
Emittance compensation in split photoinjectors

Klaus Floettmann*

DESY, Notkestrasse 85, 22603 Hamburg, Germany
(Received 4 October 2016; published 11 January 2017)

The compensation of correlated emittance contributions is of primary importance to optimize the
performance of high brightness photoinjectors. While only extended numerical simulations can capture the
complex beam dynamics of space-charge-dominated beams in sufficient detail to optimize a specific
injector layout, simplified models are required to gain a deeper understanding of the involved dynamics, to
guide the optimization procedure, and to interpret experimental results. In this paper, a slice envelope
model for the emittance compensation process in a split photoinjector is presented. The emittance term is
included in the analytical solution of the beam envelope in a drift, which is essential to take the emittance
contribution due to a beam size mismatch into account. The appearance of two emittance minima in the
drift is explained, and the matching into the booster cavity is discussed. A comparison with simulation
results points out effects which are not treated in the envelope model, such as overfocusing and field
nonlinearities.
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I. INTRODUCTION

Shortly after the invention of photocathode rf guns [1,2],
the compensation of a correlated emittance contribution by
a simple focusing scheme was reported by Carlsten [3]. The
origin of the observed emittance contribution was identified
in simulations to be the variation of the transversely
defocusing space charge force with the longitudinal posi-
tion within the bunch, as it appears in short bunches with a
relatively high charge. Carlsten discussed the compensation
process by considering longitudinal slices of the bunch,
which spread out in phase space as a result of the varying
space charge force. Assuming a development of the beam
radius r as rðzÞ ¼ r0ð1þ bz2Þ, where b describes the local
defocusing strength of the space charge field (r0 is the
initial radius and z the longitudinal coordinate), he could
show that the projected emittance increases in a drift and
reduces again after a focusing lens. Characteristic features
of the emittance development in the analytical theory are an
emittance maximum coinciding with the maximum beam
size and two emittance minima in the vicinity of the beam
size minimum in the drift behind the lens. These features
can also be found in simulations (e.g., [4]) and experiments
[5] and are not explained by other models describing the
emittance compensation process.
While the emittance development in Carlsten’s model

essentially takes place in drift sections (the emittance stays

constant in the thin focusing lens), the emittance compen-
sation theory developed by Serafini and Rosenzweig [6]
starts by considering a beam in a constant focusing channel.
The Brillouin flow in a focusing channel is characterized by
a beam traveling with a constant beam size, which requires
that the defocusing space charge force is compensated by
the external focusing force. Small excursions around the
matched beam condition lead to an oscillation of the beam
envelope around the equilibrium beam size. Since the
period length of the oscillation turns out to depend only
on the strength of the external focusing force and not on the
strength of the defocusing space charge force, a periodic
emittance oscillation appears. Based on this result, the
theory is extended to the case of a combined focusing and
acceleration channel. Instead of a constant equilibrium
beam size, the beam needs to be matched to the so-called
invariant envelope in a combined channel. Alternative
derivations of the invariant envelope theory are presented
in Ref. [7], while an extension of the theory to elliptical
beams is discussed in Ref. [8].
In this paper, an analytic solution of the envelope

equation in a drift with space charge is derived as a basis
for the discussion of the emittance compensation process.
The analytic solution includes the emittance term, which is
not the case in the previously developed models. The
discussion is intended to describe the emittance develop-
ment in a so-called split photoinjector, i.e., an injector
where the short rf gun (typically, 1 1

2
cells) is followed by a

drift in which the beam is focused before it is matched into
a booster cavity to increase the energy and to freeze out the
emittance development. The appearance of two emittance
minima in the vicinity of the beam focus in the drift is
explained by considering the beam envelopes of two slices
of a bunch. A brief discussion of the invariant envelope
theory leads to the conclusion that the matching into the
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booster cavity which yields the minimal emittance in a split
photoinjector does not meet the invariant envelope con-
ditions. In the final section, simulation results are presented
and compared to the analytical model. Important aspects
which are not captured by the slice envelope model, such as
the generation of a beam halo by overfocused particles
and the slice emittance growth due to field nonlinearities
near the photocathode, are highlighted.

II. SPACE CHARGE FIELD OF A BUNCHED BEAM

Throughout the paper, cylindrical symmetry of all fields
is assumed. General characteristics of the space charge field
of rotational symmetric bunched beams can be illustrated at
the example of a homogeneously charged cylinder of length
L, radius R, and aspect ratio A ¼ R=L.
The longitudinal on-axis electric field component can be

calculated by direct integration as

Ezðζ; AÞ ¼ E⊥
z Hðζ; AÞ; ð1Þ

where E⊥
z ¼ Q

2πϵ0R2 is the field of an infinitesimal thin sheet

of charge Q. ϵ0 is the vacuum permittivity, and the function
Hðζ; AÞ is given by
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ζ is the relative longitudinal position in the bunch; i.e.,
ζ ¼ 0 is the center of the bunch.
Equation (1) describes the electric field in the rest frame

of a bunch; therefore, the bunch length is elongated by the
Lorentz factor γ as compared to the laboratory frame, i.e.,
L ¼ γLlab. The aspect ratio shrinks hence with increasing
beam energy, while H converges to zero. For very short
bunches, i.e., A > 1, H describes within the boundaries of
the bunch a linear relation between −1 (at ζ=L ¼ −0.5) and
þ1 (at ζ=L ¼ 0.5). The longitudinal field of a short bunch
is hence described by the field of an infinitesimal thin sheet
of charge, which is reached at the ends of the charge
distribution and a linear interpolation in between the ends.
Figure 1 (top) displays the linear depends for large aspect

ratios. The lowering of H for small aspect ratios is
accompanied by the development of nonlinearities at the
ends of the bunch.
The corresponding radial field can be calculated in linear

approximation by [9]

Erðr; ζ; AÞ ¼ El
rðrÞGðζ; AÞ; ð3Þ

where El
rðrÞ ¼ Qr

2πϵ0R2L, (r < R) is the radial electric field

inside an infinitely long cylindrical charge distribution, and
the function Gðζ; AÞ is given by

Gðζ; AÞ ¼ 1
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Figure 1 (bottom) shows a comparison of G with numerical
results for various aspect ratios A. For the numerical results,
the rms beam radius r ¼ R=2 is chosen. The uniformity of
G for very small aspect ratios A ≤ 0.01 reflects the
uniformity of the charge density in this example. For
aspect ratios between ∼0.05 and ∼1.0, the radial field
can vary substantially within the bunch, while it is more or
less constant for very small and for very large aspect
ratios. For large aspect ratios, the field amplitude shrinks
and tends to zero for very short bunches.
[Gðζ ¼ 0; AÞ ≈ 1=ð2AÞ for A > 1.] However, not only
the field amplitude shrinks for large aspect ratios, but
the radial field becomes also increasingly nonlinear as
shown in Fig. 2, where the radial electric field at ζ ¼ 0 is
plotted as a function of the radial position. The curves in the
plot are normalized such that at the rms radius a field value

FIG. 1. The function H [top, Eq. (2)] and G [bottom, Eq. (4)]
for various aspect ratios A and positive values of ζ=L. H is
antisymmetric and G is symmetric to the origin. The bunch
extends up to ζ=L ¼ 0.5 as indicated by the gray shading. Broken
lines in the lower plot show the results of a numerical integration
at a radius r ¼ R=2.
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of 0.5 is reached. Equation (3) matches within the accuracy
shown in Fig. 1 to this point and can therefore be used
to describe the evolution of the rms beam envelope.
The emittance growth introduced by the radial nonlinearity
of the fields will, however, be missed.
The discussion above applies to the beam in its average

rest frame. In terms of the bunch length in the laboratory
frame Llab the aspect ratio reads hence as A ¼ R=ðγLlabÞ.
Upon transformation into the laboratory frame, the trans-
verse electric field needs to be multiplied by γ. In addition,
the corresponding azimuthal magnetic field Bθ ¼ βγEr=c
needs to be taken into account. Here c is the velocity of
light, βc is the velocity which describes the Lorentz
transform from the average rest system into the laboratory
system, γ is the corresponding Lorentz factor, and Er is the
radial electric field in the rest system.
The transverse force due to the space charge field is

hence given as

Fr ¼
eQ

2πϵ0Llabγ
2

r
R2

Gðζ; AÞ: ð5Þ

Transferring to Cartesian coordinates, the differential
transverse envelope equation in a drift with space charge
follows as

σ00 −
P
4σ

Gðζ; AÞ − ε2

σ3
¼ 0; ð6Þ

where the transverse rms beam size and its second
derivative with respect to the longitudinal coordinate z
are denoted as σ and σ00, respectively, R is replaced by 2σ,
the geometrical beam emittance is denoted by ε, and P
stands for the generalized perveance of the beam:

P ¼ eQ
2πϵ0mec2Llabβ

2γ3

¼ 2I
IAβ3γ3

: ð7Þ

Here the average beam current I ¼ Qcβ
Llab

and the Alfvén

current IA ¼ 4πϵ0mec3

e ≃ 17 kA are introduced.
The envelope equation is valid only if the emittance is a

constant of motion. Thus, nonlinear terms of the space
charge force are ignored, and the generalized perveance
describes the linear defocusing space charge term only. The
dependence of G on the aspect ratio implies an additional
dependence of the envelope equation on the beam energy
but also on the bunch length and on the transverse beam
size. While the first is relatively constant in an injector
except very near to the cathode, the latter changes signifi-
cantly. This implicit dependence cannot be treated; i.e.,G is
assumed to be constant.
Moreover, G depends on the nonstationary charge

distribution itself and thus develops under the influence
of the space charge field and the beam emittance, which is
also ignored in the analytical treatment. Because, even if a
perfect cylindrical distribution is launched at the cathode of
an rf gun, it will be only approximately cylindrical at the
exit of the gun, and thusG will be different. Figures 1 and 2
illustrate the fields in a bunched beam only, for a realistic
distribution; e.g., in the drift behind an rf gun, significant
deviations are to be expected.
A full treatment of the space-charge-dominated dynam-

ics requires numerical simulations. The aim of the analytic
discussion below is to develop a simple model which
explains characteristic features and helps to interpret
numerical results. We will thus consider decoupled
envelope equations of two slices of a bunch with a fixed
perveance only. The difference in the development of the
two slices—one representing the central part of the bunch,
the other a slice in the head or the tail—leads to correlated
emittance contributions which can vanish again under
certain circumstances. Instead of the complex dynamics
in the rf gun, only a simple drift with a fixed beam energy
will be considered. This rigorous simplification is possible
because the basic correlation which builds up in phase
space is driven by the difference of the defocusing space
charge term and thus builds up in a drift space as well.

III. TRANSVERSE ENVELOPE EQUATION
IN A DRIFT WITH SPACE CHARGE

Equation (6) has no simple analytic solution, but a
solution in the form of an infinite polynomial series can
be formulated. The derivation is simplified by setting z ¼ 0
at the position of a focus, where the beam size is denoted as
σ0. Since the emittance is conserved, the beam envelope
needs to be symmetric with respect to the focus position
and thus follows the form
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FIG. 2. Normalized radial electric field versus the radius in the
center of the bunch (ζ ¼ 0). The aspect ratio for the most linear
curve is A ¼ 1.0, followed by A ¼ ð2.5; 5.0; 10.0; 25.0; 50.0Þ.
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σ ¼ ðσ20 þ az2 þ bz4 þ cz6…Þ1=2: ð8Þ

The coefficients a; b; c;… need to be determined. For
vanishing space charge forces, Eq. (8) has to converge to
the known solution without space charge, i.e., to a ¼ ε2

σ2
0

and b; c;… ¼ 0.
In the following, this ansatz is followed only up to the

fourth order in z, i.e., coefficient b. This yields a good
description of the beam envelope near a focus and a still
reasonable approximation in larger distance to the focus.
For a discussion of the convergence properties of the
polynomial solution, see the Appendix.
Introducing Eq. (8) into Eq. (6) leads to [Gðζ; AÞ ¼ 1]

σ20

�
a −

P
4

�
þ
�
6bσ20 − a

P
4

�
z2

þ
�
3a −

P
4

�
bz4 þ 2b2z6 ¼ ε2: ð9Þ

Equation (9) is fulfilled at z ¼ 0 by setting

a ¼ ε2

σ20
þ P

4
: ð10Þ

As required, a converges to ε2

σ2
0

for negligible space charge,

while it converges for P ≫ ε to P=4 as proposed by
Harrison [10] as the approximate value to describe the
envelope of a space-charge-dominated beam near the focus.
Ignoring terms proportional to z4 and higher, we find

furthermore

b ¼ aP
24σ20

: ð11Þ

In Fig. 3, the analytic approximation up to fourth order in z
is compared to a numerical integration of the envelope
equation. The highest generalized perveance of 10−5

corresponds to a beam current of ∼85 A at γ ¼ 10 and
is hence comparable to the beam conditions in the drift
behind a 1 1

2
cell rf gun. Note that here ε2

σ2
0

≪ P=4 holds in all

but the P ¼ 0 case.
The series approximation is not convergent; i.e., when

the beam size becomes significantly larger than the size at
the focus, an increasing number of coefficients needs to be
taken into account to improve the accuracy. In the vicinity
of a focus, however, a good agreement is reached even in
the case of a strong space charge contribution.

IV. CORRELATED EMITTANCE GROWTH
AND ITS COMPENSATION IN A DRIFT

The space charge dependence of the beam size as shown
in Fig. 3 and the dependence of the space charge force of
the longitudinal position inside a bunch as illustrated by
Fig. 1 (plus additional variations of the space charge force
due to a nonuniform current or due to energy variations
within the bunch) indicate a general source for a correlated
emittance growth.
For a discussion of this emittance growth and its

compensation, we consider two slices of a bunch, one
traveling under the influence of a high perveance, thus
representing the central part of the bunch, and a second one
traveling under the influence of a lower perveance, thus
representing a part in the head or the tail of the bunch. For
the examples shown in the following plots, the same
parameters as used for Fig. 3 with the high perveance
Ph ¼ 10−5 and the low perveance Pl ¼ 5 × 10−6 are used,
thus spanning a range of a factor of 2 in the perveance. Each
slice has an associated slice emittance (of equal value). The
emittance of the beam is then formed by a superposition of
the two slices with their respective orientation and form in
phase space. In the initial condition, the slices overlap
with σ0 ¼ 0.
In order to understand the emittance growth, we need to

know the orientation of the rms ellipse in phase space, in
addition to the slice size. The slope m of the ellipse follows
from a straight line fit to the phase space distribution:

m ¼ hxx0i
hx2i ; ð12Þ

where h i defines an ensemble average, x and x0 represent
phase space coordinates, and hxi ¼ hx0i ¼ 0 is assumed.
The slope can be related to the derivative of the beam
envelope with respect to z by

σ0 ¼ ∂
∂z hx

2i ¼ hxx0i
hx2i1=2 : ð13Þ
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FIG. 3. Development of the beam size in a drift with space
charge. Beam parameters: γ ¼ 10, εn=γ ¼ 10−7, P ¼
ð10; 5; 1; 0Þ × 10−6 (the highest perveance corresponds to the
highest beam divergence). Analytical approximation according to
Eq. (8) with coefficients c;… ¼ 0 (solid lines) and results of a
numerical integration of Eq. (6) (broken lines).
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Thus,

m ¼ hxx0i
hx2i ¼ σ0

σ
: ð14Þ

Right after the focus, σ0 ¼ 1
2σ ð2azþ 4bz3 þ � � �Þ

increases rapidly, while the beam size increases only mod-
erately. m increases, hence, and a fanlike structure opens in
phase space due to the variation of the perveance. Further
downstream, however, σ increases faster than σ0, and m
decreases again. Also, as demonstrated in Fig. 4, the spread
of the slopes shrinks, because the beam size of the high
perveance slice is growing faster than the beam size of the
low perveance slice. Thus, the fanlike structure in the phase
space closes again. The closing of a fanlike structure in phase
space in a drift is not unique to the case under discussion here
but also appears in the case of a time-dependent focusing; see
the discussion in Ref. [12] (Sec. XIII) for details.
It is instructive to discuss the case where the term

proportional to z4 in Eq. (8) is ignored in the development
of the slice envelope. Indicating the parameters for the high
perveance slice with index h and the parameters for the low
perveance with index l, the ratio of the slopes reads as

σl0σh
σlσh0

¼ σ20alzþ alahz3

σ20ahzþ alahz3
: ð15Þ

Equation (15) converges to 1 for large z; i.e., in this limiting
case, the two ellipses have the same slope and the emittance
growth is totally determined by the mismatch of the beam
sizes as indicated in Fig. 5.
The emittance for a pure beam size mismatch is given by

ε ¼ εs
σl

02 þ σh
02

2σlσh
≃ εs

al þ ah
2

ffiffiffiffiffiffiffiffiffi
alah

p ; ð16Þ

where εs denotes the slice emittance. The approximation in
the second step applies for large z to the case discussed
above.
If we now reverse the development of one slice envelope

by applying a focusing kick which transfers σ0 to −σ0 and
let the beam drift again, the same focusing kick of a linear
focusing element will reverse the development of the other
slice envelope exactly, and both slices will reach a focus
with the same slice size at the same longitudinal position.
The emittance growth is hence completely reversible in this
limiting case where m is equal for the two slices.
If m is not equal, it is not possible to reverse the

development of both slices exactly with a linear focusing
element as depicted in Fig. 6. For this numerical result, a
linear focusing kick is applied to two slices after 2 m initial
drift as shown in Fig. 3. The low perveance slice reaches a
lower focus earlier in the development than the high
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FIG. 4. Development of the slopes of the phase space ellipses
corresponding to Fig. 3 (only numerical results) for the case with
P ¼ 10−5 (solid line) and P ¼ 5 × 10−6 (broken line). Close to
the maxima of the slopes, also the difference between the slopes
is maximal. Further downstream, the spread reduces again.
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FIG. 5. Emittance growth due to a mismatch of the beam sizes.
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FIG. 6. Slice size development of the high perveance slice
(solid line) and the low perveance slice (broken line) after a
focusing kick from a numerical integration of the envelope
equation. The development within the first 2 m is shown in
Fig. 3; the focusing kick is applied at z ¼ 2 m. The envelopes of
slices with intermediate perveance will fall into the gray shaded
band.
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perveance slice. For the development of the beam emit-
tance, the relative orientation of the two ellipses is again of
basic significance. In the case of equal orientation, the
condition

σ0l
σl

−
σ0h
σh

¼ 0 ð17Þ

holds. Since we are interested in the conditions in the
vicinity of the focus, we can again ignore the higher orders
term in z in the analytic approximation. Equation (17) takes
hence the form

σ2h;0alΔzl − σ2l;0ahΔzh þ alahðΔz2hΔzl − Δz2lΔzhÞ ¼ 0;

ð18Þ

where the minimal slice sizes occurring at the positions zh
and zl are denoted as σh;0 and σl;0, respectively, and the
relative distances to the location of the minima are denoted
as Δzh ¼ z − zh and Δzl ¼ z − zl.
Expansion of Δz2lΔzh yields

Δz2lΔzh ¼ z3− 2z2zlþ z2l z− z2zhþ 2z2zlzh − z2l zh: ð19Þ

For the equivalent expansion of Δz2hΔzl, indices h and l
need to be exchanged.
The interest in this derivation lies in the fact that the term

proportional z3 cancels. Equation (17) is hence a quadratic
equation in z and thus has two solutions. This leads to two
emittance minima in the vicinity of the average focus, as
will be shown in the following.
Figure 7 shows the development of the slopes of the

phase space ellipses corresponding to the envelope devel-
opment shown in Fig. 6. Near the focus, the two lines cross

at two points as expected from the derivation above.
Solutions for intermediate perveance will not cross at
exactly the same points, but in close vicinity, so that two
emittance minima appear which correspond to aligned
phase space ellipses with a mismatch of the beam size.
In Fig. 8, the beam divergence is plotted as a function of

the beam size. Connecting lines which correspond to the
longitudinal positions marked in Fig. 7 indicate the relative
alignment of the phase space ellipses. At two points, the
connecting lines point toward the origin of the coordinate
system; i.e., the ellipses are aligned.
Figure 9 presents the development of the beam emittance

as it is derived from the development of the slice envelopes
shown in Fig. 6. In addition to the standard emittance
calculation, a calculation which ignores the individual slice
emittance is plotted. This reaches, in coincidence with
Figs. 7 and 8, a zero emittance at the locations of equal
orientation of the phase space lines. The real emittance at
these points is determined by a beam size mismatch, which
is larger at the location of the first minimum as visible in
Fig. 6. In cases of large slice emittance and/or large beam
size mismatch, this first emittance minimum can be
strongly washed out, so that only one emittance minimum
becomes evident. (Also, crossover particles, which will be
discussed in Sec. VI, contribute more to the emittance at the
first minimum than to the emittance in the second
minimum.)
The longitudinal distance of the two emittance minima as

well as the strength of the emittance oscillation depends on
the difference of the perveance in the two slices under
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FIG. 7. Development of the slopes of the phase space ellipses
for the high perveance slice (solid line) and the low perveance
slice (broken line). The plot corresponds to Fig. 6. The solutions
for slices with intermediate perveance are indicated by the gray
shaded band. Vertical lines at z ¼ 2.6, 3.4, 3.7, 4.2, and 5.4 m
indicate the positions referred to in Fig. 8.
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FIG. 8. Divergence versus beam size during the emittance
compensation process. The high perveance slice (red curve)
exhibits greater excursions in beam size and divergence than the
low perveance slice (green curve). Black lines connect points
which correspond to the same longitudinal position—marked in
Fig. 7—and thus indicate the development in time. At z ¼ 3.4 m
and z ¼ 4.2 m, the extensions of the connecting lines (broken)
cross the origin of the coordinate system; i.e., the slices are
aligned. The shorter length of the connecting line at z ¼ 4.2 m
corresponds to a smaller emittance contribution due to the beam
size mismatch.
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consideration. For small differences, the oscillation is
suppressed and the minima shift closer together, so that
also in this case only one shallow emittance minimum
becomes evident.
In the beginning of this section, the reversibility of the

slice size development was discussed. With a realistic space
charge model, the development of the individual slice sizes
turns out to be irreversible, if only a linear focusing element
is applied. However, the development of the average beam
size is, of course, still reversible, which can be used to set a
scale for the applied focusing strength. Compared to this
average reversibility condition, a 15% stronger focusing
kick is applied in the calculations for Figs. 6–9. This
reduces the beam size mismatch for the second emittance
minimum by shifting the beam envelopes in this area closer
together, while the mismatch for the first minimum is
increased. With even stronger focusing kicks, the mismatch
can be further minimized, and the envelopes can even cross
in the vicinity of the second minimum. For focusing kicks
lower than the average reversibility condition, the mismatch
for the first minimum is reduced and the location of the
second minimum shifts far to the right. The lower focus
appearing earlier in the development of the low perveance
slice favors, however, the second minimum, and a stronger
focusing kick is, in general, preferable.
A realistic bunch consists, of course, not of two slices

only but may be considered as composed of a number of
slices with different perveance. If additional slices with
intermediate perveance are included in our calculation, they
will fill the area between the two lines in Fig. 6; the lines
will, however, not all cross at the same locations in Fig. 7.
Whether the emittance development as plotted in Fig. 9 is
found for a realistic beam depends hence on numerous
factors such as the total spread of the perveances in the
beam and the slice emittance. Two emittance minima are

typically found for bunches with a uniform longitudinal
charge distribution, while often only one emittance mini-
mum is found for beams with a Gaussian longitudinal
charge distribution (large spread of the perveances and
large slice emittance) or for ellipsoidal beams (small spread
of the perveances).
For a beam starting from a cathode inside an rf gun, the

required correlation between slice size and orientation in
phase space at the entrance of the focusing element may not
be as strict as in our simple model. The rf focusing, for
example, leads to conditions where slices with the same
perveance in the head and the tail of the bunch have a
different orientation in phase space. Additionally, the
perveance of a slice is determined not only by the charge
distribution and the slice position within the bunch but also
by the energy of the slice, which depends again on space
charge effects but also on the rf phase. It is, hence,
conceivable that a careful tuning of the rf phase can
partially compensate other detrimental effects.

V. EMITTANCE COMPENSATION IN
FOCUSING CHANNELS

In a split photoinjector, the emittance compensation
process takes primarily place in the drift between the rf
gun and the first accelerating section. In the subsequent
accelerating section (booster cavity), the beam energy
increases so that the space charge force is reduced
[Eq. (5)]. In addition, the spread of the perveances is
reduced due to the decreasing aspect ratio (in the rest
frame) (Fig. 1). Besides the longitudinal accelerating force,
the beam is influenced by a ponderomotive transverse
focusing force in the booster cavity and possibly by the
field of an external solenoid which may be wrapped around
the accelerating structure.
Thus, the envelope equation needs to be extended by the

so-called adiabatic damping term γ0
γ σ

0 and a term describing
the rf and the solenoid focusing. In order to take the energy
dependence explicitly into account, we will moreover
replace the perveance by Ks ¼ Pγ3=4 and the geometrical
emittance by the normalized emittance divided by gamma,
ε ¼ εn=γ. For β ¼ 1, the differential envelope equation
takes thus the form

σ00 þ γ0

γ
σ0 þ K

γ2
σ −

Ks

γ3σ
−

ε2n
γ2σ3

¼ 0: ð20Þ

The term γ0
γ σ

0 takes the reduction of the angular spread due
to the growing longitudinal momentum into account; i.e.,
the transverse momentum does not change and the term
does not describe a dissipation of energy as the notion
“damping term” might suggest. γ0 ¼ ∂

∂z γ is the average
energy gain in terms of the rest energy of the electron.

K ¼ ð eBz
2mec

Þ2 þ γ02
8sin2ϕ sums up the focusing contribution of a

solenoid with constant field Bz (with the rest mass of the
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FIG. 9. Development of the beam emittance as calculated from
the high perveance and low perveance slices. The broken line
ignores the slice emittance; i.e., the slices are treated as lines in
phase space. The emittance minima coincide with the locations of
equal slopes as shown in Fig. 7.
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electron me) and the ponderomotive focusing term of the rf
with the rf phase ϕ according to Ref. [13].
Equation (20) has no general solution, but some special

solutions can be formulated. Particular interest exists in
solutions where the defocusing and the focusing terms are
balanced. The simplest case with γ0 ¼ 0, i.e., a solenoid
section without acceleration, has been discussed by
Brillouin [14,15]. The matched beam size is constant

and follows from K
γ2
σ ¼ Ks

γ3σ
þ ε2n

γ2σ3
as

σ2m ¼ Ks

2Kγ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Ks

2Kγ

�
2

þ ε2n
K

s
: ð21Þ

Small distortions Δσ and Δσ0 of the initial conditions lead
to an oscillatory solution around the matched beam size of
the form

σ ≃ σm þ Δσ cos kzþ 1

2
Δσ0 sin kz; ð22Þ

with the wave number k given by

k ¼
ffiffiffiffiffiffiffi
2K

p

γ
: ð23Þ

The wave number depends, hence, only on the external
focusing fields and not on the defocusing perveance term. It
is this property of the matched beam envelope which
stimulated the interest in this class of solutions for focusing
channels. Slices in a beam which is matched to the average
perveance will oscillate with a periodicity as given by the

wave number [Eq. (23)], and the phase space will resume
its initial state after each period. When the slices overlap in
phase space at the injection into the solenoid channel, the
emittance will hence be compensated again after one period
of the oscillation, as illustrated by the example shown in
Fig. 10. Note that the emittance after half a period reaches a
local minimum, but it is not fully compensated due to the
beam size mismatch Eq. (16). This characteristic is quite
general and can be observed, for example, also in periodic
focusing channels.
It is conceivable to choose other initial state conditions of

the internal structure in phase space which fit to the periodic
solution to achieve a periodic emittance compensation in
the focusing channel. Our ability to control the internal
structure in phase space is, however, limited, and a full
emittance compensation is not guaranteed.
The general solution for an acceleration section without

space charge [Eq. (20) with P ¼ 0] is [13,16]

σ2 ¼ σ2i cos
2θ þ 2γiffiffiffiffi

K
p σiσ

0
i cos θ sin θ

þ γ2i
K

�
ε2n
σ2i

þ σ02i

�
sin2θ; ð24Þ

where the index i indicates initial conditions and θ is
given by

θ ¼
Z ffiffiffiffi

K
p

γ
dz ¼

ffiffiffiffi
K

p

γ0
ln

�
γi þ γ0z

γi

�
: ð25Þ

For σ0i ¼ 0 and σ2i ¼ σ2m ¼ εnffiffiffi
K

p [cf. Eq. (21) with Ks ¼ 0]

leads Eq. (24) again to a constant beam size; i.e., the action
of the beam emittance and the focusing term are balanced.
For a small mismatch relative to the matched beam

condition, Eq. (24) can be rewritten in the form

σ ≃ σm þ Δσ cos 2θ þ 1

2
Δσ0 sin 2θ: ð26Þ

Without an external solenoid field and for sinϕ ¼ 1 (on-crest
acceleration),

ffiffiffiffi
K

p
reduces to γ0=2

ffiffiffi
2

p
. For parameters which

are typical for the first acceleration section in a split photo-
injector as γi ¼ 10, γ0 ¼ 40, i.e., 20 MV=m accelerating
gradient, 2θ ¼ π is reached after a distance of 21 m, while it
would take nearly 2 km to complete the first period. The
oscillation is not damped but strongly stretched. In terms of
the energy gain γiþγ0z

γi
, the first period is completed when the

energy is increased by a factor exp ð2 ffiffiffi
2

p
πÞ ¼ 7228. Adding

solenoids reduces the length scale but for technically feasible
fields not in a fundamental manner. In a realistic setup with a
finite length of the accelerating structures and other inter-
ruptions, wewill therefore not be able to observemore than a
small fraction of a period rather than an oscillation.

FIG. 10. Example for an emittance oscillation in a constant
focusing channel. The average beam size (blue curve) is matched
according to Eq. (21). It stays hence constant, while two slices
(red and green curves) in the beam and hence also the beam
emittance (cyan curve) oscillate due to the difference in the
perveance. After half a period, a local emittance minimum is
reached. Here the emittance is given by the beam size mismatch
[cf. Eq. (16)]; only when the slice emittance is ignored (magenta
curve) is a full emittance compensation already reached at this
point.
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Balancing the focusing term with the defocusing space
charge term leads to a solution of Eq. (20) for the case
εn ¼ 0 [6].
In order to fulfill the condition

K
γ2

σ ¼ Ks

γ3σ
; ð27Þ

the beam size has to shrink according to

σ ¼ σi

ffiffiffiffi
γi
γ

r
ð28Þ

and thus

σ0 ¼ −
γ0

2γ
σ;

σ00 ¼ 3γ02

4γ2
σ: ð29Þ

Introducing Eqs. (28) and (29) into Eq. (20) with εn ¼ 0
leads for Bz ¼ 0 and sinϕ ¼ 1 to

γ0 ¼ 2

σi

ffiffiffiffiffiffiffiffi
2Ks

3γi

s
: ð30Þ

Note that the required initial beam divergence σ0i ¼ − γ0
2γi

σi
is just introduced by the entrance kick of a cavity when the
incoming divergence is zero [13]. Thus, if we adjust the
accelerating gradient in accordance to Eq. (30) and match
the initial beam divergence outside of the cavity to zero, the
beam will travel on the so-called invariant envelope [6]; i.e.,
the beam size will shrink proportional to

ffiffiffiffiffiffiffiffiffi
γi=γ

p
.

The space charge force, however, turns out to be only
partially compensated by the ponderomotive focusing force
of the rf. A full compensation would require an acceleration
which is larger by a factor

ffiffiffi
3

p
as can be seen by a direct

comparison of the engaged forces. The beam envelope is
hence determined by the work which the convergent beam
has to perform against the partially compensated space
charge field and does not correspond to a static equilibrium
as in the case of the classical Brillouin flow.
A small mismatch relative to the matched beam con-

ditions leads again to a solution as described by Eq. (26),
where now σm is given by σi

ffiffiffiffiffiffiffiffiffi
γi=γ

p
[6], while θ [Eq. (25)]

depends only on the focusing force and thus does not
change.
The function of the first accelerating section in a split

photoinjector is to convey a space-charge-dominated beam
into an emittance-dominated beam while concluding the
emittance compensation process in a way that the emittance
minimum is reached when the beam becomes fully emit-
tance dominated. The transition from space-charge- to
emittance-dominated dynamics takes place over a much

shorter distance than the periodicity of an emittance
oscillation in a cavity channel. Thus, we do not have to
rely on the dynamics of the invariant envelope.
A proper continuation of the emittance compensation

process in the accelerating section can be achieved for the
gradient suggested by the invariant envelope condition but
also for other gradients within a broad parameter range as
shown in Figs. 11 and 12. For these calculations, the
position of the accelerating section has been varied to
minimize the final emittance (for a fixed strength of the
focusing element in the upstream drift). For the beam size
minimum, i.e., σ0 ¼ 0, Eq. (30) yields γ0 ¼ 50. However,
when the acceleration starts at the position of the beam size
minimum (z ¼ 3.7 m), the gradient has to be reduced to
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FIG. 11. Emittance (blue line) and slice size (high perveance,
solid line; low perveance, broken line) in an accelerating section
with γ0 ¼ 41. The development between z ¼ 0 and 3 m is shown
in Figs. 3–9. The starting position of the accelerating section is
at z ¼ 3.9 m.
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FIG. 12. Emittance (blue line) and slice size (high perveance,
solid line; low perveance, broken line) in an accelerating section
with γ0 ¼ 82. The development between z ¼ 0 and 3 m is shown
in Figs. 3–9. The starting position of the accelerating section is at
z ¼ 4.1 m.
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γ0 ¼ 29.8 to achieve the best emittance compensation. For
higher gradients, the acceleration section has to be shifted
downstream, i.e., closer to the second emittance minimum
in order to minimize the final emittance. This is also found
in tracking simulations; see, for example, Ref. [17]. The
plots show examples for γ0 ¼ 41 and γ0 ¼ 82. In all cases,
the final emittance is practically given by the slice
emittance; i.e., the compensation is nearly perfect (there
are marginal differences which are smaller for the higher
gradients), but in no case is the beam matched to all
invariant envelope parameters.

VI. DISCUSSION OF SIMULATION RESULTS

The considerations of the previous sections can help to
guide the numerical optimization of an injector and to
interpret numerical or experimental results, but they do not

capture the complete dynamics in a photoinjector. In the
following, simulation results will be discussed in view of
the above developed theory with a focus on aspects which
are not described by an envelope model. Different analysis
tools which can be used in a simulation work will be
presented.
The basic layout of the example injector follows the design

of the photoinjector for theEuropeanXFELproject [18]. The
electrons are generated in a 1 1

2
cell rf gun operating at

1.3GHz at a gradient at the cathode of 60MV/m. A solenoid
located 0.4 m downstream of the cathode focuses the beam,
which is then matched into a section of four TESLA-type
cavities operating at an accelerating gradient of 21 MV/m
(γ0 ¼ 41). The entrance position of the cavity section, 4 m
downstream of the cathode, has been optimized so as to
optimize the transverse emittance at the end of the cavity
string. The simulations have been performed with the
program ASTRA [19].
Figure 13 shows the development of the beam size and

the aspect ratio along the injector, and Fig. 14 the
corresponding development of the projected beam emit-
tance. The round beam is launched with an rms spot size of
0.75 mm and an initial emittance of εn ¼ 0.55 mradmm at
the cathode. A cylindrical charge distribution of 20 ps
FWHM length with 2 ps rise or fall time and 1 nC charge is
assumed. Both the spot size and the beam emittance
increase rapidly up to the center of the solenoid
(z ¼ 0.4 m). During the emission, the aspect ratio
decreases from infinity (zero charge) up to 2 when the
emission is completed. Within the gun cavity, it decreases
further, both, due to the increasing beam energy and the
increasing bunch length. In the drift, the aspect ratio
follows the beam size development and reaches values
between 0.075 and 0.01. Thus, the variation of the space
charge force inside the bunch is already reduced close to the
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FIG. 13. Transverse beam size (green line) and aspect ratio (red
line) in the injector. The maximum beam size occurs inside the
solenoid at 0.4 m, and a second, local maximum occurs at the
entrance of the cavity section at ∼4 m. The beam size minimum
at 3.3 m is close to the local emittance maximum. The effect of
overfocused particles onto the beam size is negligible.
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FIG. 14. Development of the projected transverse emittance in
the injector. The solid line shows a standard emittance calcu-
lation, while in the calculation shown as a dashed line over-
focused particles have been ignored.
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FIG. 15. Development of the slopes of two slices in the drift
behind the solenoid. One slice is in the center (solid line), and the
other in the head of the bunch (broken line). No acceleration is
applied in this case.
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beam size minimum, except for a very pronounced falloff at
the head and the tail; cf. Fig. 1.
The emittance development shows in the very beginning

the oscillations induced by the rf focusing. In the drift
following the solenoid, the emittance decreases similarly as
in Fig. 9. In Fig. 15, the slopes of two slices—one in the
center, the other in the head of the bunch—are presented.
For this calculation, no accelerating cavity is taken into
account. The two emittance minima are reached in the
vicinity of the crossings of the two lines at ∼2.8 m and
∼4.5 m. The final emittance (Fig. 14) is minimized when
the beam is divergent at the beginning of the acceleration
section (Fig. 13) comparable to Fig. 11. The emittance
converges smoothly with small oscillations introduced by
the rf focusing to its final value, while the aspect ratio
shrinks rapidly due to the acceleration.
The two lines in Fig. 14 present two variants for the

emittance calculation. The solid line shows a standard
calculation for all particles, while for the calculation shown
as a dashed line overfocused particles have been ignored.
The difference is explained in the following and illustrated
in Fig. 16.
Because of the scaling of the space charge force as 1=R2

[Eq. (5)], particles need to work against an increasing field
when the beam is focused, so that they lose transverse
momentum before they are reflected back without crossing
the central axis of the beam. Ideally, particles stay on their
relative transverse position within a bunch. This ideal case
assumes, however, a stationary particle distribution, which
is not valid for a space-charge-dominated beam, as illus-
trated in Fig. 16. The original cylindrical distribution
assumes an ellipsoidal form in the drift up to the focus.

Because of the falloff of the space charge field in the head
and the tail of the bunch, particles are here not sufficiently
defocused by the space charge field. They move faster
toward the beam axis than the beam radius shrinks, and,
thus, they can reach the low field region near the beam axis
with sufficient momentum to pass through. This process
cannot be described in a slice envelope model, because the
space charge force scales with the average bunch radius and
not with the local slice radius. After passing the beam axis,
the particles are accelerated again by the space charge field.
Since the beam size is still shrinking, the space charge field
is higher during the acceleration phase than it was during
the deceleration phase; i.e., in total, the overfocused
particles gain transverse momentum from the space charge
field. It is this asymmetry in the particle motion which leads
to the significant emittance contribution of overfocused
particles.
In the simulation, a simple algorithm declares particles as

overfocused when they move diagonally from one quadrant
of the Cartesian space coordinate system into another. The
algorithm is active only in the drift between the exit of the
solenoid and the entrance of the cavity string. The majority
of particles found with this method are located in the head
and the tail of the bunch as shown in Fig. 16. Only a small
fraction of about 0.2% of the total number of particles are
distributed over the whole length but close to the transverse
center of the bunch. These particles cross over due to the
random motion described by the beam emittance. Since
overfocused particles are not sufficiently defocused by the
space charge field, the crossover appears already in front of
the focus of the full beam, mainly in the range from z ¼ 2
to 2.5 m.
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FIG. 16. Particle distribution (radius versus longitudinal position ζ in millimeters) in the vicinity of the beam size focus at z ¼ 2.0, 2.5,
2.8, 3.3, and 3.8 m. Particles which have been detected as overfocused—plotted as red stars on top of a density map of the not
overfocused particles—spill out in the head and tail of the bunch. In total, 1.8% of the particles are declared as overfocused.
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Figure 14 illustrates the effect of the overfocused
particles onto the beam emittance, for which the relative
orientation of the two particle ensembles in phase space—
overfocused and not overfocused—is of relevance. At the
first emittance minimum, the main beam is still convergent,
while the overfocused ensemble is divergent, so that the
total emittance is strongly influenced. The first emittance
minimum is flattened nearly to a plateau in the standard
calculation, while it shows up as a pronounced minimum in
the calculation without the overfocused particles. Later,
both ensembles are divergent, so that the effect onto the
total emittance is smaller. Ignoring the overfocused par-
ticles, a final emittance of 0.75 mrad mm is reached, while
it is 1.1 mrad mm for the complete particle ensemble. The
mismatch of the two ensembles in this example is relatively
large, because a relatively high gradient has been chosen in
the cavity string section. A better matching between over-
focused and not overfocused particles can be reached at a
lower gradient.
In order to illustrate the influence of the correlated phase

space distortions onto the emittance, it is possible to
remove correlations in phase space for the emittance
calculation. With the standard emittance formula, only
linear correlations in the transverse coordinates x − px
and y − py are removed, respectively. This approach
can be extended by fitting a plane to the x − px − ζ
coordinates and subtracting the correlations from the
particle momenta as

p̂x;i ¼ px;i − C0 − C1xi − C2xiζi − C3xiζ2i : ð31Þ

(The equivalent calculation is performed for the orthogo-
nal plane.)
xi, px;i, and ζi are the initial coordinates of the ith

particle. The fit coefficients C0–C3 describe a curved plane
in the x − px − ζ space. C0 corresponds to an offset and C1

to the average liner correlation as in the standard emittance
calculation, C2 describes a linear correlation in ζ as it can

be introduced, e.g., by the rf focusing, and C3 describes a
quadratic correlation in the longitudinal coordinate as it is
introduced by space charge forces. After subtracting the
correlations, the so-called reduced emittance follows from a
multiplication of the rms values as εred ¼ σxσp̂x

.
The symmetric part of the space charge force is only

approximately described by the quadratic term. A further
expansion of Eq. (31) to even higher orders is, however, in
general not necessary.
The reduced emittance is compared to the standard

emittance in Fig. 17. For both calculations, the overfocused
particles have been ignored. The reduced emittance shows
much smaller excursions than the standard emittance. The
influence of the beam size mismatch, which is not removed
by this method, becomes especially visible near 2 m. At the
first emittance minimum, the reduced and the standard
emittance are equal, since here also the standard emittance
is increased only by the beam size mismatch. The differ-
ence between the absolute minimum of the reduced
emittance (0.70 mrad mm at ∼3.8 m) and the end value
(0.75 mrad mm) indicates a small beam size mismatch of
the final emittance. Thus, correlations in the orientation of
slices are very well compensated; still, the final emittance is
larger than the initial beam emittance of 0.55 mrad mm.
This discrepancy between the initial and final emittance

is related to the dynamics in close vicinity of the cathode
[20] and shows up in the (central) slice emittance as
presented in Fig. 18.
For this plot, the emittance of a subensemble of particles,

which forms at the end of the beam line, a slice of 90 μm
length in the longitudinal center of the bunch is calculated.
Because of differences in the effective accelerating fields
near the cathode and differences in the path length, the
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FIG. 17. Comparison of the standard emittance (solid line) and
the reduced emittance (dashed line) along the injector beam line.

FIG. 18. Emittance of a 90 μm long slice in the center of the
bunch along the beam line. Correlations with the longitudinal
coordinate are not significant due to the short length of the slice.
The insets depict the radial phase space (r − r0) at z ¼ 0.01, 0.5,
1.0, 3.3, and 3.8 m. The upper row shows the convergence or
divergence of the beam, respectively. For the bottom row, the
linear correlation has been removed to pronounce the curvature.
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longitudinal position of particles in the radial border
changes relative to the position of particles in the center
of the distribution, while the beam travels through the beam
line. Thus, the subensemble starts as a curved, dish-shaped
object and straightens up toward the end of the beam line.
The longitudinal dynamics introduces energy-position
correlations, which influence also the transverse divergence
angle but appear to be insignificant as compared to the
direct space charge effects.
The nonlinear transverse space charge field of bunches

with a large aspect ratio (cf. Fig. 2) drives the emittance of
the slice right at the cathode from 0.55 mrad mm to about
1.0 mrad mm. At z ¼ 1 cm, the beam is highly divergent
and the divergence increases with increasing radius (first
inset in Fig. 18). This results in a dilution of the space
charge density at the rim of the distribution which leads in
the following to a reduction of the space charge field in this
area. Particles in the diluted area will hence experience a
reduced space charge field—as compared to the linear field
of a uniform distribution with A < 1—so that the curvature
in phase space reduces again. The effect is self-linearizing;
however, the dynamics does not stop when the emittance
minimum is recovered at z ¼ 1.5 m but continues to bend
the phase space so that the slice emittance increases again.
The process repeats similarly; however, the phase space
tends to fold over, so that the minimal emittance cannot be
recovered again.
The observed development varies in its details with the

applied focusing strength of the solenoid, which needs to be
optimized for the emittance compensationprocess.Moreover,
it is different for different longitudinal positions within the
bunch, i.e., for different slices, because the induced non-
linearity changes during the emission of the bunch.

VII. SUMMARY

The slice envelope model discussed in this paper is based
on an analytic solution of the beam envelope equation in a
drift and takes both the space charge term and the emittance
term into account. This allows us to describe the emittance
development including the emittance contribution originat-
ing from a beam size mismatch. The appearance of two
emittance minima close to the beam size minimum is
related to the difference of the slopes of the phase space
ellipses in the divergent state, before the beam is focused by
a solenoid lens. The smaller beam size mismatch at the
second emittance minimum is the result of the shifted focus
positions of slices with different perveance.
The discussion of the emittance compensation in focus-

ing channels revealed that only every second minimum
leads to a complete emittance compensation, while the
local minima in between are somewhat larger due to the
beam size mismatch. When the final emittance is mini-
mized, the matching into the booster cavity does not follow
the invariant envelope conditions in a split photoinjector
design.

In the final section, numerical results are compared to the
slice envelope model. The final emittance of the complete
particle ensemble is influenced by the matching between
the main part of the bunch and a small fraction of over-
focused particles which are generated already before the
beam size minimum is reached. Another factor which is not
captured by the slice model is the emittance growth due to
space charge field nonlinearities near the cathode. The
induced curvature in the transverse phase space has a
tendency to self-linearize; the process is, however, also
influenced by the focusing conditions in the injector beam
line. The ideal parameter setting which minimizes the final
emittance represents, hence, a compromise between the
different emittance contributions which cannot be opti-
mized independently of each other.
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APPENDIX: CONVERGENCE CRITERION
FOR THE POLYNOMIAL SOLUTION

When more coefficients are taken into account in the
generating Eq. (8), they show up only in terms proportional
to orders higher than z4 in the extended Eq. (9), and thus
they can be determined by successively setting terms with
increasing order in z equal to zero. This yields for the next
two orders

c ¼
�
bP
4

− 3ab

��
ð15σ20Þ;

d ¼
�
cP
4

− 2b2 − 10ac

��
ð28σ20Þ: ðA1Þ

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

rete
marap ecnegrevnoc

z [m]

FIG. 19. Development of the convergence parameter Eq. (A3) of
the polynomial series in a drift. Fourth-order approximation (red
curves) and eighth-order approximation (green curves). Beam
parameters: γ ¼ 10, εn=γ ¼ 10−7, and P ¼ ð10; 5; 1Þ × 10−6.
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It is also possible to set up the equation for the asymmetric
case where z ¼ 0 is not a focus; see [21] for details.
Note that, in the limiting case ε2

σ2
0

> P
4
, a reduces to ε2

σ2
0

; all
following coefficients remain, however, finite as long as P
is not exactly zero. Thus, space charge forces can be
ignored only if in addition to ε2

σ2
0

> P
4

the condition

σ20 þ ε2

σ2
0

z2 > bz4 is fulfilled. The emittance-dominated

regime appears in this sense to be fundamentally limited
to small beam sizes. The argument is, however, alleviated
by the drop of the perveance with an increasing aspect ratio
as discussed in Sec. II.
The envelope equation without an emittance term can be

directly integrated to define a convergence parameter. Form
σ00 ¼ P

4σ follows [11]:

σ02 ¼ P
2
ln

σ

σ0
ðA2Þ

and thus

σ

σ0

�
exp

�
2σ02

P

�
¼ 1: ðA3Þ

In Fig. 19, the convergence parameter as defined by
Eq. (A3) is compared for the fourth-order (red curves) and
the eighth-order (green curves) approximation of the
polynomial solution for different values of the beam
perveance. When the convergence parameter gets signifi-
cantly smaller than 1, the polynomial approximation
deviates from numerical results; cf. Fig. 3. As example,
at a convergence parameter of 0.4, the ratio σ=σ0 ≈ 3.3 and
the polynomial solution deviates by about 10% from the
numerical result in the fourth-order approximation.
While the onset of the falloff of the convergence

parameter is shifting towards larger z, it is also getting
steeper with the increasing number of orders and, thus, the
green lines cross the corresponding red lines in Fig. 19 at a
convergence parameter of ∼0.8. The approximate results
are therefore improved only up to the corresponding
positions in z, while they deviate even stronger for larger
z. To shift the falloff to significantly higher values in z
would require one to take many more orders in the
polynomial expansion into account [21].
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