Figure 5 shows the flux density distribution in the
horizontal plane calculated using the simplified wave optics
model described above and it can be seen that it agrees
remarkably well with the results shown in Fig. 15 of
Ref. [24].
Figure 6 shows results obtained using the geometrical

optics calculation. It can be seen that the broadening of the
source size as the horizontal acceptance angle increases is
much greater than the true result when calculated using
Eq. (5) (upper plot), however, as noted above, this is not
comparing the same situation. When instead the calculation
is performed correctly taking a horizontal cut of the image
at y ¼ 0 (lower plot) the result is now much more similar to
that of Fig. 5.

To compare the models in more detail, Fig. 7 shows
the numerically calculated rms and FWHM values as a
function of horizontal acceptance. The agreement of the
correct geometrical correct optics calculation, Eq. (8), with
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FIG. 5. Spatial flux density (relative units) in the center of the
wiggler, horizontal cut at y ¼ 0, calculated with the simplified
wave optics mode, Eqs. (11) and (12), with zero energy spread
and various aperture sizes: �0.125 mrad (blue), �0.5 mrad
(green), �1.0 mrad (red), �1.5 mrad (black); vertical aperture:
�0.05 mrad.
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FIG. 6. As Fig. 5, calculated using the geometrical optics
model; upper—integrated vertically, Eq. (5); lower—horizontal
cut at y ¼ 0, Eq. (8).
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the wave optics model is very good, whereas, as seen
above, Eq. (5) greatly exaggerates the source widening.

1. Effect of electron beam divergence

The authors of Ref. [24] maintain that “the image of the
source is insensitive to the electron beam divergence” and
they show an example (Fig. 14) where a factor of 2 increase
in horizontal beam divergence has a negligible effect. They
point out that the brightness function is convoluted with the
electron beam distributions at the center of the wiggler and
hence there can be no dependence on the length of the
device. This is true in principle, since as can be seen from
the expression for the spatial distribution for the electric
field,

Exðx; yÞ ¼
1

λ

Z
Exðθx; θyÞ

× exp

�
i
2π

λ
½ðθx − x0oÞxþ ðθy − y0oÞy�

�
dθxdθy;

the effect of the electron’s angle x0o, y0o is only to introduce a
phase factor which disappears when forming the intensity.
However, this proposition is only true if there are no limits
to the integration. Equation (11) shows that the effect of an
angular aperture introduces a dependence of the source
distribution on the beam divergence. In other words, since
angular acceptance has an effect on the source size (as
shown in Fig. 5 and Ref. [24]), there must equally be a
similar effect due to electron beam divergence.
Figure 8 reproduces the example of Ref. [24] using the

simplified wave optics and geometrical optics models. In
both cases the effect of an increase in horizontal divergence
from 31.6 μrad (blue curves) to 63.2 μrad (red curves) is
negligible, as found in Ref. [24], however this is not
surprising since the horizontal aperture in this case is

�125 μrad and so dominates over the electron beam
divergence. Figure 8 shows that increasing the divergence
further does produce a noticeable effect which is consistent
between the two models. Figure 9 examines this more
closely and shows the calculated spatial distribution for two
different electron beam divergences, excluding the electron
source size. The larger divergence clearly results in a
broadening of the distribution.
Figure 10 shows a further comparison of the geometrical

optics model with a wave-optics calculation, in this case for
a 3T multipole wiggler in NSLS-II, which is reported in
Ref. [21]. The plot shows the horizontal cut of the intensity
distribution of a focused image of the source for different
viewing angles. The agreement with Fig. 4 of Ref. [21] is
remarkable, both qualitatively and quantitatively. The
authors of Ref. [21] comment that the “partially-coherent
simulations reveal a number of features—deviations from
Gaussian shapes—in the resulting intensity distributions,
especially at the off-axis locations of the collecting aper-
ture,” however it is clear from this comparison that these
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FIG. 7. Horizontal source size as a function of horizontal
acceptance angle with zero energy spread, using various calcu-
lation methods. Blue (rms), red (FWHM)—simplified wave
optics model; cyan (rms), magenta (FWHM)—geometrical optics
model, horizontal cut at y ¼ 0, Eq. (8); green (rms), black
(FWHM)—geometrical optics model, integrated over y,
Eq. (5); dashed lines guide the eye, solid black line—Eq. (7).
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FIG. 8. Spatial flux density, photons/(s mm2 0.1% bandwidth),
in the center of the wiggler, horizontal cut at y ¼ 0, with
zero energy spread; blue—εx ¼ 1 nm rad, βx ¼ 1 m; red—εx ¼
2 nm rad, βx ¼ 0.5m; green—εx ¼ 4 nm rad, βx ¼ 0.25 m;
black—εx ¼ 8 nm rad, βx ¼ 0.125 m; upper—simplified wave
optics calculation, Eqs. (11) and (12), lower—geometrical optics
model, Eq. (8).
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features have nothing to do with coherence or interference
of waves, but in fact are entirely consistent with a
geometrical optics model based on incoherent addition
of intensities.

C. Brightness

We turn now to a comparison of brightness calculated
with the wave optics (i.e. Wigner function) and geometrical
optics methods. Given that the underlying assumption of
the geometrical optics model is a “smoothing out” of
harmonics, we clearly need to include multiple harmonics
in the wave optics calculation. This is very demanding of
computer time, hence the need for the simplication of the

problem described in Sec. III B above. We also need to be
in a regime where multiple harmonics can contribute. The
parameters chosen in Ref. [24] for simulation are not ones
where a smearing of harmonics is expected since both the
electron beam divergence and harmonic number are too
small to exhibit these effects.
Based on the angular separation between the nþ 1 th

harmonic off axis and the n th harmonic on axis, at the same
photon energy, we might expect smearing when

γσx0;y0 >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ K2=2Þ=n

q
:

In the present case with n ¼ 101 this would require σx0 to
be 148 μrad, which is much larger than the actual value of
32 μrad (Table I and Ref. [24]). However, the photon
energies of interest for a wiggler source are usually much
greater than the 101st harmonic. Such sources are generally
used around the critical energy, which in this case is close to
the 701st harmonic.
Figure 11 shows the calculated central brightness as a

function of horizontal emittance for the 701st harmonic,
including results when the angular ranges in Eq. (15) are
restricted such that only one harmonic is taken into
consideration, which agree with the SPECTRA results, and
also when the full integration range is included, covering
many harmonics (which is not possible with SPECTRA [28]).
When the emittance is small only the main harmonic
contributes and as expected the brightness exceeds that
calculated by the geometrical optics model. However, as
the emittance increases, the single harmonic result falls
below that given by the geometrical optics model, but the
result obtained by integrating over many harmonics is in
very good agreement with it. We note also that the
brightness obtained from the simple formula Eq. (4) is
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FIG. 9. Spatial flux density (relative units) in the center of the
wiggler, horizontal cut at y ¼ 0, with zero energy spread,
zero electron beam size; blue—εx ¼ 1 nm rad, βx ¼ 1 m; red
—εx ¼ 8 nm rad, βx ¼ 0.125 m, calculated with the simplified
wave optics model, Eq. (11).
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FIG. 10. Spatial flux density, photons/(s mm2 0.1% band-
width), of 10 keV radiation in the center of a 3T wiggler
(period ¼ 40 mm, number of poles ¼ 50) in NSLS-II (3 GeV,
0.5 A, εx ¼ 0.9 nm, εy ¼ 8 pm, βx ¼ 2 m, βy ¼ 1 m), as in
Ref. [21]. Angular acceptance �0.05 mrad horizontal,
�0.05 mrad vertical, at 0 mrad (blue), 0.5 mrad (red) and
1.0 mrad (black) off-axis horizontally, horizontal cut at y ¼ 0,
calculated with the geometrical optics model, Eq. (8).

0 1 2 3 4

x 10
−8

10
16

10
17

10
18

10
19

Horizontal emittance (m rad)

C
en

tr
al

 b
rig

ht
ne

ss

FIG. 11. Central brightness, photons/(s mm2 mrad2 0.1%
bandwidth), for the 701st harmonic as a function of horizontal
emittance, εy=εx ¼ 1%, zero energy spread. Blue circles—single
harmonic; green asterisks—single harmonic using SPECTRA;
red circles—multiple harmonics; black line—Eq. (3), magenta
line—Eq. (4).
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also in good agreement with these results. It is clear
therefore that the wave optics model for brightness does
agree with the simple geometrical model when the con-
ditions are such to allow a smearing out of the harmonics.
As further proof of this fact, we now introduce another

very important smearing mechanism which is ignored in
the calculations of Ref. [24], namely energy spread. We
expect a smearing of harmoncs due to energy spread
roughly when the following condition is satisfied:

σε >
1

4n

which in the present case (σε ¼ 0.001) would suggest
n > 250. Figure 12 shows the calculated central brightness
as a function of harmonic number, in the same format as
Fig. 11, now including both emittance and energy spread.
Again the single harmonic calculation agrees with the result
from SPECTRA, and at low harmonic numbers a single
harmonic dominates. At larger harmonic nunbers, roughly
in agreement with the criterion above, the result obtained
with multiple harmonics begins to deviate and at the same
time align more cosely with the result of the geometrical
optics model. The approximation for the geometrical model
is also in reasonable agreement with this, and it is clear that
if the terms in L are ignored that the agreement is very poor.
Thus again it is clear that the wave optics calculation tends
to that of the geometrical optics calculation when smooth-
ing of the harmonics takes place, in this case due to energy
spread.
Figure 13 shows the central brightness for n ¼ 401 as a

function of the number of wiggler periods, including both
emittance and energy spread. Again there is good agree-
ment between the wave optics calculation, when integrating
over multiple harmonics, with the geometrical optics
model. The approximation Eq. (4) agrees reasonably well
for small number of periods, but as expected deviates when
the wiggler length becomes too great. Once again, ignoring
the depth-of-field terms in Eq. (4) makes the agreement
much worse.
Finally, Fig. 14 shows the brightness as a function of the

off-axis angle in the horizontal plane for the 201st harmonic
and there is once again impressive agreement with the
geometrical optics model.

V. DISCUSSION

The above results clearly show that there is a depth-of-
field broadening of the horizontal source size as a function
of acceptance angle, and hence also angular divergence, in
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FIG. 12. Central brightness, photons/(s mm2 mrad2 0.1%
bandwidth), as a function of harmonic number, including
emittance and energy spread. Blue circles—single harmonic;
green asterisks—single harmonic using SPECTRA; red circles—
multiple harmonics; black line—Eq. (3), magenta line—Eq. (4),
dashed magenta line—Eq. (4) with terms in L set to zero.
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FIG. 13. Central brightness, photons/(s mm2 mrad2 0.1%
bandwidth), as a function of number of wiggler periods,
n ¼ 401, including emittance and energy spread. Blue circles
—single harmonic; green asterisks—single harmonic using
SPECTRA; red circles—multiple harmonics; black line—Eq. (3),
magenta line—Eq. (4), dashed magenta line—Eq. (4) with terms
in L set to zero.
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FIG. 14. Brightness, photons/(s mm2 mrad2 0.1% bandwidth),
as a function of angle off-axis in the horizontal plane, n ¼ 201,
including emittance and energy spread; blue circles—simplified
wave optics model with multiple harmonics; red line—
geometrical optics Eq. (2).
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both the wave optics and geometrical optics models. The
question then arises as to where these effects come from in
the wave optics model, when there is no obvious θxL
dependence, as in the case of geometric projection. The
answer lies in the line shape factor in the equation for the
electric field, Eq. (9), and how this relates to the spatial
distribution in the center of the wiggler, which is the Fourier
transform of the far-field radiation pattern Eq. (10). Near
the harmonic which occurs off axis at angle θx (at the
photon energy determined by the n th harmonic on axis) the
line shape factor can be written as follows:

sinðNπω=ω1Þ
sinðπω=ω1Þ

≈ NsincðNπδÞ;

where δ can be written in angular terms as

δ ¼ 2n
γ2

1þ K2=2
θxΔθx

and so the line shape factor becomes NsincðπθxL Δθx
λ Þ.

The transform of a sinc-function with first zero at
Δθx=λ ¼ 1=θxL is a top-hat function of width x ¼
�θxL=2 [29], and so we have recovered the result that
would be expected from simple geometrical considerations.
This explains, approximately, the extent of the spatial
distribution in both Fig. 5, where the broadening is
dominated by the large acceptance angles, and Fig. 9
(red curve), which is dominated by the large beam
divergence.
Concerning the calculation of brightness, an aspect

worth commenting on is the fact that only when the
integration is carried out over the full angular range in
Eq. (15), allowing multiple harmonics to contribute, do the
results agree with the geometrical optics model. On the one
hand, this seems quite natural as we are expecting har-
monics to become “smeared out,” and indeed multiple
harmonics are also included in the calculation of source
size, Eq. (11), but in the case of brightness it raises an
interesting point with regard to the validity of the Wigner
formulation as representing brightness. It is well known
that there are some difficulties with this definition, see for
example Refs. [15,18,20,23], most notably because the
brightness so defined can be negative, for example for even
harmonics. Despite this conceptual difficulty however,
it appears that the significant negative contributions to
the overall brightness are actually essential to achieving a
correct result. To take one example, for the 401st harmonic
in Fig. 12, calculations reveal that the positive contributions
to the brightness when integrating over the harmonics
amount to 1.98 × 1018, the negative to −0.55 × 1018, and
hence the overall sum is 1.43 × 1018 in standard units,
photons/(s mm2 mrad2 0.1% bandwidth), which is in good
agreement with the geometrical optics calculation.

VI. CONCLUSION

The geometrical optics model referred to in [24], namely
Eq. (7), was clearly not representative of all aspects of the
model. In particular, we have demonstrated here that the
spatial distribution in the center of the wiggler changes
substantially when a horizontal cut is taken rather than an
integral over the vertical position. As a result, there is much
less “depth of field broadening” predicted by geometrical
optics as a function of horizontal angle or aperture than
supposed in Ref. [24]. The incorrect application of the
geometrical optics model, and the limited analysis which
did not fully test its validity, led the authors of [24] to
incorrectly conclude that “depth of field effects do not
exist.”
On the contrary, we have shown here that the geometrical

optics and wave optics methods of calculation give con-
sistent results, both for source size and brightness, provided
there is sufficient “smoothing” of the interference structure.
In the case of calculating horizontal source size, large
acceptance angles can be sufficient to achieve this con-
dition, but for calculating central or peak brightness the
models only agree at a sufficiently high harmonic number
with either large electron beam divergence or when energy
spread is included.
A reconciliation between wave optics and geometrical

optics was achieved many years ago in the case of undulator
radiation, however it is only relatively recently that the more
complex case of wiggler radiation started to be analyzed
using a wave optics approach. Despite the extensive body
of work which has analyzed wiggler radiation in terms of
geometrical optics, and some measurements which are
consistent with it, Ref. [24] instead threw doubt on the
validity of thegeometrical optics calculation.We have shown
here however that the two methods are indeed consistent,
and so finally it now appears that geometrical and wave
optics can be reconciled also in the more complex case of
radiation from multipole wigglers.
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