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Parametric resonances of beam eigenmodes with a periodic focusing system under the effect of space
charge—also called structural instabilities—are the collective counterparts to parametric resonances of
single particles or of mechanical systems. Their common feature is that an exponential instability is driven
by a temporal modulation of a system parameter. Thus, they are complementary to the more commonly
considered space charge single particle resonances, where space charge pseudo-multipole terms are
assumed to exist already at finite level in the initial distribution. This article elaborates on the characteristics
of such parametric instabilities in 3D bunched beams—as typical in linear accelerators—for modes of
second (envelope), third and fourth order, including the transverse coupled “sum envelope instabilities”
recently discovered for 2D beams. Noteworthy results are the finding that parametric resonances can be in
competition with single particle resonances of twice the order due to overlapping stopbands; furthermore
the surprisingly good applicability of the stopband positions and widths obtained from previously
published 2D linearised Vlasov stability theory to the 3D non-Kapchinskij-Vladimirskij particle-in-cell
code studies presented here.
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I. INTRODUCTION

An understanding of space charge effects in beam
dynamics of both linear and circular high intensity accel-
erators is crucial for the design, operation, and optimization
of such accelerators. The most frequently considered space
charge effect is its impact on the tune spread for resonances
caused by magnetic field nonlinearities or magnet errors.
Here we consider, instead, the possibility that space charge
itself provides a resonant driving force in an otherwise
strictly linear periodic focusing structure. Generally speak-
ing, one needs to distinguish between two kinds of space
charge induced resonances: (i) the “single particle reso-
nance,”where the initial density profile—assuming that it is
nonuniform—already provides a space charge “pseudo-
multipole” as a resonance driving term; (ii) the parametric
resonance or instability, where a system parameter is
periodically modulated and drives an eigenmode of the
beam, which may have existed only on the noise level

initially—as is the case with the well-known envelope
instability in a stop-band near 90° phase advance.
The focus of this paper is on the second case. A useful

theoretical basis and guidance for parametric instabilities
in intense beams was laid in the 2D (coasting beam)
Vlasov equation perturbation analysis of a Kapchinskij-
Vladimirskij (KV) distribution in periodic focusing of
Ref. [1]. This work included the envelope instability
occurring at 90° phase advance and demonstrated that
similar parametric instability phenomena also exist in
higher order—even suggesting up to arbitrarily high order
for an initial KV-distribution. The envelope instability was
studied theoretically in further detail in Ref. [2], and more
recently in Ref. [3] as well as in Ref. [4]. Not surprisingly,
in realistic non-KV beams most of the high order insta-
bilities are absent or negligible. However, questions in
connection with 3D beams—in particular short ellipsoidal
bunches as in linear accelerators—and with unequal tunes
in x, y, or z have not been addressed systematically up to
now. For clarification we emphasize that the notation
parametric instability is not commonly used in literature
on the envelope instability. We find it adequate to
emphasize the parallelism with other disciplines, where
analogous phenomena exist, including the sum parametric
instabilities.
On the experimental side only limited data exist in spite

of an early observation of the phenomenon in periodic
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transport of electron beams by Pierce [5]. The first detailed
experiment using ions was with a coasting beam in a
periodic channel by Tiefenback [6,7] to test the theory of
Ref. [1]. It confirmed significant beam degradation above
90° phase advance and remained the primary experimental
evidence for over three decades. In a linac environment the
first test of the 90° stopband for bunched beams was
undertaken in 2009 in the UNILAC high intensity heavy
ion accelerator [8]. This experiment left open questions of
interpretation, which were addressed in recent theoretical
research clarifying the joint appearance of second order
parametric (envelope instability) and fourth order single
particle resonant space charge effects [9]. Additional
studies followed indicating that the subject remains of
interest, but also that full agreement between different
authors on the interpretation of the phenomena is still
pending [10,11].
The present study is an attempt to present these parametric

phenomena in 3D bunches in a more systematic way from
second to fourth order—including the recently discovered
2D “sum parametric effects” [12]. We proceed with a short
review of the analytical description of parametric resonances
(KV-instabilities) in periodic focusing in Sec. II; continue
with an application to the 90° stopband in Sec. III; present an
overview of parametric effects in second order including
sum resonances in Sec. IV; discuss higher order parametric
effects in Sec. V, present an overview stability diagram in
Sec. VI and offer an outlook in Sec. VII.
Note that all examples in the simulation part of our study

are related to short bunches, with longitudinal oscillation
periods close to betatron periods as typical for linear
accelerators; in circular accelerators the synchrotron period
is usually significantly longer, which requires reconsidera-
tion of our findings due to possibly significant effects
caused by Landau damping. For simplicity we also assume
equal emittances in all planes and leave out emittance
exchange effects, which are not driven parametrically, but
by anisotropy [13].

II. REVIEW OF PARAMETRIC RESONANCES IN
PERIODIC FOCUSING

A. Notations for parametric resonance

The most common case of parametric resonance in
accelerators is the single-particle “Mathieu stopband”. It
has the effect to prevent particle transport in periodic
focusing, if the phase advance is 180° per focusing period.
This follows the well-known behavior of a linear differ-
ential equation of Hill’s type, d2x=dt2 þ ½ω2 þ fðtÞ�x ¼ 0.
Hereω is the eigenfrequency of the free oscillation and fðtÞ
is assumed to be a parameter of the oscillating system,
which varies periodically with ω0. Exponential instability
of an arbitrarily small initial perturbation results, if

ω ¼ n
2
ω0: ð1Þ

Here n is a positive integer expressing the parametric
order. The most pronounced case of this parametric
resonance—with the widest stopband—is the “half-
integer” case, n ¼ 1, often called “parametric instability”
or “sub-harmonic instability” [14], with the envelope
instability as an example.
In parametric resonance theory involving several

coupled equations so-called “combination” resonances
are known to exist [14,15], where two or more eigenmodes
of the system jointly enable a parametric resonance via a
sum resonance condition ω1 þ ω2 ¼ ω0. Recently, such
“sum parametric resonances” between two envelope equa-
tions in 2D with coupling between two eigenmodes were
found [12], which will be applied here to transverse
coupling in ellipsoidal bunches.
Note that in the following ω relates to coherent eigenm-

odes of the beams, rather than to single particle frequencies.
The phase advances of particles—their rms values—are
written in linac notation as degrees per focusing cell: k0;x;y;z
without space charge, and kx;y;z with space charge. Applied
to circular accelerators, these quantities would have to
relate to a periodic structure cell.
Using linac notation the parametric resonance condition

Eq. (1) for an eigenmode in the x − x0-plane can be written
in degrees as:

ϕ≡mk0;x − Δkm;coh ¼
n
2
3600; ð2Þ

where m relates to the order of the resonance in the
x − x0-plane and Δkm;coh (generally > 0) stands for a
coherent space charge tune shift (in the present notation
it also includes the incoherent tune shift for simplicity). The
latter is proportional to the single particle tune shift and
depends on the specific eigenmode, hence on m, n and
possibly other parameters. In practice, Δkm;coh is a measure
for the shift of the center of stopband due to space charge.
For smooth approximation and KV-beams an overview on
coherent space charge tune shifts, with a distinction
between “even” and “odd” (skewed) modes, is presented
in Ref. [16]).
In the notation of circular accelerators the equivalent

condition is written as:

ϕ≡mQ0;x − ΔQm;coh ¼
n
2
N; ð3Þ

where N relates to the number of structure cells (super-
periods) per circumference and ΔQm;coh is again a coherent
tune shift.

B. Envelope instability

As an example of a half-integer parametric resonance we
consider the transverse envelope instability of an ellipsoidal
bunch in a symmetric periodic focusing-drift-defocusing-
drift array of quadrupoles, with longitudinal focusing
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provided by two thin rf gaps in the center of both drift
spaces in each cell. We use the 3D KV-envelope equation
option of the TRACEWIN code [17], a parameter setting
within a stopband of instability assuming k0;x;y ¼ 100°, a
moderate space charge leading to kx;y ¼ 82°, and the
longitudinal focusing arbitrarily set to k0;z ¼ 50°.
Results for the parametric instability case according to

ϕ ¼ 2k0;x;y − Δk2;coh ¼ 180° are shown in Fig. 1. The
initial exponential phase is followed by phases of saturation
of growth, damping, and again growth with a chaotic
exchange between x and y. Details of the lattice and
envelope periods are shown in the insert. The three rms
emittances are initially chosen equal, which results in
bunches slightly elongated from spherical. It should also
be noted that in the envelope model coupling between
different degrees of freedom is by means of the associated
space charge force modulation, which is a weak but not
unimportant effect.
The full response curve employing the envelope maxima

in a 500 cell long lattice is shown in Fig. 2 for the case of
k0;x;y ¼ 100° and variable kx;y. Note the sharp maximum at
the right edge, with a steep drop to zero, which is a strong
coherent effect. Entering with kx;y into the stopband at the
right edge has a strongly “attractive” effect: an infinitesimal
dilution of space charge causes a corresponding increase of
kx;y with more growth. This continues self-consistently,
until kx;y reaches the left edge of the—also dynamically
evolving—stopband. Entering at the left edge, instead,
pushes kx;y backwards and stops growth. An interesting
connection between emittance growth and the saturation
time needed for crossing the stopband is discussed
in Ref. [4].
A necessary criterion for instability is k0;x;y > 90° with at

the same kx;y below 90°. This enclosure of 90° justifies the
nomenclature 90°-stopband.

C. KV-instabilities

In a uniform density KV-beam propagated in a linear,
periodic focusing lattice space charge forces are also linear,
hence emittances remain invariant in the absence of
acceleration. Treating the envelope instability with the
KV-envelope equations as discussed in Sec. II B leads to

mismatch, but no rms emittance change or density non-
uniformity. This requires higher than second order para-
metric resonances, or instabilities, which have the effect
that different orders of space charge “pseudo-multipoles”
get parametrically driven from noise to a finite level.
Although 2D KV-distributions are not a choice for

realistic beam simulations, they are the only ones that
allow analytical calculation of the associated parametric
resonance stopbands, which was the motivation behind the
early theoretical work in Ref. [1]. Its goal was to explore
high current limits for very long bunches in the context of
the heavy ion inertial fusion ideas of the 1970s—at a time
when computer simulation of space charge dominated
beams was just at its beginning. In fact, we find that for
low order m they provide quite a useful basis for stopband
widths even for 3D short bunches and realistic
distributions.
In Fig. 3 we start with a short review of results from

Ref. [1], which apply to symmetric periodic focusing and to
equal tunes and emittances in both degrees of freedom. By
carrying out a perturbation analysis of the linearized Vlasov
and Poisson equations, second and higher order moments
are obtained, and their stability is checked. Stopbands are
defined as regions where nonzero exponential growth rates
are found.
All envelope instability stopbands require k0;x;y > 90°

and set in for kx;y slightly under 90°. This reflects the effect
of Δk2;coh, which includes also the incoherent tune shift.
The unstable envelope behavior of Fig. 1 is confirmed, but
comparing the curve for k0;x;y ¼ 100° with Fig. 2, it is noted
that at high intensity the latter is more extended by 10°; this
difference may be a result of comparing 2D coasting beams
with 3D ellipsoidal bunches.
Results for third and fourth order parametric resonances

are shown in the center, respectively bottom graphs of
Fig. 3. The third order mode stopband requires k0;x;y > 60°
and sets in for kx;y under 60°. Its width shrinks to zero for
k0;x;y → 60° (not shown here). The resonance is of the kind
ϕ ¼ 3k0;x;y − Δk3;coh ¼ 1

2
360°, hence a (half-integer) para-

metric instability.
In fourth order, with ϕ ¼ 4k0;x;y − Δk4;coh ¼ n

2
360°,

a larger number of stopbands exists, but only even modes
FIG. 1. Evolution of KV-envelopes versus cell number for
k0;x;y ¼ 100°, kx;y ¼ 82°.

FIG. 2. Complete stopband with relative growth of rms enve-
lopes for fixed k0x;y ¼ 100° as function of kx;y.
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are displayed in Fig. 3. For k0;x;y ¼ 120° we recognize
a pair of nearly adjacent stopbands for kx;y slightly under
90°, which can be assumed to shrink in width and merge to
the value k0;x;y ¼ 90° for vanishing intensity. Different
from the above envelope and third order examples, this
n ¼ 2 mode obeys an integer parametric relationship
ϕ ¼ 4k0;x;y − Δk4;coh ¼ 360°. However, also a fourth order
mode with half-integer relationship case ϕ ¼ 4k0;x;y −
Δk4;coh ¼ 1

2
360° exists for k0;x;y > 45°, if kx;y is slightly

under 45°. The associated patch of instability merges into
k0;x;y ¼ 45° for vanishing intensity.
We summarize this section by observing that due to the

linearized KV-model behind the diagrams of Fig. 3 some
caution is required in applying them to more general

distributions. Only part of the instabilities—primarily the
above listed modes—are retrieved in simulations and
applicable to waterbag distribution functions.
Note that the extended stopbands for the intensity

parameter exceeding “3,” for example, are not parametric
and a KV-artefact (discussed as “Gluckstern-modes” in the
literature); they have no relevance for realistic—sufficiently
broadened—distribution functions like waterbag, which is
discussed in more detail in Ref. [18].

III. THE 90° PARAMETRIC STOPBAND

The behavior of beams at 90° phase advance—assumed
as upper limit for focusing in linac design—has been the
subject of different interpretations about the actual mecha-
nism [8,9,11]. According to Ref. [9], the stopband is a
coincidence of an envelope instability and a fourth order
resonance, where the balance depends on the tune value and
other factors. Comparison with the location of stopbands in
Fig. 3 helps clarifying this interplay of the two modes.
We use the TRACEWIN code particle-in-cell option to

model a short bunched beam with identical parameters as
shown in Fig. 1. The bunch is longitudinally contained in a
rf bucket and has only a few degrees of phase width to
ensure linear longitudinal rf forces. The synchronous phase
is −90°, hence no acceleration. Thus changing tunes are
avoided, and results remain general and independent of a
specific scheme of acceleration. The number of simulation
particles is chosen as 128.000, which yields a sufficiently
low noise level for a grid parameter nc ¼ 8 [19]. The self-
consistent treatment of the bunch space charge potential
allows studying the evolution of all kinds of higher order
terms in the space charge potential.
We start with an example, where k0;x;y ¼ 120° and

initially kx;y ¼ 80°—located inside but close to the lower
edge of the stopband of the even mode fourth order
parametric resonance in Fig. 3. As the first example in
the top graph of Fig. 4 we employ the TRACEWIN option for
a transverse KV-distribution beam and uniform (random)
filling of the longitudinal phase plane ellipse, which is
locally (e.g., along the bunch) equivalent to a coasting
beam 2D KV-distribution. The transverse rms emittances of
the KV case increase quickly by about 80%–90% in the
average, with unambiguous indication of a fourth order
resonance in both planes (see four-fold phase space
symmetry shown at cells 8 and 18, which get only smeared
out at later times). Note that the initial distribution has
strictly uniform transverse density profiles with no space
charge “pseudo-octupole” content, except on the noise
level. Thus, this growth can be attributed only to an integer
(n ¼ 2) parametric resonance ϕ¼4k0;x;y−Δk4;coh¼360°,
which drives its amplitude to a finite level until saturation.
The existence of this mode is in agreement with the
linearized theory stopband prediction at 90° of Fig. 3.
For the initial waterbag (bottom graph of Fig. 4) the rms

emittance growth result is surprisingly similar, but with a

FIG. 3. Stopbands of second order (top, envelope instability),
third order (center) and fourth order (bottom) parametric reso-
nances as function of a dimensionless intensity parameter. Each
curve relates intensity to kx;y for a fixed value of k0;x;y (in degrees)
(source: Ref. [1]).
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steeper initial rise. A pronounced four-fold phase space plot
is already evident at cell 8. We conclude that here the
presence of a finite space charge “pseudo-octupole” in the
initial density profile results in an immediate “single
particle” (incoherent) resonance action following
4kx;y ≡ 4ðk0;x;y − ΔkincÞ ¼ 360°.
It is interesting to observe the time evolution of the

rms phase advance during the phase of emittance growth,
which results in a self-consistently increasing kx;y as
discussed in Sec. II B. The saturated value reached near
cell 50 in Fig. 5 indicates a kx;y ≈ 97°, which agrees well
with the upper—low space charge density—edge of the
fourth order mode stop-band in Fig. 3. This is in spite
of the fact that the latter is based on an instability of the
2D KV-distribution, while the simulation uses a 6d water-
bag distribution with an initial and not insignificant space
charge “pseudo-octupole.”
For both, KV and waterbag distribution, no indication

of envelope instability is found in this case. However,
with a slight increase of the starting intensity to reach the
value kx;y ¼ 73° (keeping k0;x;y ¼ 120°), we find in
Fig. 6 that between cell 10 and 20 a “switch” from the
fourth order mode structure to an envelope parametric
instability occurs. It is accompanied by a clear two-fold

symmetry in x − x0—as recently studied in more detail in
Ref. [9]. This phenomenon is also supported well by a
density plot along the channel as shown in Fig. 7, where the
bunch core density is graphically enhanced by contour
lines. The envelope activity between cells 10 and 20 is
accompanied by a strong coherent evolution, where
the motion no longer follows the initial matched beam

FIG. 4. rms emittances versus cell number for k0;x;y ¼ 120°,
kx;y ¼ 80° (inserts showing phase space plots at indicated cells)
for KV beam (top graph) and for waterbag distribution beam
(bottom graph).

FIG. 5. rms phase advances versus cell number for waterbag
example of Fig. 4.

FIG. 6. rms emittances with phase space inserts for
k0;x;y ¼ 120°, kx;y ¼ 73° for KV beam (top graph) and waterbag
distribution beam (bottom graph).
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contours, but 2 cells are needed to perform one period of
the mode, which reflects the 180° (or n ¼ 1 type) para-
metric resonance. Between cells 20–25 the coherent pattern
gradually turns again into the incoherent pattern of the
matched beam. The difference in behavior between the
weaker and higher space charge cases can be understood in
terms of collective detuning. As shown in Fig. 5 the weaker
space charge case of Fig. 4 indicates that within less than 10
cells the fourth order single particle resonance has shifted
the rms phase advance above 85°; by using the KV-
envelope solver of TRACEWIN we find that this value is
exactly the upper edge of the stopband of the envelope
instability for k0;x;y ¼ 120°. With higher intensity, instead,
the initial tune is lower and the—then faster growing—
envelope mode has more time to develop before kx;y
reaches the 85° edge.
We emphasize here that we cannot confirm the assertion

of Ref. [11] claiming that the envelope mode is part of
the fourth order mode. As a mechanism, the envelope
instability must be seen fully independent of the fourth
order single particle resonance: first due to its nature as
half-integer parametric resonance, second due to the fact
that it follows directly from the envelope equations, which
have no fourth order ingredients. This is not changed by
the fact that a preceding fourth order resonance may cause
a shift of tunes outside the envelope stopband—as
described above.
Note that the splitting of transverse emittances beyond a

certain cell in Fig. 4 is not explained in this context and is
possibly a parametric emittance exchange mode. We find
that the behaviour changes for larger space charge shift,
like in the example of Fig. 7. We also note that an initial
mismatch can induce an earlier appearance of the envelope
instability and even make it the dominant phenomenon [9].

IV. SUM PARAMETRIC RESONANCES

The occurrence of the envelope instability is not limited
to a stopband near 90°, if at least two degrees of freedom are

involved, where one tune is above, the other one below 90°
and sufficient coupling—here by space charge—between
the two degrees of freedom exists as was recently shown in
Ref. [12]. According to this work the space charge term
in the coupled envelope equations, alternatively an infini-
tesimally small skew motion of the beam, naturally provide
such a coupling. This may lead to a “sum parametric
resonance,” for which two different modes exist: (i) a
coupled (even) mode sum instability involving two
envelope modes and observing the parametric resonance
condition ϕ1 þ ϕ2 ¼ 360°, and (ii) a single odd (also called
“skew”) second order mode (of the kind described in
Ref. [16]) is driven unstable under the condition
ϕskew ¼ 180°. Following Ref. [12], both cases result in a
half-integer sum resonance condition of the form

k0;x þ k0;y − Δks;coh ¼ 1800; ð4Þ

where Δks;coh is again a space charge dependent coherent
shift specific to the particular mode. In smooth approxi-
mation it is found to be 5

4
Δkinc in the first case, and 7

4
Δkinc

in the second case, with Δkinc (> 0) the incoherent space
charge tune shift. Equation (4) causes instability, if one tune
is above 90° and the other one suitably below, while
satisfying the sum rule of Eq. (4).

FIG. 7. Density in y with contour plots for k0;x;y ¼ 120°, kx;y ¼
73° for waterbag distribution beam.

FIG. 8. Top graph: KV-envelopes versus cell number for
k0;x ¼ 60°, k0;y ¼ 140°; bottom graph: simulation results for
rms emittances versus cell number for waterbag distribution,
with phase space inserts at cell 120.
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An example of the coupled mode sum instability for
significantly split tunes of k0;x ¼ 60°, k0;y ¼ 140°, and
Δk ¼ 19.5°—well satisfying Eq. (4)—is presented in
Fig. 8 (with k0;z ¼ 50°). The KV-envelope shows a highly
periodic behavior of exponential growth and nonlinear
detuning. Note the difference with Fig. 1, where two
independently oscillating, but weakly coupled envelopes
produce a chaotic pattern in time. The corresponding full
simulation shows a significant rms emittance growth, while
the phase space inserts at cell 120 confirm the second order
nature of the coupled envelope mode.
As suggested by the 2D findings of Ref. [12], increasing

k0;y by 5 degrees to 145° excites the adjacent single odd
mode sum instability in our example, which is shown in
Fig. 9. The characteristic skewing of the x − y projection
requiring two consecutive cells for one skewing period
confirms the half-integer 180° condition. Whether or not
other types of coupled mode parametric resonances exist is
still open and needs further research.
This sum parametric resonance differs substantially from

the well-known linear coupling sum resonances, which
require an external skew magnet component and replace-
ment of the 180° condition by 360°—besides replacing the
coherent shift by the incoherent one.

V. HIGHER ORDER PARAMETRIC
RESONANCES

Beyond the cases discussed in Sec. III, other parametric
resonances have received less attention in high intensity
beam dynamics. This might be partly due to their weaker
effects, if compared with the 90° stopband phenomena. For
strong space charge effects as in high current linacs,
however, their effect may be non-negligible, if the respec-
tive resonance conditions are satisfied over a sufficient
large number of cells.

A. Third order instability

A third order parametric instability with 3k0;x;y −
Δk3;coh ¼ 180° is predicted in Fig. 3 for the 60° stopband.
This particular mode was believed to be the major current
limitation in the early work on heavy ion inertial fusion,
after it was realized that an upper limit of phase advance
was given by the 90° envelope instability stopband [1].
Note that a beam symmetric in x and y has no space charge
multipole to excite a third order resonance phenomenon,
except by driving it from initial noise via a parametric
instability.
The third order mode is retrieved by our 3D simulations

for the example k0;x;y ¼ 90°, if kx;y is varied over the range
predicted in Fig. 3. For a waterbag distribution and
kx;y ¼ 41.5°—close to the maximum tune shift in this
stopband—the result is shown in Fig. 10. The growth of
the rms emittance is preceded by a weak sixth order single
particle (incoherent) resonance 6kx;y ¼ 360° as indicated

FIG. 9. rms emittances versus cell number for k0;x ¼ 60°,
k0;y ¼ 145° for waterbag distribution, with x − y real space
inserts at consecutive cells 200 and 201.

FIG. 10. Top graph: rms emittances versus cell number for
k0;x;y ¼ 90°, kx;y ¼ 41.5° for waterbag distribution. Bottom
graph: phase space plots at cells 5 and 45.
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by the phase space symmetry at cell 5. This phenomenon is
analogous to that encountered in the interplay of fourth
order and second order as discussed in Sec. III. It is,
however, less pronounced here—possibly due to a weaker
effect of the sixth order term.
The main growth of rms emittance is accompanied by a

three-fold phase space structure as shown on the cell 45
phase space plot. The “triangles” repeat their orientation
every second lattice cell, which confirms the 180° con-
dition, where the pseudo-sextupole is driven parametrically
from noise until saturation. It results in more than doubling
of the rms emittances in this example. The highest level of
total growth is obtained for the case of maximum space
charge tune depression, which is given at the lower edge of
the stopband. While the emittance rises steeply in the
exponential phase of the instability, it levels off following
cell 50.
We find that the rms phase advance self-consistently

evolves close to kx;y ¼ 60°, which is the upper (i.e., low
space charge density) edge of the stop-band calculated in
Fig. 3. This agreement between waterbag simulation and
linearized 2D KV-Vlasov theory is remarkable—as men-
tioned before in Sec. III. The question must be raised here,
why the fast modulation of the space charge dependent kx;y
of individual particles during a longitudinal period does not
suppress the parametric instability effect.

B. Fourth order and beyond

In Sec. III we have already discussed the integer case
of the fourth order parametric resonance 4k0;x;y −
Δk4;coh ¼ 360°, which was found for the KV distribution.
For the initial waterbag distribution, instead, the picture
was dominated by the single particle fourth order resonance
4kx;y ¼ 360° driven by the initial space charge pseudo-
octupole.
The existence of a half-integer parametric instability

4k0;x;y − Δk4;coh ¼ 180° (noting that this Δk4;coh may be
different from the integer case) is predicted in the bottom
graph of Fig. 3, with a stopband near 45°. For a waterbag
distribution we choose k0;x;y ¼ 70° and kx;y ¼ 35°. The
latter value can be assumed to be the lower stopband edge,
if we extrapolate from the curves for 60° and 80° in Fig. 3.
Using k0;z ¼ 50° (kz ¼ 17°) as in the examples before, we
find a weak evidence of this mode, with only 4% emittance
growth. However, by raising k0;z to 120° we obtain a 30%
emittance growth as is shown in Fig. 11, with the phase
space insert at cell 20 confirming the fourth order structure.
We assume that the roughly 5 times faster effective
synchrotron oscillation plays a role and possibly reduces
the transverse Landau damping effect, which needs addi-
tional study. Note that during the instability phase—similar
to the parametric examples above—the effective tune rises
from 35 to 41 degrees, which is consistent with the upper
stopband ends in Fig. 3 (bottom graph) of the curves for
k0;x;y of 60° and 80°.

The half-integer nature eliminates the possibility of a
simultaneously appearing single particle fourth order res-
onance as is found in the simulation of Sec. III for the 90°
stopband and waterbag distribution. Theoretically, one
might expect an eighth order 8kx;y ¼ 360° single particle
resonance here, but no evidence for it is seen in the
simulation.
Using KV-beams we find still higher than fourth order

parametric cases in simulation—predicted by the analytical
theory to appear in all orders—but with relatively small
emittance effects. For corresponding waterbag beams no
clear signatures of such higher order parametric modes
could be seen. We thus conclude that for realistic beam
distributions parametric resonances are likely to be insig-
nificant beyond fourth order—at least in the range of
parameters studied here.

FIG. 12. Schematic stability diagram showing the location of
transverse space charge driven 2nd to 4th order parametric
resonances; and relevant 4th and 6th order single particle
resonances (hatched, uncoloured bars).

FIG. 11. rms emittances versus cell number for k0;x;y ¼ 70°,
kx;y ¼ 35° and waterbag distribution, with x − x0 insert.
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VI. SPACE CHARGE RESONANCE
STABILITY DIAGRAM

An overview of the above discussed transverse reso-
nance phenomena as confirmed by our simulations of non-
KV distributions is summarized in the schematic “space
charge resonance stability diagram” of Fig. 12—analogous
to the resonance diagrams commonly used for circular
machines. Analogous longitudinal resonances—not con-
sidered here—are equally marked for completeness. Note
that the different order stopbands in Fig. 12 are indicated in
the plane k0;x;y − k0;z, hence they are all shifted upwards by
finite space charge as compared with the limits for small
space charge. These shifts are only indicated schematically
and not representative for the actual shifts resulting from
theory or simulation. Besides the parametric stopbands of
order 2–4, which are all of the half-integer type, the
simultaneously found single-particle resonances of order
4 and 6 are also indicated (hatched, uncolored).
For completeness we have included the range above

120°. There, an integer type third order parametric reso-
nance of the kind 3k0;x;y − Δk3;coh ¼ 360° might be
expected theoretically. In simulations of waterbag or
Gaussian beams no indication was found for it, which
could be owed to the fact that integer parametric resonances
are much weaker than the half integer cases of the same
order and thus suppressed for non-KV beams. Instead,
simulations show that single particle resonances of the kind
mkx;y ¼ 3600h can be excited by the matched beam space
charge from higher harmonics of the lattice function, like a
sixth order resonance with m ¼ 6, h ¼ 2 (indicated by the
hatched bar at 120°), and even higher order as discussed
in Ref. [20].

VII. CONCLUSIONS AND OUTLOOK

This study shows that in high intensity beams a diversity
of purely space charge driven parametric resonances exists
—beyond the well-known envelope instability case. They
are all characterized by the fact that the space charge
driving term itself grows from noise or initial fluctuations
due to the parametric process, and unstable modes grow
exponentially until nonlinear saturation. Not insignificant
levels of rms emittance growth are a result—at least in the
cases up to fourth order. Parametric sum resonances with
noticeable emittance growth effects have also been iden-
tified to occur between the transverse planes, for example,
if tunes are suitably split.
For interpreting these low order instabilities in 3D as

parametric resonances it is found that a comparison with
previous analytical work for 2D KV-distributions provides
excellent guidance as far as location and extent of stop-
bands is concerned. For realistic distributions we have
retrieved, however, only the predicted half-integer (180°)
cases, while integer cases appear to be suppressed and high
order stopbands are completely absent. In at least two cases

we find that these half-integer parametric resonances are
accompanied by single particle resonances of twice the
order. Stopbands are overlapping, which may result in
competing effects.
In applications to very high-current linacs it may be

generally safe to avoid all of the discussed stopbands up to
fourth order even though linac lattices usually are not
strictly periodic, with a limited number of cells and
changing lattice structures as well as phase advances.
From a high intensity beam dynamics point of view,

future work needs to address more systematically the
phenomenon of parametric modes and reasons for their
suppression. Factors that might play a role are the type of
distribution function and the role of the longitudinal or
synchrotron oscillation. It must be assumed that transverse
Landau damping is not independent of the longitudinal
motion. Effective Landau damping might contribute to the
suppression of many of the theoretically predicted high
order unstable modes of 2D KV distributions. Further work
is needed to clarify, if fast synchrotron motion—as in our
short bunches—can explain why effective Landau damping
appears to be absent for the low order bunched beam
parametric instabilities found in simulation.
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