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The future regimes of operation of the LHC will require improved control of β� measurements to
successfully level the luminosities in the interaction points. Themethod of kmodulation has been widely used
in other machines tomeasure lattice beta functions. In the LHC, kmodulation of the closest quadrupoles to the
interaction point (IP) is themost accuratemethod tomeasure β� at the IP. This paper highlights the challenge of
high precision tune measurements (down to 10−5) for the correct determination of β� in the high luminosity
LHC. Furthermore it presents a new analytical method for the calculation of β� using k modulation.
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I. INTRODUCTION

Betatron functions at the interaction points of the LHC
(β�) must be accurately controlled to maximize luminosity,
but also to avoid significant imbalances between the
experiments. Future regimes of operations and the upgrade
to the high luminosity LHC (HL-LHC) will run at lower β�
and higher luminosities [1]. The luminosity imbalance
between the two largest experiments, ATLAS [2] and
CMS [3], should not surpass 5% [4,5] and thus dictates
an accuracy on β� measurements of ∼2.5%.
The LHC requires the full commissioning of optics and

collimation before any luminosity may be delivered. As
such, conventional luminosity tuning methods, such as
luminosity scans versus waist would require commission-
ing of each scan step and cannot be performed within the
envisaged commissioning time frame. Accurate methods to
determine β� using single low intensity bunches are there-
fore important to have good control of the optics at the IP
and to provide more accurate luminosity predictions for the
experiments.
Currently, the preferredmethod to calculate β� in the LHC

is based on k modulation of the last quadrupoles before the
IP [6,7]. With k modulation, the gradient of a quadrupole is
modulated, and the induced tune shifts are measured to
determine the average betatron function in that quadrupole.
This method has been used successfully to calculate lattice
betatron functions in ISR [8,9], LEP [10,11], HERA [12],

Tevatron [13], ALBA [14], RHIC [15,16] and more. k
modulation was used in LEP to calculate β� using the
method presented in [17]. The LEP symmetric quadrupole
layout around the IPmade it straightforward to determine the
waist shift (w) with respect to the IP, and the equal response
from the left and right quadrupoles guaranteed a centered
waist. The LHC, however, uses an antisymmetric design of
quadrupoles at the IP [18,19] and is the first collider to face
the challenges of kmodulation for β� measurement in such a
design. In general a nonlinear equation has to be solved to
determinew and β�. Nevertheless we show in this paper that
even in antisymmetric designs the waist can be centered by
setting the left-right tune response ratio to a certain value
given by the optics layout.
The robustness of kmodulation to calculate β� at collision

optics (β� ≤ 1.0 m) is studied and the importance of
accurate tune measurements (down to 10−5) is highlighted
in this paper. Furthermore, the derivation of a new analytical
formula, based on kmodulation, to calculate β� is presented.
Both analytical and numerical methods are compared using
MAD-X simulations in Sec. VII for the LHC and the HL-
LHC.The effect of fringe fields in the triplet quadrupoles has
been considered in the MAD-X simulations.

II. k MODULATION

k-modulation studies in this paper are only done for
squeezed optics with β� ≤ 1 m. These squeezed optics will
be used for IP1 (ATLAS) and IP5 (CMS) during proton
physics runs. IP2 (ALICE) will also reach such small β�
during the heavy ion physics runs. The studies presented
here are limited to IP1 for beam 1 for illustration purposes.
Figure 1 shows a sketch of the IP1 setup for the horizontal

plane following the conventions used in MAD-X [20] models
of the LHC. On the sides are the two quadrupoles closest to
the IP on which the modulation will be applied. In the
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horizontal plane there is a defocusing quadrupole on the left
side and a focusing quadrupole on the right side. The
minimum of the β-function in the drift space between the
quadrupoles has a value βw and is located at thewaist (w), that
is positively defined to the right. Thevalue of the β-function at
the IP is given by β�. Generally βw is close to β�, but a shift in
w due to optics distortions significantly affects β�.
The modulation of the quadrupole gradient is applied

to both quadrupoles independently and the shifts in the
main tunes (ΔQx;y) are measured separately for each
quadrupole. Under good control of linear coupling the
amplitude of the modulation at collision tunes (Qx ¼ 64.31
and Qy ¼ 59.32) is generally limited such that

ΔQdef ¼ 1

3
ðQy −QxÞ ¼ 0.0033; ð1Þ

where ΔQdef is the tune shift in the defocusing plane of the
modulated quadrupole. Exceeding this limit in measure-
ments may drive the main tunes to the coupling stop band.
The closest tune approach in an accelerator is conven-

tionally given by

ΔQmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ jC−j2

q
; ð2Þ

where ΔQmin is the tune separation, Δ is the unperturbed
tune split, and jC−j is the magnitude of the linear difference
coupling. When the coupling resonance is approached (i.e.
Δ → 0), the minimum tune split is equal to the magnitude
of the coupling jC−j, as presented in Fig. 2. The effect of
linear coupling on the tune measurements has been studied
and is presented in Sec. VII A where tolerances on linear
coupling have been specified.
Different tune combinations with larger tune separations,

such as the injection tunes for the LHC (Qx ¼ 64.28 and
Qy ¼ 59.31), may also be envisaged to mitigate the influ-
ence of coupling. Larger tune separations can also allow for
larger modulation amplitudes thereby increasing the meas-
urement accuracy. However these will still be limited by
enclosing resonances in the tune diagram. Furthermore,
drastic changes in tunes will perturb the optics at the

interaction points. The studies presented here are done at
nominal optics with collision tunes following the typical
optics commissioning procedure. All applied modulations
in the simulations presented here are limited to Eq. (1).
Modulation of a single quadrupole will induce a meas-

urable tune shift that is proportional to the average betatron
function at that quadrupole. Derivations for this relation are
presented in [17],

βAVx;y
ðΔQx;yÞ ¼ �½cotð2πQx;yÞð1 − cosð2πΔQx;yÞÞ

þ sinð2πΔQx;yÞ�
2

ΔKL
ð3Þ

¼ �4π
ΔQx;y

ΔKL
; ð4Þ

whereΔK is the change of the quadrupole strength, L is the
length of the quadrupole,Qx;y andΔQx;y are respectively the
main tunes and the tune shifts, and the (�) sign corresponds
to the horizontal and vertical planes. By modulating the last
quadrupoles before the IPs independently andmeasuring the
shift in the main tunes, the average β-functions at those
quadrupoles can be accurately calculated. To determine w
and β�, βAVx;y

should be expressed as a function of the IP
parameters. This is presented in the following section.
Second order tune shifts arising from tilts in the

modulated quadrupoles can however perturb the tune
measurements during the modulations. Tilts in quadrupoles
give rise to skew quadrupolar field components propor-
tional to the quadrupole powering strength. The second
order tune shifts arising from skew quadrupolar contribu-
tions have been studied in [21] and are given by two sums
over all skew quadrupolar sources (j, k):

ΔQx;y¼
1

16π

X
j

X
k

ða1ja1k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βxjβxkβyjβyk

q
ð�T1−1

jk −T11
jk ÞÞ;

ð5Þ

FIG. 1. Schematic representation of interaction region configu-
ration. This corresponds to the default horizontal plane as defined
in MAD-X models of the LHC, with a focusing quadrupole on the
right and a defocusing quadrupole on the left. FIG. 2. Schematic representation of the closest tune approach.

The unperturbed tunes are labeled as Qx and Qy, while the
perturbed tunes are given by Q1 and Q2.
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where the plus or minus sign refers to the horizontal and
vertical planes respectively, a1j and a1k are the field
strength components, and where Tjk is defined as

Tn
jk ≡ cos½n · ðϕþ

jk − μ=2Þ�
sin½n · μ=2� ; ð6Þ

where μ are the main tunes, n is either the difference or sum
resonance in the case of skew quadrupolar contributions
and ϕþ

jk is the phase advance between the different skew
quadrupolar sources in the accelerator and specified as

ϕþ
jk ¼

�
ϕk − ϕj; j < k

ϕj − ϕk; k < j:
ð7Þ

The second order tune shifts may be viewed as the
parabolic approximation of Fig. 2 and will generally be
dominated by the difference resonance in both the LHC and
HL-LHC. The HL-LHC is expected to have rms tilts of
1 mrad in the triplet quadrupoles [22]. The effect of such
tilts has been studied and is presented in Sec. VII.

III. AVERAGE β-FUNCTION IN QUADRUPOLES

The propagation of the Twiss parameters in quadrupoles
[17,23,24] is given by0
B@

βðsÞ
αðsÞ
γðsÞ

1
CA ¼

0
B@

C2 −2CS S2

−CC0 SC0 þ S0C −SS0

C02 −2S0C0 S02

1
CA ¼

0
B@

β0

α0

γ0

1
CA:

ð8Þ
The parametersC and S for a focusing quadrupole are the

sinelike functions given by C ¼ cosð ffiffiffiffi
K

p
sÞ and

S ¼ 1ffiffiffi
K

p sinð ffiffiffiffi
K

p
sÞ. Here, K is the quadrupole gradient and

s is the longitudinal position within the quadrupole. Note
that in the case of the defocusing plane of the quadrupoles
Eq. (8) is composed of hyperbolic functions such that S ¼
1ffiffiffi
K

p sinhð ffiffiffiffi
K

p
LÞ and C ¼ coshð ffiffiffiffi

K
p

LÞ. For illustration

purposes, the following derivations only use focusing quadru-
poles. The results for defocusing quadrupoles will be given at
the end. The propagation of the β-function is calculated from
Eq. (8) and the average β-function is calculated by integrating
the β-function over the length of the quadrupole L and
normalizing by the same length L, which yields

βfocAV ¼ β0
2

�
1þ sinð2 ffiffiffiffi

K
p

LÞ
2

ffiffiffiffi
K

p
L

�
− α0

sin2ð ffiffiffiffi
K

p
LÞffiffiffiffi

K
p

L ·
ffiffiffiffi
K

p

þ γ0
2K

�
1 −

sinð2 ffiffiffiffi
K

p
LÞ

2
ffiffiffiffi
K

p
L

�
; ð9Þ

where βfocAV is the average β-function in the focusing quadru-
pole. The average β function is only dependent on design
machine parameters (K, L) and optics parameters at the

beginning of the quadrupole (α0, β0, γ0). These optics
parameters can be calculated by propagation from the IP,
Eq. (10), and be used to find an expression for βfocAV that
depends on βw and waist (w):

β0 ¼ βw þ ðL� − wÞ2
βw

α0 ¼ −
1

2
β0 ¼ −

ðL� − wÞ
βw

γo ¼
1þ α20
β0

¼ 1

βw
; ð10Þ

where the distance between the IP and the first quadrupole is
given by L�. The expression for the average β-function in
focusing quadrupoles is then given by

βfocAV ¼ 1

2

�
βw þ ðL� − wÞ2

βw

��
1þ sinð2 ffiffiffiffi

K
p

LÞ
2

ffiffiffiffi
K

p
L

�

þ ðL� − wÞ
βw

sin2ð ffiffiffiffi
K

p
LÞffiffiffiffi

K
p

L ·
ffiffiffiffi
K

p

þ 1

2βwK

�
1 −

sinð2 ffiffiffiffi
K

p
LÞ

2
ffiffiffiffi
K

p
L

�
: ð11Þ

A convenient assumption can be made to simplify this
equation. Assuming that β� ≪ L� and jwj ≪ L�, the follow-
ing can be stated:

ðL� � wÞ2
β2w

≫ 1: ð12Þ

This approximation is only valid for squeezed optics and
therefore limits the studies done in this paper to β� ≤ 1 m in
the LHC and HL-LHC. For the purpose of readability the
following functions are defined:

f0 ¼
1

2

�
1þ sinð2 ffiffiffiffi

K
p

LÞ
2

ffiffiffiffi
K

p
L

�
;

f1 ¼
sin2ð ffiffiffiffi

K
p

LÞffiffiffiffi
K

p
L ·

ffiffiffiffi
K

p ;

f2 ¼
1

2K

�
1 −

sinð2 ffiffiffiffi
K

p
LÞ

2
ffiffiffiffi
K

p
L

�
;

d0 ¼
1

2

�
1þ sinhð2 ffiffiffiffi

K
p

LÞ
2

ffiffiffiffi
K

p
L

�
;

d1 ¼
sinh2ð ffiffiffiffi

K
p

LÞffiffiffiffi
K

p
L ·

ffiffiffiffi
K

p ;

d2 ¼
1

2K

�
sinhð2 ffiffiffiffi

K
p

LÞ
2

ffiffiffiffi
K

p
L

− 1

�
:

Using these new expressions and the approximation in
Eq. (12) the average β-function in the focusing and defocus-
ing quadrupoles is given by
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βfocAV ¼ ðL� − wÞ2
βw

f0 þ
ðL� − wÞ

βw
f1 þ

1

βw
f2 ð13Þ

βdefAV ¼ ðL� þ wÞ2
βw

d0 þ
ðL� þ wÞ

βw
d1 þ

1

βw
d2: ð14Þ

IV. ANALYTICAL METHOD FOR β�
CALCULATION

Previous β� calculations using k modulation in the LHC
were based on numerically solving an equation dependent
on ΔQR and ΔQL (for the quadrupoles left and right of the
IP) where the coefficients were determined from simula-
tions [6]. The derivation of a closed formula based on k
modulation to calculate β� is presented in this section. The
ratio between the average β-functions in the defocusing and
focusing quadrupoles left and right of the IP, χ, is defined as
follows:

χ ¼ βdefAV

βfocAV

: ð15Þ

The values of the average β-functions can be calculated
from the measured tune shifts obtained from k modulation
using Eq. (3). The tune shifts are constrained such that the
tune shifts generated by the left and right quadrupoles must
have the same sign. This corresponds to a symmetric
quadrupole modulation where the ΔK on the left and right
quadrupoles has the same sign.
Using Eqs. (13) and (14) for the average β-function, an

expression for χ is obtained that is only dependent on
machine parameters and the waist (w):

χðwÞ ¼ ðL� þ wÞ2d0 þ ðL� þ wÞd1 þ d2
ðL� − wÞ2f0 þ ðL� − wÞf1 þ f2

:

Interestingly, the ratio χ for which the waist is aligned at the
IP (w ¼ 0) only depends on model parameters,

χð0Þ ¼ L�2d0 þ L�d1 þ d2
L�2f0 þ L�f1 þ f2

: ð16Þ

Assuming that
ffiffiffiffi
K

p
L is small, the sinelike terms can be

expanded. Refactoring the terms yields the following
approximation:

χð0Þ ≈ 3þ KL2

3 − KL2
: ð17Þ

This gives a very quick and practical approximation to
calculate χ for which the waist is zero. It is found that the
waist is zero in the LHC and HL-LHC when

χLHC ¼ 1.264 ≈ 1.267

χHL−LHC ¼ 1.283 ≈ 1.288;

where the first value is obtained using the exact formula in
Eq. (16) and the second value is obtained using the
approximation of Eq. (17). Note that for colliders with
symmetric triplet designs, such as for LEP, the ratio
becomes one, χ ¼ 1. The following procedure may be
proposed to set the waist to zero before calculating β�. First,
the average β-functions in the quadrupoles are measured.
The waist is then varied using the matching section
quadrupoles until the right ratio (χ) of β-functions is found,
at which point the waist is zero. k modulation of the
quadrupoles can then be done to calculate β�. It is shown in
Sec. VI that the best β� resolution is indeed obtained
for w ¼ 0.
Reformatting Eq. (16) yields the following second order

polynomial for the waist:

ðχf0 − d0Þw2 − ½2L�ðχf0 þ d0Þ þ ðχf1 þ d1Þ�w
þ L�2ðχf0 − d0Þ þ L�ðχf1 − d1Þ þ ðχf2 − d2Þ ¼ 0:

ð18Þ

Equation (18) can be solved for w for which the real part of
the solution is used to obtain

w ¼ 1

2ðχf0 − d0Þ
½½2L�ðχf0 þ d0Þ þ ðχf1d1Þ�

� ½16L�2χf0d0 þ 8L�ðχf1d0 þ χf0d1Þ
þ ðχf1 þ d1Þ2 − 4ðχf0 − d0Þðχf2 − d2Þ�1=2�: ð19Þ

Combining Eq. (3) with Eqs. (13) and (14) it is now
possible to calculate βw from the βAV of the two quadru-
poles:

βfocw ¼ 1

βfocAV

· ½ðL� − wÞ2f0 þ ðL� − wÞf1 þ f2�

βdefw ¼ 1

βdefAV

· ½ðL� þ wÞ2d0 þ ðL� þ wÞd1 þ d2�: ð20Þ

Both equations yield the same betatron function at the
waist. To account for small deviations or numerical
fluctuations the average of the two is taken,
βw ¼ 1

2
ðβfocw þ βdefw Þ. Using this, the final result for β�

can be calculated using the drift space Eq. (21):

β� ¼ βw þ w2

βw
: ð21Þ

Note that the derivation of this method is fully analytical
and that the only approximation is made in Eq. (12). It

F. CARLIER and R. TOMÁS PHYS. REV. ACCEL. BEAMS 20, 011005 (2017)

011005-4



should therefore be stated that this method is limited to
small IP β-functions (β� ≤ 1 m).

V. FRINGE FIELDS

Usually, the magnetic fields at the edges of magnets are
modeled as a step function. However, such a representation
is unrealistic and the field decays smoothly. The transitional
area of the magnetic field at the edge of the magnet is called
the fringe field. As the quadrupoles are located in a large
β-function region, any imperfection such as fringe
fields may impact the transverse beam size at the IPs.
Furthermore, quadrupole fringe fields affect the ring optics
and consequently the tune shifts resulting from k modu-
lation and may therefore affect the measurements of w and
β� using current methods.
Fringe fields have been included in the simulation to

provide deeper insight in the applicability of k modulation
to the measurements of the IP optics. The linear fringe
fields shape can be modeled using the fifth order Enge
function [25],

FðzÞ ¼ 1

1þ exp ½a0 þ a1ð zDÞ þ � � � þ a5ð zDÞ5�
; ð22Þ

where the parameters fa0 � � � a5g are obtained from fits to
simulated values of the field gradient [26], z is the position
with respect to the magnet hard edge, and D is the aperture
of the magnet. The resulting fringe field strength is
obtained by

KfrðzÞ ¼ KquadFðzÞ: ð23Þ

Fringe-field simulations were done for the MQXF quadru-
poles planned to be used in the HL-LHC. Unfortunately,

such simulations are not available for the MQXA quadru-
poles currently installed in the LHC. The parameters
fa0 � � � a5g are assumed to be unchanged for the two
magnets, and the magnetic profile for the MQXA magnets
are obtained by scaling the aperture D from D ¼ 150 mm
to D ¼ 70 mm.
Figure 3 shows the fifth order Enge function fit to the

MQXF magnetic profile [26]. The obtained parameters are
given in Table I.

A. Modeling fringe fields

For the studies done here, fringe fields were modeled in
MAD-X. The fringe field shape is defined by the Enge
function in Eq. (22), and the fit parameters were obtained to
fit the simulated data of the MQXF magnets. The fringe
field starts 20 cm before the quadrupole and ends 30 cm
inside the quadrupole, for both the MQXF and MQXA
magnets in the HL-LHC and LHC, respectively. In MAD-X
the fringes on both sides of the magnets are sliced up into
100 elements whose quadrupole strengths are obtained by
the Enge function. The integrated quadrupole strength
conserved by rescaling the gradient K after applying fringe
fields,

KLjw=o fringes ¼
Z
L
KðsÞdsjincl fringes: ð24Þ

The fringe fields are only modeled for the last quadrupoles
of the IR1 triplets, therefore reducing the global effect on
the β-function around the ring. Including fringe fields in the
model induces a shift in the main tunes due to the change of
the magnetic profile of the triplet quadrupoles. As β�
decreases the β-function in the triplets increases thereby
increasing the expected effect of fringe fields on the optics
and hence on the tune shifts [27].

VI. MEASUREMENT UNCERTAINTY
IN β� USING k MODULATION

This section presents the study done to show the effect of
accuracy in tune measurements on the uncertainty of β�
measurements using k modulation. It highlights the impor-
tance of accurately measuring the tune up to δQ� 10−5. It

FIG. 3. Fringe field as simulated [26] and modeled for the
MQXF quadrupoles with an aperture of 150 mm. In black is the
simulated field of the magnet, and in red is the modeled field
using the fifth order Enge function. The modeled fringe field
agrees very well with the simulated data and validates the used
order of the Enge function.

TABLE I. Parameters for the fifth order Enge function obtained
from a fit to the magnetic profile of the MQXF quadrupoles.

Parameter Fit value

a0 −0.2829102
a1 −3.83589587
a2 1.94849646
a3 −2.69675443
a4 1.288764
a5 −0.18566207
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should be noted that the recent studies predict a poorer tune
stability for the HL-LHC, up to δQ� 10−4 [28,29].
A dedicated computer code in PYTHON has been made to

calculate the resulting uncertainties on the calculated waist
and β� from the tune shifts, ΔQx;y. The setup is based on
the horizontal plane of IP1 for beam 1, as presented in
Sec. II. A domain is initialized for different values of waist
(w) and βw with the following limits:

βw ∈ ½0.8 · β�design; 1.2 · β�design�

w ¼
�
−
1

2
β�design;

1

2
β�design

�
;

where for the LHC, β�design ¼ 0.55 m, and for the HL-LHC,
β�design ¼ 0.15 m. For each βw and waist in the specified
domain, the β-functions at the IP and at the edge of the
quadrupoles left and right of the IP are calculated. Using
the Twiss parameters at the edge of each quadrupole, the
average β-function can be calculated using Eq. (11) for the
focusing quadrupole on the right and appropriate equivalent

for the defocusing quadrupole on the left. The tune shifts
ΔQx;y can then be determined using the approximation in
Eq. (4), where ΔK is obtained from Eq. (1) at collision
tunes. Note that the approximation of Eq. (4) is used in this
case for the purpose of increasing the computational speed.
For each point in this measured domain, the uncertainty

on β� can be calculated by searching through the neighbor-
ing points fulfilling the condition ΔQfoc � 10−5 and
ΔQdef � 10−5. The spread in β� of the neighboring points
satisfying this condition is a measure of the uncertainty on
β� measurements.
Figure 4 shows the relative uncertainty on the β�

measurement (Δβ�=β�) for a tune resolution of 10−5 for
the LHC in the top figure, while the bottom figure shows
the same analysis for the HL-LHC. The uncertainty for the
LHC is minimal (0.5%) for w ¼ 0, and grows with
increasing waist deviation. The HL-LHC has a minimum
uncertainty of 4% and the uncertainty grows more rapidly
for increasing waist. Figure 4 clearly shows that for the
same relative waist deviation w

β�design
, the HL-LHC will have a

much larger uncertainty. It will therefore be crucial to have
good control of the waist, probably assuming an iterative

FIG. 4. Uncertainty on β� measurements for δQ� 10−5 using k
modulation for the LHC (top figure) and HL-LHC (bottom
figure). The vertical axis shows the waist relative to the design
β� (LHC: β�design ¼ 0.55 m, HL-LHC:β�design ¼ 0.15 m).

FIG. 5. Uncertainty Δβ�=β� for the LHC (top figure) and HL-
LHC (bottom figure) over the relevant tune shifts. The minimum
error occurs at χð0Þ for both the LHC and HL-LHC.
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procedure, to reach the minimal uncertainty at w ¼ 0, as
discussed in Sec. IV.
The calculated uncertainty on β� for a tune resolution of

δQ ¼ 10−5 is shown in Fig. 5 versus the measured tune
shifts, for both the LHC and HL-LHC. The values of the

ratio χ ≈ ΔQdef

ΔQfoc for which the uncertainty is minimal corre-

spond to those calculated in Eq. (16) for w ¼ 0. The range

of ΔQ
def

ΔQfoc on the vertical axis is much smaller for the HL-LHC

indicating that the β� measurements for the HL-LHC are
much more sensitive to the tune measurement precision
of δQ� 10−5.
These results indicate that, while accurate measurements

of β� for the LHC are possible at β� ¼ 0.55 m, the accuracy
of β� measurements for the HL-LHC degrades signifi-
cantly. This highlights the great challenge of accurately
measuring and controlling β� for the HL-LHC.

VII. CALCULATION OF β� IN MAD-X
SIMULATIONS

The results presented in this section are obtained from
MAD-X simulations using beam 1 at IP1. The MAD-X
simulations were run by changing the quadrupole gradient,
and measuring the tune shifts for both planes. From these
tune shifts β� was calculated using the analytical method.
The studies presented here are done using a positive

modulation of the quadrupole gradient. Results obtained
using a negative gradient are similar to these presented
here. Furthermore, these simulations were done with fringe
fields modeled at the quadrupoles. Results are only shown
for the horizontal plane only, but are also illustrative for the
vertical plane.
Figure 6 compares the deviation of the calculated β� to

the design optics obtained from the analytical method for
both the LHC and HL-LHC. The analytical method
accurately calculates the IP β-functions for the different
optics. The maximum deviation, at β� ¼ 1 m for the LHC,
to the design optics is small (within 0.21%) and the
calculated β� converges to the design optics value for
smaller β�. The larger deviation observed for increasing β�
is attributed to the approximation made in Eq. (12).
Furthermore, a small additional deviation of 0.07% is
observed throughout the complete range of IP sizes.
This deviation is caused by the implementation of the
fringe fields in the quadrupoles. Triplet fringe fields will
induce a shift in the waist that will in turn increase the
β-functions at the IPs.
The uncertainty for the analytical method is determined

by calculating β� for the domain that satisfiesΔQdef � 10−5

and ΔQfoc � 10−5 and determining the spread,
1
2
ðβ�max − β�minÞ. The standard deviation grows rapidly for

decreasing β�. The uncertainty at β� ¼ 0.55 m is 0.5%
which is slightly larger than the results obtained in the
simulations of Sec. VI, which can be attributed to the fringe

fields in the MAD-X simulations. Recent k-modulation
measurements at β� ¼ 0.8 m are demonstrating a tune
resolution close to δQ ¼ 10−5 and a resolution on β� that
is lower than 1% [30,31]. These results are in line with the
predictions from the simulations.
The previous analysis is also presented for the HL-LHC

in Fig. 6. Fewer optics are available but the general
behavior observed for the LHC can be confirmed in the
HL-LHC. The deviation measured for the range of optics in
HL-LHC is negligibly small. However, Fig. 6 shows the
degrading accuracy for decreasing β�. Measurements for
the design optics of the HL-LHC at β� ¼ 0.15 m show an
error of 5.2% arising from a tune resolution of δQ ¼ 10−5.
Such large uncertainties for small β� will create a consid-
erable challenge for accurate β� control for the HL-LHC.
These results show that the analytical method can be

used to measure low β� optics, and provides a robust way to
calculate measurement errors. The calculation of the
measurement errors can easily be extended to include other
possible sources of uncertainty. As such, the finite accuracy
of the quadrupole gradient (δK) as well as alignment of the

FIG. 6. The calculated β� calc using the new analytical method
in the LHC (top figure) and HL-LHC (bottom figure) including
the effect of fringe fields on the last quadrupoles. Results are
presented for the horizontal plane.
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quadrupoles (δL�) can now be included. The following
values have been used for the analysis; δK � 0.1% and
δL� � 6 mm. Such misalignment errors have been esti-
mated in [32] and have been shown to be mechanically
achievable.
Figure 7 shows the errors obtained from various sources

for the LHC and HL-LHC respectively. In red are the
calculated errors for simulations without fringe fields. In
blue are the obtained errors when including the fringe fields
in the simulations. These are the same as shown in Fig. 6.
The implementation of fringe fields slightly increases the
calculated errors on β�. This effect is, however, only limited
to 0.2% for the LHC and 1% for the HL-LHC in the
smallest optics.
The data in green shows the errors when including

contributions from the quadrupole powering (δK) and
possible misalignments of the quadrupoles (δL�).
Including these new sources significantly increases the

errors on β� measurements. In the LHC the error for the
smallest optics is increased by 0.6%, while in the HL-LHC
the error is increased by 4% at β� ¼ 0.10 m. This effect
becomes non-negligible for decreasing β� sizes and further
confirms that such contributions as accuracy of the transfer
function and alignments should therefore be considered in
the analysis to improve β� control.
In addition to these sources, recent studies have shown

that the tune stability for the HL-LHCwill not be as good as
for the LHC. Tune stability is estimated to be between
5 × 10−5 and 10−4 [28,29]. These estimates may be subject
to changes as powering schemes for the quadrupoles
are being revisited. The influence of the tune uncertainty
on the β� resolution is shown in Fig. 8 for different optics.
The results show that only the larger β� optics, 0.33 and
0.40 m, currently result in reasonable β� resolution for
δQ ≤ 2 × 10−5. The current design optics for the HL-LHC
does not satisfy machine requirements. For a tune reso-
lution of 5 × 10−5 the design optics at 0.15 m will have a
error of 120% on β�. This clearly shows that a degrading
tune stability will critically spoil the accuracy of β�
measurements using k modulation. The accuracy can be
improved by increasing the tune separation and using larger
modulation amplitudes. However, such gains are limited
to a few factors and do not account for 2 orders of
magnitude. As such, this motivates further development
of the k-modulation method, and has motivated the search
for alternative methods to calculate β� such as the use of
ballistic optics to calibrate beam position monitors (BPMs)
in order to accurately measure β-functions from oscillation
amplitudes [33].

A. Influence of linear coupling and quadrupole tilts

Simulations have been performed in MAD-X to study the
influence of both linear coupling and tilts in triplet quadru-
poles on the tune measurements and accuracy of β�
calculations. A pessimistic approach has been used, in
which a positive modulation is applied thereby increasing

FIG. 7. Calculated errors using the analytical method for
different contributions and for the range of LHC (top figure)
and HL-LHC (bottom figure) optics. In red are the errors found
for simulations without fringe fields. Results as presented before
are shown when including fringe fields are shown in blue, while
errors found when including uncertainties in K ð0.1%Þ and L�
(6 mm) are shown in green.

FIG. 8. Error on β� measurements versus the tune accuracy for
different optics. The error grows rapidly with increasing tune
uncertainty. A tune resolution of 5 × 10−5 will result in an 120%
error on the β� measurement for the design optics of
β� ¼ 0.15 m.
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quadrupole strength and thus causing the main tunes to
approach each other. A negative modulation will cause the
tunes to move apart and thus minimize the effect of
coupling. However, as current methods include sinusoidal
modulations of the quadrupoles the pessimistic case cannot
be neglected [7,34].
Figure 9 shows the resulting β� deviation for different

values of coupling for nominal optics in the LHC and
HL-LHC. The deviation of β� to the model increases as the
coupling is increased and at jC−j ¼ 2 × 10−3 reaches 8.3%
for the LHC optics at 0.40 m and up to 36% for the 0.15 m
optics in the HL-LHC.
To keep the effect of coupling on β� accuracy lower than

1%, coupling should be corrected to jC−j ≤ 8 × 10−4 for the
LHC and down to 6 × 10−4 for the HL-LHC. Though
challenging, it has been recently shown that accurate cou-
pling corrections, down to jC−j ¼ 2 × 10−4, can be achieved
in the LHC [35]. The obtained results for the LHC as well as
simulation results for coupling corrections presented in [22]
indicate that the set tolerance for theHL-LHC iswithin reach.
Tilts in the IR triplets have been studied by applying

1 mrad rotations to both quadrupoles left and right of the IP

and determine the deviation of the calculated β� to the
model. The introduced coupling from the quadrupole tilts
has been rematched in the machine to study the effect of tilts
independently of coupling. Figure 10 shows the β� deviation
obtained from simulations for both the LHC andHL-LHC at
different optics with a 1 mrad tilt. As expected from Eq. (5)
the deviation increases rapidly with decreasing β�. Tilts of
1 mrad in the modulated quadrupoles have a small influence
on the accuracy of β� measurements, and deviations do not
exceed 0.29% in both the LHC and HL-LHC. The con-
tribution of quadrupole tilts to β� errors can be neglected for
the currently envisaged optics in both accelerators.

VIII. CONCLUSIONS

k modulation of the last quadrupoles of the IP triplets is
currently the preferred method to measure β�. The accuracy
of this method is mainly determined by the precision of the
tune measurements. The studies done highlight the impor-
tance of precise tune measurements (down to 10−5) for the
low β� regimes. All studies presented here make use of a
tune accuracy of 10−5. However, more recent design studies
for the HL-LHC predict a tune stability of the order of
5 × 10−5. Results presented for the HL-LHC are therefore
optimistic.
A closed formula was successfully derived to calculate

the waist and β� in an asymmetric IP design. This
formulation provides a new method to set the waist to
zero. The analytic formulation shows that the waist is zero
when the ratio of the average β-functions (χ) of the
quadrupoles left and right of the IP is equal to a specific
value that only depends on machine settings. When the
ratio is set to χLHC ¼ 1.264, for the LHC, and
χHL−LHC ¼ 1.283, for the HL-LHC, the waist is at zero.
A new procedure is proposed to align the waist and

calculate β�. First the average β-functions in the quadru-
poles are measured using k modulation. The waist is varied
until the specific ratio χ is reached, at which point the waist
is zero which provides the best accuracy for β� measure-
ments. Following that, β� can be calculated using k
modulation and the analytical formula. This method pro-
vides a new way to set the waist to zero and calculate β� and
improves the control over asymmetric IP optics in colliders.
The simulations done in Sec. VI clearly show the effect

of the waist variation on the accuracy of β� measurements.
For zero waist the uncertainty on β� for the LHC is 0.4%
and 4% for the HL-LHC. Small changes in the waist can
significantly impact the uncertainty in β� measurements.
For the LHC, a 20% relative waist deviation (w=βdesign)
results in a 3.5% uncertainty on β� measurements.
However, in the case of the HL-LHC a 20% relative waist
deviation leads to a 13% uncertainty on β�. This clearly
highlights the sensitivity to the waist and the need for
carefully aligning the minimum β-function at the IP to
reduce the waist.

FIG. 9. Deviation of calculated β� for different values of
coupling for the LHC (top figure) and HL-LHC (bottom figure).
Results show an increased deviation for increasing coupling in
the accelerator.

FIG. 10. Deviations of calculated β� for the different optics
of the LHC and HL-LHC, independently showing the effect of
linear coupling with C− ¼ 5 × 10−4 and a quadrupole tilt of
1 mrad. Though the effect is small for both, a quadratic increase
of the deviations for decreasing β� is observed.
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k-modulation simulations were done in MAD-X with
modeled fringe fields for a range of IP sizes. The fringe
fields in the last quadrupoles of the triplets have little effect
on the β� measurements using kmodulation. The calculated
β� deviates by 0.1% when including the fringe fields and
the uncertainty on β� increases by 0.2% and 1% for the
smallest optics for the LHC and HL-LHC, respectively. The
analytical formula provides a robust way to calculate
measurement errors as well as systematic errors.
The measurement error calculated for the LHC at

design optics (β� ¼ 0.55 m) is 0.5%, and grows to 1.9%
for β� ¼ 0.25 m. This is still within machine requirements.
However, the errors found for the HL-LHC are much larger.
For the design optics with β� ¼ 0.15 m, the errors are
5.2%, and this grows to 12% for β� ¼ 0.10 m.
The error analysis can be further expanded using the

analytical method to include sources such as uncertainty of
quadrupole powering and possible misalignments. The
effect of a quadrupole gradient error of 0.1% and a
longitudinal alignment uncertainty of 6 mm for the quadru-
poles was investigated. Including these errors has a
significant impact on the uncertainty of β� measurements
where the uncertainty is increased to 2.5% for the LHC at
β� ¼ 0.25 m and 16% for the HL-LHC at β� ¼ 0.10 m.
This further highlights the challenge of using k modulation
to calculate the IP optics in the HL-LHC.
These results show that accurate tune measurements

(down to 10−5) are sufficient for the LHC, and that such
accuracy is crucial and mandatory in the case of the HL-
LHC. Recent predictions estimate the tune stability of the
HL-LHC to be between 5 × 10−5 and 10−4. The resolution
on β� measurements in the HL-LHC grows rapidly with
degrading tune stability, which poses a clear challenge to
correctly measure and control IP optics in the HL-LHC.
The accuracy of β� measurements for the design optics of
0.15 m will be 120%. This clearly motivates further
development of the k-modulation method and the search
for possible alternative methods to calculate the IP optics.
The effect of linear coupling and quadrupole tilts has

been studied for both the LHC and HL-LHC. The simu-
lations results show that accurate coupling measurements
and corrections will be crucial for the HL-LHC, and a
coupling tolerance of jC−j ≤ 6 × 10−4 will be necessary
to minimize the effect of coupling to less than 1% in the
HL-LHC. Furthermore, results obtained from simulations
with 1 mrad tilts in the modulated quadrupoles show
that the effect on β� calculations are limited to 0.18%
for β� ¼ 0.25 m in the LHC, and 0.29% for β� ¼ 0.10 m in
the HL-LHC. As such, these results show that quadrupolar
tilts up to 1 mrad do not play a large role in the
k-modulation measurements for both accelerators.
To conclude, the current status of the k-modulation

method is sufficient to control β� up to 1% in the LHC
optics. However, current predictions show that the accuracy
of kmodulation will be insufficient for the HL-LHC for the

estimated tune stability. A combined effort on improving the
triplet power supply jitter, the accuracy of the tune meas-
urement, and exploring working points with larger tune
spreadswill be needed to overcome the presented challenges
and allow the use of k modulation at β� ≤ 0.15 m.

ACKNOWLEDGMENTS

Particular thanks go to Gianluigi Arduini and Massimo
Giovannozzi for proofreading the manuscript and provid-
ing useful and valuable insights.

[1] HL-LHC Preliminary Design Report: Deliverable: D1.5,
Technical Report, 2014.

[2] ATLAS Collaboration homepage, http://atlas.web.cern.ch/
Atlas/Collaboration/.

[3] CMS Collaboration homepage, http://cms.web.cern.ch/.
[4] R. Tomas, T. Bach, R. Calaga, A. Langner, Y. I. Levinsen,

E. H. Maclean, T. H. B. Persson, P. K. Skowronski, M.
Strzelczyk, G. Vanbavinckhove, and R. Miyamoto, Phys.
Rev. ST Accel. Beams 15, 091001 (2012).

[5] E. Meschi, ATLAS and CMS luminosity, LHC Machine
Committee meeting, 2012.

[6] R. Calaga, R.Miyamoto, R. Tomas, andG.Vanbavinckhove,
Beta* measurement in the LHC based on K modulation,
Technical Report No. CERN-ATS-2011-149, 2011.

[7] M. Kuhn, B. Dehning, V. Kain, R. Tomas, G. Trad, and
R. Steinhagen, New tools for K modulation in the LHC,
Technical Report No. CERN-ACC-2014-0159, 2014.

[8] A. Hofmann and B. Zotter, issued by ISR-TH-AH-BZ-
amb, 1975, http://cds.cern.ch/record/1131122.

[9] J. Borer, A. Hofmann, J.-P. Koutchouk, T. Risselada, and
B.W. Zotter, IEEE Trans. Nucl. Sci. 30, 2406 (1983).

[10] J. E. Poole, in Proceedings of the third LEP performance
workshop, SL Divisional Reports, 1993.

[11] I. Barnett, A. Beuret, P. Galbraith, K. N. Henrichsen, M.
Jonker, G. Morpurgo, M. Placidi, R. Schmidt, L. Vos, J.
Wenninger, I. Reichel, and F. A. Tecker, Dynamic beam
based calibration of orbit monitors at LEP, revised version,
Technical Report No. CERN-SL-95-97-BI, 1995.

[12] G. H. Hoffsttter, HERA accelerator studies 2000, Technical
Report No. DESY-HERA-2000-07, 2000.

[13] A. Jansson, P. Lebrun, and J. T. Volk, in Proceedings of the
21st Particle Accelerator Conference, Knoxville, TN, 2005
(IEEE, Piscataway, NJ, 2005), p. 2272.

[14] Z. Martí, J. Campmany, X. N. Gavaldà, J. Marcos, and V.
Massana, in Proceedings of 6th International Particle
Accelerator Conference, Richmond, VA, USA (2015),
pp. 338–340.

[15] J. Kewisch, S. Peggs, T. Satogata, G. Goddere, S. Tepikian,
and D. Trbojevic, in Proceedings of the 6th European
Particle Accelerator Conference, Stockholm, 1998 (IOP,
London, 1998), p. 1620.

[16] L. Ahrens, M. Bai, V. Ptitsyn, T. Satogata, D. Trbojevic,
and J. van Zeijts, in Proceedings of the Particle Accel-
erator Conference, Chicago, IL, 2001 (IEEE, New York,
2001), pp. 3135–3137.

F. CARLIER and R. TOMÁS PHYS. REV. ACCEL. BEAMS 20, 011005 (2017)

011005-10

http://atlas.web.cern.ch/Atlas/Collaboration/
http://atlas.web.cern.ch/Atlas/Collaboration/
http://atlas.web.cern.ch/Atlas/Collaboration/
http://atlas.web.cern.ch/Atlas/Collaboration/
http://atlas.web.cern.ch/Atlas/Collaboration/
http://cms.web.cern.ch/
http://cms.web.cern.ch/
http://cms.web.cern.ch/
http://cms.web.cern.ch/
http://dx.doi.org/10.1103/PhysRevSTAB.15.091001
http://dx.doi.org/10.1103/PhysRevSTAB.15.091001
http://cds.cern.ch/record/1131122
http://cds.cern.ch/record/1131122
http://cds.cern.ch/record/1131122
http://dx.doi.org/10.1109/TNS.1983.4332829


[17] M. G. Minty and F. Zimmermann, Measurement and
Control of Charged Particle Beams, Particle Acceleration
and Detection (Springer, Berlin, 2003).

[18] W. Scandale, Revisiting the problem of the LHC insertion
symmetry, Technical Report No. SL-Note-94-42-AP, 1994.

[19] F. A. Golfe, Looking for a symmetric LHC low-beta
insertion, Technical Report Nos. SL-Note-95-70-AP,
LHC-NOTE-336, 1995.

[20] MAD-X: Methodical accelerator design, http://madx.web
.cern.ch/madx/.

[21] J. Bengtsson and J. Irwin, Analytical calculations of smear
and tune shift, Technical Report No. SSC-232, 1990.

[22] J. Coello de Portugal, F. Carlier, A. Garcia-Tabares, A.
Langner, E. Maclean, L. Malina, M. McAteer, T. Persson,
P. Skowroski, and R. Tomás, in Proceedings of the
International Particle Accelerator Conference No. 7, IPAC
16 (JACoW, Busan, 2016), p. 3480.

[23] S. Y. Lee, Accelerator Physics, 3rd ed. (World Scientific,
Singapore, 2012).

[24] H. Wiedemann, Particle Accelerator Physics, 3rd ed.
(Springer, Berlin, 2007).

[25] H. A. Enge, Rev. Sci. Instrum. 35, 278 (1964).
[26] MQXF Collaboration Workspace, https://espace.cern.ch/

HiLumi/WP3/SitePages/MQXF.aspx.
[27] S. Kelly, M. Thomas, R. Appleby, L. Thompson, B.

Holzer, R. de Maria, and S. Russenschuck, Study of the
impact of fringe fields of the large aperture triplets on the

linear optics of the HL-LHC, Technical Report No. CERN-
ACC-2013-0174, 2013.

[28] M. Fitterer, Follow-up of powering schemes for it, q4 and
d1/d2, HL-LHC TC meeting, 2015.

[29] M. Fitterer, Powering schemes for inner triplet, q4 and d1/
d2, HL-LHC TC meeting, 2015.

[30] M. Kuhn, Status of wire-scanner and k modulation, LBOC
meeting, 2015.

[31] J. Wenninger, W. Hofle, S. Redaelli, and M. Lamont, LHC
status weekend, 2015, LHC morning meeting, 2015.

[32] M. Fitterer, S. Fartoukh, M. Giovannozzi, and R. DeMaria,
Report No. TUPTY036, 2015, p. 48.

[33] A. Garcia-Tabares Valdivieso, L. Malina, B. M.
Salvachua Ferrando, P. K. Skowronski, M. Solfaroli
Camillocci, R. Tomas Garcia, J. Wenninger, and J. M.
Coello De Portugal Martinez Vazquez, MD test of a
ballistic optics, Technical Report No. CERN-ACC-
NOTE-2016-0008, 2016.

[34] P. Skowroski, F. Carlier, J. Coello de Portugal, A. Garcia-
Tabares, A. Langner, E. Maclean, L. Malina, M. McAteer,
T. Persson, and R. Tomás, in Proceedings of the
International Particle Accelerator Conference No. 7, IPAC
16, Geneva, Switzerland, 2016 (JACoW, Busan, 2016),
p. 3343.

[35] E. H. Maclean, F. S. Carlier, S. Fartoukh, T. H. B. Persson,
P. K. Skowronski, R. Tomas Garcia, and D. A. Wierichs,
Report No. (2016).

ACCURACY AND FEASIBILITY OF THE β� … PHYS. REV. ACCEL. BEAMS 20, 011005 (2017)

011005-11

http://madx.web.cern.ch/madx/
http://madx.web.cern.ch/madx/
http://madx.web.cern.ch/madx/
http://madx.web.cern.ch/madx/
http://dx.doi.org/10.1063/1.1718806
https://espace.cern.ch/HiLumi/WP3/SitePages/MQXF.aspx
https://espace.cern.ch/HiLumi/WP3/SitePages/MQXF.aspx
https://espace.cern.ch/HiLumi/WP3/SitePages/MQXF.aspx
https://espace.cern.ch/HiLumi/WP3/SitePages/MQXF.aspx
https://espace.cern.ch/HiLumi/WP3/SitePages/MQXF.aspx

