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We study the measurement of transverse diffusion through beam echoes. We revisit earlier observations
of echoes in the Relativistic Heavy Ion Collider and apply an updated theoretical model to these
measurements. We consider three possible models for the diffusion coefficient and show that only one is
consistent with measured echo amplitudes and pulse widths. This model allows us to parameterize the
diffusion coefficients as functions of the bunch charge. We demonstrate that echoes can be used to measure
diffusion much quicker than present methods and could be useful to a variety of hadron synchrotrons.
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I. INTRODUCTION

Beam diffusion can lead to emittance growth, halo
formation, and particle loss. A standard method currently
used to measure transverse diffusion requires scraping the
beam with collimator jaws moved close to the beam, then
retracting the jaws, and waiting for the beam to diffuse to
the outer position of the jaws [1–5]. This procedure is time
consuming, and the method is applicable only to storage
rings where the beam circulates for times long enough to
enable the measurement. Beam echoes were introduced
into accelerator physics more than two decades ago [6,7]
and then shown to be useful as a novel method to measure
transverse diffusion [8]. A single echo observation can be
done typically within a thousand turns with nonlinear tune
spreads in the range 0.001–0.01. Hence, diffusion mea-
surements with echoes would be considerably faster than
the standard method and could also enable diffusion to be
measured in synchrotrons where beams circulate for
relatively short times.
Shortly after the introduction of the beam echo concept,

longitudinal unbunched beam echoes were observed at the
Fermilab Antiproton Accumulator [9] and then at the
CERN Super Proton Synchrotron (SPS) [10]. The original
motivation, however, had been to measure transverse
diffusion from transverse echoes. In the year 2000, trans-
verse bunched beam echoes were observed in the SPS with
two consecutive dipole kicks [11], but no diffusion coef-
ficients were extracted. Later, in 2004–2005, an extensive
set of dedicated experiments was carried out at the

Relativistic Heavy Ion Collider (RHIC) with dipole and
quadrupole kicks [12], and these will be the focus in this
paper. The existing model as applied to the data did not
yield consistent values for the diffusion coefficients [13].
The next generation of intensity frontier hadron syn-

chrotrons will require tight control of particle amplitude
growth. At Fermilab, the Integrable Optics Test Accelerator
(IOTA) [14] ring is under construction where the novel
concept of nonlinearly integrable lattices will be tested and
could serve as a model for future synchrotrons. This ring
offers the opportunity of testing a fast diffusion measure-
ment technique which could help determine the degree of
integrability (or stable motion) among different lattice
models. With this motivation, we revisit the earlier
RHIC measurements with an updated theoretical model
to enable extraction of self-consistent diffusion coefficients.
In Sec. II, we describe the updated model; in Sec. III, we
apply this model to the RHIC data; in Sec. IV, we consider
beam-related time scales; and we summarize in Sec. V with
lessons to be applied to future echo measurements.

II. ECHO PULSE WITH DIFFUSION

The basic beam-echo-generating mechanism is well
known. If at some initial time the beam is kicked away
from the central orbit, the beam centroid will decohere due
to a nonlinear spread of frequencies. If subsequently a
quadrupole kick is applied after the centroid response has
decayed away, a diminished coherent response will
reappear after a time interval equal to the delay between
the dipole and quadrupole kicks. Figure 5 in Sec. III C
shows an example of this echo formation during the
measurements at the RHIC.
Here we discuss the model to calculate the echo

amplitude with diffusion using the same method and
notation as in Ref. [15]. The phase space coordinates used
x, p and action angle coordinates J, ϕ are related as
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x ¼
ffiffiffiffiffiffiffiffi
2βJ

p
cosϕ; p ¼ αxþ βx0 ¼ −

ffiffiffiffiffiffiffiffi
2βJ

p
sinϕ; ð1Þ

J ¼ 1

2β
ðx2 þ p2Þ; tanϕ ¼ −

p
x
: ð2Þ

The initial distribution is taken to be exponential in the
action

ψ0ðJÞ ¼
1

2πJ0
exp

�
−

J
J0

�
; ð3Þ

where J0 ¼ ε0, the initial rms emittance.
We first consider the dipole moment after a dipole kick

and the general case where the dipole kicker is at a nonzero
phase advance from the beam position monitor (BPM)
location where the centroid is measured. Following the
procedure in Ref. [15], the dipole moment after the dipole
kick by an angle θ is

hxiampðtÞ ¼ θ
ffiffiffiffiffiffiffiffi
βKβ

p
ð1þ Θ2Þ exp

�
−
βKθ

2

2J0

Θ2

1þ Θ2

�
; ð4Þ

where βK and β are the beta functions at the kicker and
BPM, respectively, and Θ ¼ ω0J0t with ω0 ≡ dω=dJ the
constant slope of the betatron angular frequency with
action. This moment is independent of the phase advance
from the kicker to the BPM. It differs from the expression
in Ref. [15] only by the replacement of β by the geometric
mean βG ¼ ffiffiffiffiffiffiffiffi

βKβ
p

and β in the exponent replaced by βK.
Following the dipole kick, the beam decoheres with the
centroid amplitude decaying over a characteristic time
τD ¼ 1=ðω0J0Þ, the decoherence time. At time τ ≫ τD
after the dipole kick, a single turn quadrupole kick is
applied to generate the echoes, the first of which occurs
around time 2τ. The echo amplitude and pulse shape are
affected by the diffusive beam motion. We consider the
density distribution to evolve according to the conventional
form of the diffusion equation

∂
∂tψ ¼ ∂

∂J
�
DðJÞ ∂

∂J
�
ψ : ð5Þ

Here the diffusion coefficientDðJÞ has the usual dimension
of [action2=time], and it differs from the definition of DðJÞ
used in Refs. [8,15]. The treatment in Ref. [15] had
developed the theory of the echo response to first order
in the quadrupole kick strength. Since the experiments
reported in Ref. [12] had observed a linear increase of the
echo amplitude with quadrupole strength, this theory
should suffice to discuss these experiments. We note that
the theory developed earlier in Ref. [7] was nonlinear in this
strength parameter. Using the method of Ref. [15], we find
that the echo amplitude near time t > 2τ is

hxiðtÞ ¼ −πβKθqτ
Z

dJω0J2ψ 0
0 exp

�
−
1

3
DðJÞðω0Þ2t31

�
× sin½ωðt − 2τÞ�; ð6Þ

where q is the dimensionless quadrupole kick strength
defined as q ¼ βQ=f, the ratio of the beta function at the
quadrupole to its focal length, and we defined t31¼ðt−τÞ3þ
τ3. We consider the action-dependent transverse angular
frequency to be of the form ωðJÞ ¼ ωβ þ ω0J, where ωβ is
the angular betatron frequency and we consider the
diffusion coefficient to be of the form

DðJÞ ¼
X
n¼0

Dn

�
J
J0

�
n
; ð7Þ

where all coefficients Dn have the same dimensions. The
average dipole moment is given by

hxiðtÞ ¼ 1

2
βKθqμτωrev exp

�
−
1

3
D0ðω0Þ2t31

�

× Im

�
e½iΦ0�

Z
∞

0

z2 exp

�
−z −

1

3
ðω0Þ2t31

X
n

Dnzn
�

× e½iΦ1J0z�dz
�
; ð8Þ

where ωrev is the angular revolution frequency, Φ0 ¼
ωβðt − 2τÞ and Φ1 ¼ ω0ðt − 2τÞ. Using ω0 ¼ ðωrev=εÞμ,
where μ ¼ νðεÞ − νβ is the tune shift (from the bare tune
νβ) at an action equal to the emittance, it is convenient to
define scaled diffusion coefficients dn as

dn ¼
2

3
Dn

�
ωrev

ε

�
2

: ð9Þ

These coefficients dn have the dimension of time−3. In the
following, we will consider specific cases of the above
general form of DðJÞ.
Different physical processes contribute to the diffusion

coefficients Dn. It is likely that space charge effects, beam-
beam interactions (not present in the RHIC measurements
discussed below), and intrabeam scattering all contribute to
D0 andhigher-order coefficients. Early studies at theTevatron
at injection energy [16] with additional sextupoles as the
driving nonlinearity had measured a constant D0 term
which varied with the proximity to a fifth-order resonance.
Measurements at the LHC at top energy during collisions
showed that diffusion at the smallest amplitude measurable
was finite [4], implying anonzeroD0.Anumerical simulation
[17] showed that modulation diffusion leads to a constant
diffusion term. Beam-gas scattering and noise in dipoles lead
to a D1 term, while noise in quadrupoles leads to a D2 term.
There are likely other sources for these coefficients. Given
that the beam is subject to multiple effects, the complete
action dependence of the diffusion may be complex. Herewe
focus on the three simplest models with two diffusion
coefficients that can be compared to measurements.
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In the first case, we assume that the diffusion is of the
form

DðJÞ ¼ D0 þD1

�
J
J0

�
; ð10Þ

in this case, the dipole moment is given by

hxiðtÞ ¼ βKθqω0τJ0 exp
h
−
1

2
d0μ2t31

i

×
½ð3α2 − ξ2Þξ cosΦ0 þ ðα2 − 3ξ2Þα sinΦ0�

ðα2 þ ξ2Þ3 ;

t31 ¼ ðt − τÞ3 þ τ3; Φ0 ¼ ωβðt − 2τÞ;

α ¼ 1þ 1

2
d1μ2t31; ξ ¼ ωrevμðt − 2τÞ: ð11Þ

The second case is the quadratic dependence model
where

DðJÞ ¼ D0 þD2

�
J
J0

�
2

: ð12Þ

The general time-dependent form of the echo at time
t ¼ 2τ þ Δt where Δt can have either sign is

hxðtÞiamp ¼ 1

2
βKθqωrevμτ exp

�
−
1

2
d0μ2t31

�
Im½eiΦ0H02�;

ð13Þ
H02ðΔtÞ≡

Z
∞

0

z2 exp½−a0z − b2z2�dz

¼ 1

8

�
1

b2

�
5=2

� ffiffiffi
π

p ½a20 þ 2b2� exp
�
a20
4b2

�

× Erfc

�
a0ffiffiffiffiffiffiffi
2b2

p
�
− a0

ffiffiffiffiffiffiffi
2b2

p �
;

a0 ¼ 1 − iξ ¼ 1 − iωrevμΔt;

b2 ¼
1

2
d2μ2t31 ¼

1

2
d2μ2½ðτ þ ΔtÞ3 þ τ3�: ð14Þ

Here Erfc is the complementary error function.

The last case we consider is the linear and quadratic
dependence

DðJÞ ¼ D1

�
J
J0

�
þD2

�
J
J0

�
2

: ð15Þ

In this case, the time-dependent form of the echo at time
t ¼ 2τ þ Δt is

hxðtÞiamp ¼ 1

2
βKθqωrevμτIm½eiΦ0H12ðΔtÞ�; ð16Þ

H12ðΔtÞ≡
Z

∞

0

z2 exp½−a1z − b2z2�dz

¼ 1

8

�
1

b2

�
5=2

� ffiffiffi
π

p ½a21 þ 2b2� exp
�
a21
4b2

�

× Erfc

�
a1ffiffiffiffiffiffiffi
2b2

p
�
− a1

ffiffiffiffiffiffiffi
2b2

p �
;

a1 ¼ ð1þ b1Þ − iξ;

b1 ¼
1

2
d1μ2t31 ¼

1

2
d1μ2½ðτ þ ΔtÞ3 þ τ3�: ð17Þ

The left plot in Fig. 1 shows the relative echo amplitude as a
function of the diffusion coefficient Dn for three values of
n. In each case, only the single Dn was nonzero. For the
same value of Dn, the amplitude decreases faster as n
increases. The right plot in this figure shows the form of the
echo pulse with the D1, D2 model for a particular choice of
D1, D2, and other machine parameters are taken from the
RHIC values. The red curve shows the upper envelope of
the pulse which is used to obtain the full width at half
maximum.

A. Optimum tune shift and delay time

Analytical results for the optimum values of the tune
shift and delay parameters that maximize the echo
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FIG. 1. Left: The echo amplitude as a function of the coefficients D0, D1, and D2 scaled by the value Dscale ¼ 2.4 × 10−15 m2=s.
Right: Form of the echo pulse with the D1, D2 model shown in blue. The red curve outlines the upper envelope of the echo. Beam
parameters in both plots were taken from Table I, except for μ ¼ 0.0077. D1 and D2 in the right plot were set to the values D1;sc and
D2;sc, respectively, which are defined in Sec. III B.
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amplitude can be obtained for model 1 with diffusion
coefficients ðd0; d1Þ. As a function of the time delay, this
amplitude has a maximum at a delay τ ¼ τopt, such that the
two coefficients can be related as

d1 ¼
1 − 3d0μ2fixτ

3
opt

μ2fixτ
3
optð8þ 3d0μ2fixτ

3
optÞ

: ð18Þ

It is understood that μ is held fixed at μfix while finding the
optimum delay τopt. Defining cτ ¼ μ2fixτ

3
opt and substituting

this into the equation for the relative amplitude, we have for
the maximum amplitude obtained at the delay τopt

hximaxðτoptÞ
βKθ

¼ ωrevqμτopt

�
8þ 3d0cτ

9

�
3

exp½−d0cτ�: ð19Þ

This equation can be solved for d0, and subsequently d1 can
be found. Positivity of d1 requires that the solution for d0
obey 3d0cτ ≤ 1.
Similarly, as a function of the tune shift, the amplitude

has a maximum at μ ¼ μopt such that

d1 ¼
1 − 2d0μ2optτ3fix

μ2optτ
3
fixð5þ 2d0μ2optτ3fixÞ

: ð20Þ

Here τ is held fixed at τfix while finding the optimum in μ.
Defining cμ ¼ μ2optτ

3
fix and again substituting for d1, we can

write the maximum relative amplitude at μopt as

hximaxðμoptÞ
βKθ

¼ ωrevqμoptτfix

�
5þ 2d0cμ

6

�
3

exp½−d0cμ�:

ð21Þ

Here d1 ≥ 0 requires that the solution for d0 obey
2d0cμ ≤ 1.
If both μopt and τopt are measured, then the diffusion

coefficient d0 can be found from equating the two expres-
sions for d1, which results in a quadratic equation for d0
with the roots

d0 ¼
1

12cμcτ

"
2cμ þ 3cτ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2cμ − 3cτÞð2c2μ þ 67cμcτ þ 3c2τÞ

cμ − cτ

s #
: ð22Þ

Once d0 is determined, d1 can be determined from either of
Eqs. (18) or (20). Positivity of d1 requires that the above
solution obey d0 ≤ 1=ð2cμÞ and d0 ≤ 1=ð3cτÞ. This sol-
ution for both diffusion coefficients d0 and d1 is obtained
without necessarily using the value of the echo amplitude
except for recording where it has a maximum. It uses the
optimum tune shift and the optimum delay and could be

useful when the BPM resolution is low. However, this
would require that all other beam conditions such as the
dipole kick, quadrupole kick, bunch charge, etc., are kept
exactly the same during both tune shift and delay scans. If
this is not met, the solution given by Eq. (22) cannot
be used.
For the ðd0; d2Þ or ðd1; d2Þ models discussed here, the

optimum values of the tune shift and delay parameters must
be found numerically.

B. Echo pulse width

In addition to the amplitude, the echo can also be
characterized by the echo pulse width; e.g., the full width
at half maximum (FWHM) can be chosen as a width
measure.
For the model DðJÞ ¼ D0 þD1ðJ=J0Þ, the FWHM can

be found analytically from Eq. (11). We define a variable
Dup which depends on an upper limit to the pulse full width
ðΔtÞupFW and other parameters as follows:

Dup ¼
�

ε

μωrevτ

�
2 2

ðΔtÞupFW
: ð23Þ

For example, with an upper limit to the pulse width of 100
turns, we have Dup ¼ 2.6 × 10−12 m2=s. For pulse widths
ΔtFWHM < ðΔtÞupFW such that ðD0=Dup; D1=DupÞ ≪ 1, we
can keep terms to first order in D0=Dup and D1=Dup, and
we find for the FWHM

ΔtFWHM ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22=3 − 1

p �
α

ωrevμ

�

þ 3

�
ατ

ωrev

�
2
�
22=3

3
d0 þ

d1
α

�
;

α ¼ 1þ 1

2
d1μ2t31: ð24Þ

As we see later, we have typically ðD0=Dup; D1=DupÞ≈
0.1, so the above assumption is satisfied for pulse widths up
to 100 turns or somewhat larger. We find that the FWHM
increases with increasing D1 but very slowly with D0 as
seen in Fig. 2. When there is no diffusion, we have for the
minimum FWHM

Δtmin
FWHM ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22=3 − 1

p

ωrevμ
: ð25Þ

In units of turns, this theoretical minimum FWHM depends
only on the tune shift coefficient μ. This value when
compared with measured FWHM values can set limits
on the tune shift parameter, as will be seen later.
For the other models with either ðD0; D2Þ or ðD1; D2Þ,

the time-dependent pulse shape and hence the FWHMmust
be found numerically. From this pulse shape, the upper
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envelope is found numerically as an interpolating function
and the FWHM then calculated from this envelope func-
tion. Figure 2 shows the dependence of the FWHM on
the coefficients D0, D1, and D2 scaled by a parameter
Dscale ¼ 2.4 × 10−15 m2=s. The FWHM increases linearly
with bothD0 andD1 but withD0 increases by only 3% over
this range. The FWHM with D2 increases the fastest and
covers the range of values obtained from the RHIC data.

III. ANALYSIS OF RHIC DATA WITH AU IONS

We briefly discuss the experimental procedure here;
more details can be found in Ref. [12]. The echo experi-
ments were first done with Au ions, later with Cu ions, and
also with protons, all at injection energy. A special-purpose
quadrupole kicker was used with a rise time of 12.8 μs,
about one revolution time in the RHIC. The nonlinear tune
shift was provided by a set of octupoles which are normally
set to zero at injection, in order to observe the echoes. The
initial dipole kick was delivered only in the horizontal plane
by injection under a varying angle. Echoes were generated
with different conditions including variable dipole and
quadrupole kicks, beam intensities, tunes, different delays
between the dipole kick and the quadrupole kick, and
different octupole strengths. The emittance delivered to the
RHIC for each species was nearly constant. While echoes
were observed with each species, the most consistent
echoes were obtained with the Au ions, and we will
consider only those results in this article. Table I shows
some of the relevant parameters for the Au ions [12].

A. Emittance growth and rescaling tune shift

In evaluating the tune shift parameter μ for calculating
echo amplitudes, it is important to use the emittance
following the dipole kick. The rms emittance is given by

ε ¼ 1

β
½hx2ihp2i − ðhxpiÞ2�1=2

¼ 2½hJ cos2 ϕihJ sin2 ϕi − hJ sinϕ cosϕi2�1=2: ð26Þ

The ensemble averages are calculated using the distribution
function at time t after the dipole kick, which can be written
in the notation of Ref. [15] as

ψ2ðJ;ϕ; tÞ ¼ ψ0

�
J þ θ

ffiffiffiffiffiffiffiffi
2βJ

p
sinðϕ − ωðJÞtÞ þ 1

2
βKθ

2

�
;

ð27Þ

and the averages are found from, e.g., hJcos2ϕi ¼R
dJdϕJcos2ϕψ2ðJ;ϕ; tÞ, etc. It can be shown that this

leads to an rms emittance given by

εðtÞ ¼
�
ðJ0 þ

1

2
βKθ

2Þ2 − A2ðtÞ2
�
1=2

;

A2ðtÞ ¼
βKθ

2

2ð1þ Θ2
2Þ3=2

exp
�
−
βKθ

2

2J0

Θ2
2

1þ Θ2
2

�
;

Θ2 ¼ 2ω0J0t: ð28Þ

At times t ≫ τD, the term A2 → 0, and we can approximate

ε ¼ J0 þ
1

2
βKθ

2 ¼ ε0

�
1þ 1

2

�
Δx
σ0

�
2
�
; ð29Þ

where ε0 ¼ J0 is the initial emittance, Δx ¼ ffiffiffiffiffiffiffiffi
βKβ

p
θ is the

change in the beam position at the BPM, and σ0 ¼
ffiffiffiffiffiffiffi
βε0

p
is

the initial beam size at the BPM. The last expression in
Eq. (29) has the same form as in Ref. [18]. Thus, a kick to a
3σ amplitude results in an emittance which is 5.5 times
larger than the initial emittance. We will take this as an
average estimate for the emittance following the dipole
kick. By definition, the tune shift parameter μ increases
linearly with emittance, and hence μ increases from its
nominal value of 0.0014 to 0.0077 following the dipole
kick. Without this rescaling, the model cannot agree
with the experimental results, as seen in the earlier
analysis [12,13].
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FIG. 2. FWHM as a function of the diffusion coefficients D0,
D1, and D2 scaled by the value Dscale. Each curve shows the
impact of the single coefficient with the others set to zero. The
FWHM is calculated analytically from Eq. (24) for D0 and D1

and numerically for D2. Parameters were taken from Table I,
except for μ ¼ 0.0077.

TABLE I. Relevant RHIC parameters for the echo experiments
with Au ions.

Parameter Nominal value

Beam relativistic γ 10.52
Revolution time Trev 12.8 μs
Initial emittance ε0, unnormalized 1.6 × 10−7 m
Delay τ 450 turns
Initial tune shift parameter μ0 0.0014
Quadruple strength q 0.025
Quadrupole rise time 12.8 μs
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B. Diffusion coefficients from optimum tune
shift and delay

The theory predicts that the maximum echo amplitude,
which occurs close to the time 2τ after the dipole kick,
grows indefinitely with the product μτ in the absence of
diffusion. In the presence of any diffusion, the echo
amplitude grows more slowly, reaches a maximum, and
then decreases as either μ or τ is increased. In each case,
the irreversible particle motion caused by the presence of
diffusion reduces the amplitude of the recohering signal
at the time of the echo. Here we will apply the formulas
developed in Sec. II A to extract diffusion coefficients
from measurements of the optimal tune shift and opti-
mal delay.
We discuss first the analysis of the nonlinear tune shift

scan done on March 11, 2004. During this scan, the
quadrupole kick and delay between the dipole kick and
quadrupole kick were kept constant. Octupole strengths
were set to values K3 ¼ ð1.5; 2; 2.5; 5; 6; 7; 8; 9; 10Þ m−3.
The nominal value was K3 ¼ 7 m−3 corresponding to
a nominal tune shift parameter μ0 ¼ 0.0014 before the
dipole kick. Echoes were observed for all K3 ≥ 2.5 m−3.
The largest echoes were observed at K3 ¼ 5 m−3, which
corresponds to a nominal tune shift parameter μ ¼ 0.001,
while the rescaled tune shift value is μopt ¼ 0.0055.
For the D0, D1 model, the starting solutions were

obtained by solving Eqs. (20) and (21). These yielded d0 ¼
2.245 × 1010 s−3 and d1 ¼ 2.435 × 1010 s−3, which lead to
D0 ¼ 1.08 × 10−13 m2=s and D1 ¼ 1.17 × 10−13 m2=s,
respectively. These found values for ðD0; D1Þ yield a
maximum at μopt ¼ 0.0055 by design, but the amplitude
values decrease more slowly with μ than the data. To
improve the fit with the data, a numerical fitting was done
(usingMathematica [19]) to the data with the model shown
in Eq. (11). These yielded D0 ¼ 1.62 × 10−13 m2=s and
D1 ¼ 1.19 × 10−13 m2=s and led to a better fit with all the
data. These values for D0 and D1 were labeled as D0;sc and
D1;sc, respectively, and subsequent values were scaled by
these values for convenience. With both the ðD0; D2Þ and
the ðD1; D2Þ models, a least-squares minimization was
done to fit the data against the respective models for the
amplitude. The fit for D2 from the ðD0; D2Þ model was
similarly labeled asD2;sc. The resulting fits and the data are
shown in Fig. 3. The values of the coefficients are shown in
Table II. Relative to the previous comparison of theory with
experimental data (cf. Fig. 4 in Ref. [12]), these fits show a
significant improvement. Of the three models, the best fit
with the lowest chi squared is seen with the ðD0; D2Þmodel
with the next best being the ðD1; D2Þ model. However, the
models are fairly close, and no model can be ruled out
based on these data.
On a later day (March 17, 2004), the delay τ between

the dipole kick and the quadrupole kick was varied with
values (450, 500, 550, 600, 900) turns. Echoes were

observed only at the first three values of the delay. In all,
six echoes were observed with the largest amplitudes at
450 turns. The quadrupole kick strength, the octupole
strengths, and the tunes were kept constant. We will use
this limited data set to obtain the diffusion coefficients
from the delay scan.
For the ðD0; D1Þ model, we start by solving Eqs. (18)

and (19) for the coefficients from the echo amplitude and
the value of the optimum delay τopt. Again, better fits to the
data are obtained by a least-squares minimization, which is
also the procedure for the other two models. Table II shows
the best fit values with this delay scan. Compared to the
values from the tune shift scan, the coefficients for the same
model are within a factor of 2 from this delay scan. Some of
the variation in the values between the scans can be due to
different beam conditions on the two days such as bunch
intensities and machine tunes. However, the uncertainties
associated with these values are large, since there were too
few data points. Figure 4 shows the comparison of the fitted
models with the data. Again, all three models show similar
goodness of fits with the best fit (minimum chi squared)
obtained with the ðD0; D2Þ model, but all chi squared
values are close. All models show that the relative echo
amplitude reaches a maximum at around 390 turns, which
is less than the minimum delay of 450 turns used in the
experiment.
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FIG. 3. Comparison of the echo amplitude vs the tune shift
strength scan. The data are shown in red with error bars, while the
fits shown are with the three models for the diffusion coefficients
discussed in the text.

TABLE II. Comparison of the diffusion coefficients from the
tune shift and delay scans. All diffusion coefficients are in units of
10−13 m2=s.

Model Tune shift scan Delay scan

D0=D1 1.6=1.3 0.65=1.3
D0=D2 1.9=0.025 3.7=0.015
D1=D2 2.3=0.025 1.9=0.013
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C. Diffusion coefficients from the echo
amplitude and the FWHM

The above analysis has shown that all three models are
viable candidates in describing the data dependence on
either the tune shift or the delay. We now use turn by turn
(TBT) data to fit both the echo amplitude and the echo
pulse width with each model. Ten such data sets could be
retrieved from the 2004 measurements. In this TBT set, the
initial dipole kick and bunch charge varied, but the other
parameters including the quadrupole kick strength, tunes,
delay, and octupole strengths were kept constant. Figures 5
and 6 show two examples from this set, one with a clean
echo pulse and the other where the beam centroid takes a
longer time to decohere after the initial kick and the echo
pulse is also much wider. Some of the more distorted
signals could be due to oscillations from off-axis injection
and could partly be due to a fourth-order resonance and
slightly higher bunch charge. For each data set, an
interpolating function was found to fit the upper envelope

of the echo pulse, and the FWHM was extracted from this
interpolating function. Using the value of the rescaled tune
shift parameter μ ¼ 0.077, the minimum theoretical value
of the FWHMwithout diffusion, using Eq. (25), is 32 turns.
This is consistent with the minimum FWHMwith diffusion
from the data set, which is 37 turns. The bare tune shift
parameter of μ0 ¼ 0.0014 would have predicted a mini-
mum FWHM of 160 turns, much larger than any FWHM
value measured.
Figure 7 shows the FWHM plotted as a function of the

number of particles per bunch. This figure shows that the
FWHM fell into three distinct clusters, because the bunch
charge varied around three values. Except for the two
outlier points labeled as 1 and 2, all other points show that
the FWHM increases with charge. These other points are fit
to a power law curve

FWHMðNÞ ¼ Δtmin
FWHM þ aNp; ð30Þ

where Δtmin
FWHM is the minimum FWHM from Eq. (25), N is

the number of particles per bunch, and ða; pÞ are the fit
parameters. The fit shows that the exponent is p ¼ 2.002,
so the FWHM increases quadratically with the charge.
Since the tune shift, delay, and tune were kept constant
during these measurements, the outlier points show that the
FWHM values may depend on other parameters, such as
the initial dipole kick amplitude.
We now solve for two diffusion coefficients using the

relative echo amplitude and the FWHM. For the ðD0; D1Þ
model, the FWHM can be found analytically, as shown in
Eq. (24). The d0 coefficient can be written as a function of
the echo amplitude and d1 using the echo amplitude
equation (11) as

d0 ¼ −
1

μ2τ3
ln

� hxiamp
rel

2πqμNdelay
ð1þ μ2τ3d1Þ3=2

�
; ð31Þ

where hxiamp
rel ¼ hxiamp=ðβKθÞ is the relative echo ampli-

tude in terms of the dipole kick and Ndelay ¼ τ=Trev is the
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delay in units of turns. The positivity of d0 implies an upper
limit to d1 as

dmax
1 ¼ 1

μ2τ3

��
2πqμNdelay

hxiamp
rel

�
1=3

− 1

�
: ð32Þ

The value of d1 can be found by numerically solving
Eq. (24) for the FWHM with d0 substituted from Eq. (31).
We find that this ðD0; D1Þ model yields positive d0
coefficients in only four of the ten cases. We conclude,
therefore, that the D0, D1 model is not well suited for
this data.
With the ðD0; D2Þ model, the d0 coefficient can again be

found analytically as a function of the echo amplitude and
d1 using

d0 ¼ −
1

μ2τ3
ln

� hxiamp
rel

πqμNdelay

1

Im½eiΦ0ðTrevÞH02ðTrevÞ�

�
; ð33Þ

where H02 is defined in Eq. (13). We find again that no
solutions with positive D0 can be found in all cases with

FWHM> 70 turns. Even in other cases where the solutions
can be found, the values of D2 are significantly larger than
the values found in the previous sections and, hence, appear
to be in a disconnected region of the parameter space. Since
D0 has little impact on the FWHM (see Fig. 2), in both the
ðD0; D1Þ and ðD0; D2Þ models, large values of the FWHM
can make D1 or D2 large which then require a negative D0

to satisfy the amplitude condition. Thus, fitting the models
to both the amplitude and FWHM rules out the models
with D0.
In the case of theD1,D2 model, neither coefficient can be

found analytically from the amplitude equation. Instead, the
amplitude and the FWHMequationsmust be solved numeri-
cally. Figure 8 shows the forms of the function amplðd1; d2Þ
and fwhmðd1; d2Þ. Also shown are the intersections of these
surfaces with the plane of constant amplitude or FWHM
value, respectively. In each case, the intersection of the
surface with the plane determines a curve of solutions for
that equation. The intersection of the two curves in the d1, d2
planewould determine the required solution for givenvalues
of the amplitude and FWHM. In this figure, the values of d1
and d2 are scaled by d1;sc and d2;sc, which are obtained from
D1;sc and D2;sc using Eq. (9). These plots demonstrate that,
for the range of measured values of the echo amplitude and
the FWHM, solutions for the diffusion coefficients exist in
the range 0 ≤ ðd1=d1;sc; d2=d2;scÞ ≤ 8.
It turns out to be easier to do a least-squares minimi-

zation to find the solution. Here we define the χ2 function as

χ2 ¼
�
amplðd1; d2Þ − ampldata

σampl

�
2

þ
�
fwhmðd1; d2Þ − fwhmdata

σFWHM

�
2

; ð34Þ

where amplðd1; d2Þ and fwhm ðd1; d2Þ are the amplitude
function [from Eq. (16)] and the FWHM function defined
numerically, respectively, and σampl ¼ 0.05 and σFWHM ¼ 2

are the estimated uncertainties in the two data variables.
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This least-squares method turns out to be efficient and leads
to positive solutions for d1 and d2 in all cases. Table III
shows the values of the diffusion coefficients in these cases.
We observe that these values are close to the values of D1

found from the optimal tune shift and delay measurements
shown in Table II. The D2 values differ by an order of
magnitude in the two tables, but, considering that the delay
and tune shift scan methods for the amplitude are less
sensitive to D2 and also from the larger number of data
points in the FWHM analysis, we expect the values in
Table III to be more accurate. In most cases, the D1

coefficient is an order of magnitude greater than D2. The
single exception (row 2 of this table) corresponds to the
outlier point labeled 1 in Fig. 7. As a function of charge,D1

increases, while D2 appears to be independent of the
charge.

D. Diffusion dependence on bunch charge

We focus now on the ðD1; D2Þ model, which is the only
one of those studied that can describe both the amplitude

and the pulse width of the echo. During the measurements
on March 17, 2004, an intensity scan was done with all
other parameters kept constant. While the turn by turn data
from that scan are not easily accessible, the echo ampli-
tudes are available with 27 data points. These data can be
used to measure the diffusion coefficients as a function of
the bunch charge.
Both ðD1; D2Þ coefficients can be found by a least-

squares minimization of the fit to the amplitude. This
process allows a determination of ðD1; D2Þ as a function of
the charge. The left plot in Fig. 9 shows theD1 values found
and a linear fit to the values. This confirms the behavior
seen in the previous section but now with a larger data set.
Similarly as earlier, theD2 values are nearly independent of
the charge. We can parameterize the echo amplitude’s
dependence on the bunch charge via these fits for D1 and
D2 and the amplitude equation (16). The linear fit yields
d1=d1;sc ¼ 0.42þ 2.78N, where N is the number of
particles per bunch in units of 109, while for d2 we take
the mean value over this set, d2=d2;sc ¼ 6.24. The right plot
in Fig. 9 shows the measured echo amplitudes (in red) as a
function of the number of particles per bunch and also the
calculated amplitude (in blue) from these fits for ðD1; D2Þ.
The measured echo amplitude decreases with increasing
charge, and this trend is well reproduced by the theoretical
amplitude function. This is a consistency check and is to be
expected, since the linear fit for d1 and constant for d2 were
obtained from the data set. The comparison in Fig. 9 shows
that we can parameterize the diffusion coefficients as

DðJÞ ¼ ½a10 þ a11N�
�
J
J0

�
þ a20

�
J
J0

�
2

; ð35Þ

where a10, a11, and a20 are functions of machine and beam
parameters such as the nonlinearity, tunes, emittance, etc.,
but independent of the bunch charge.

FIG. 8. Left: Relative echo amplitude (in brown) as a function of the scaled diffusion coefficients d1=d1;sc and d2=d2;sc intersected by a
plane (in blue) of a particular relative amplitude value, here chosen to be 0.2. The intersection defines the family of solutions for ðd1; d2Þ
at this amplitude. Right: The FWHM (in brown) as a function of the same scaled variables and the plane (in blue) at a constant FWHM,
here chosen to be 60 turns. Again, the intersection defines the family of solutions for the FWHM equation.

TABLE III. Diffusion coefficients ðD1; D2Þ found using the
amplitude and the FWHM values from the turn by turn data.

Particles per
bunch [109]

Rel.
ampl.

FWHM
[turns] D1 [10−13 m2=s] D2 [10−13 m2=s]

0.25 0.245 39.8 1.28 0.0030
0.27 0.225 54.6 0.13 0.51
0.32 0.160 40.6 1.49 0.32
0.54 0.127 47.5 2.00 0.28
0.6 0.142 52.1 1.98 0.21
0.63 0.125 37.0 1.98 0.30
0.76 0.114 75.0 2.53 0.24
0.77 0.122 81.0 2.18 0.24
0.81 0.110 78.3 2.53 0.24
0.84 0.0998 73.6 2.53 0.24
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Space charge effects and intrabeam scattering (IBS) are
the dominant sources of particle diffusion for heavy ions
such as Au in the RHIC, at injection energy. The incoherent
space charge and IBS-induced diffusion and emittance
growth depend linearly on the charge, and our analysis
confirms that the leading diffusion coefficient D1 increases
linearly with the charge. The coefficient D2 is likely to be
determined by diffusion from single particle nonlinear
dynamics processes.
In the above analysis, we have neglected the effect of

wakefields on the echo formation. Their impact on the
calculations above is not likely to be significant. As seen in
Figs. 5 and 6 and generally true for the available turn by
turn data, the centroid response after the dipole kick is
cleaner and the relative echo amplitude is larger with the
larger amplitude kick. This would likely not be the case if
the effects of the transverse wake were significant. Instead,
effects due to injection oscillations and fourth-order reso-
nance which shows up at intermediate amplitudes are the
likely reason for the response seen in Fig. 6. In addition,
the effect of wakefields would be visible in a change in
the decoherence time with intensity. An analysis of the
intensity scan data shows no correlation between the
decoherence time and the bunch intensity.

IV. MEAN ESCAPE TIME

One useful time scale that can be extracted from the
diffusion coefficients is the mean escape time tesc asso-
ciated with probabilistic processes [20]. This time, also
known as the mean first passage time, is the mean time
taken (averaging over many realizations of the process) for
a particle to escape from a certain region defined by a
boundary. It was shown in Ref. [21] that, in the case that
DðJÞ ¼ D1ðJ=J0Þ, the time-dependent density distribution
solution ψðJ; tÞ to the diffusion equation leads to a beam
lifetime tL which is close to the escape time tesc estimate.
Defining tL ¼ −NðtÞ=ðdN=dtÞ, where NðtÞ ¼ R

ψðJ; tÞdJ
is the particle number, it was shown that

tL ≈ 0.7
JAJ0
D1

; tesc ¼
JAJ0
D1

; ð36Þ

where JA is the action at the absorbing boundary. We will
assume that the mean escape time is also a useful beam
relevant time scale when DðJÞ ¼ D1ðJ=J0Þ þD2ðJ=J0Þ2.
The mean escape time from an action J to an absorbing

boundary at action JA is given by

tescðJÞ ¼
Z

JA

J
dJ

J
DðJÞ ¼

Z
JA

J
dJ

J
D1ðJ=J0Þ þD2ðJ=J0Þ2

¼ J20
D2

ln

�
D1 þD2ðJA=J0Þ
D1 þD2ðJ=J0Þ

�
: ð37Þ

This is the mean escape time for particles initially at a
single action J to reach the aperture at action JA due to
diffusion. A parameter describing the escape time for the
beam can be obtained by averaging this over the initial
beam distribution ψ0ðJÞ, which yields

htesci ¼
J0
D2

Z
∞

0

dJ exp

�
−

J
J0

�
ln

�
D1 þD2ðJA=J0Þ
D1 þD2ðJ=J0Þ

�

¼ J20
D2

�
ln

�
D1

D2

þ JA
J0

�
− ln

D1

D2

− eD1=D2Γ
�
0;
D1

D2

��

≡ J20
D2

AF; ð38Þ

where Γð0; zÞ is the incomplete Gamma function and we
have assumed D2 ≠ 0. The dimensionless amplifying
factor AF, defined by the terms in square brackets, depends
on only the ratios D1=D2 and JA=J0. Figure 10 shows the
dependence of the dimensionless terms on D1=D2 for three
values of JA=J0 corresponding to apertures at ð6; 10; 12Þσ,
respectively. For D1=D2 ≃ 10, AF is of the order of unity.
Hence, the mean escape time is determined primarily by
J20=D2. In the case that D2 ¼ 0, the time scale would be
determined by J0JA=D1. With J0 ¼ 1.6 × 10−7 m, and

FIG. 9. Left: Calculated d1 values as a function of the number of particles per bunch and the linear fit to the values. Right: Measured
relative echo amplitude (red) at different intensities and compared with the best fit curve (blue) with ðD1; D2Þ, with D1 from the linear fit
in the left plot and D2 independent of the bunch charge.
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taking a representative valueD2 ¼ 0.25 × 10−13 m2=s from
Table III, we have htesci ≈ 1 s. While this time is extremely
short, it corresponds to the lifetime of a beam at large
amplitudes and not to a beam circulating on the nominal
closed orbit. Observations in the RHIC did show that the
lifetimes of kicked beams were significantly smaller com-
pared to those for beams not kicked. However, the early
losses of the kicked beams were dominated by scraping at
aperture restrictions, so there is no straightforward way to
determine the contribution of diffusion to those lifetimes.
Nevertheless, the diffusion coefficients and the associated
time scales should be useful for relative measures of beam
growth and particle loss. As an example, it could be useful in
IOTA to quickly distinguish between lattices with different
degrees of integrability. If echoes can be generated by small-
amplitude kicks, then the calculated diffusion coefficients
and the time scales would be more representative of beam
behavior under nominal conditions. Determining the diffu-
sion coefficients may require different parameterizations of
DðJÞ at small and large amplitudes, as seen, for example,
in Ref. [16].

V. SUMMARY

In this article, we revisited earlier observations of trans-
verse beam echoes in the RHIC to extract diffusion coef-
ficients from those measurements. We considered three
models for the action dependence of the diffusion coeffi-
cients: DðJÞ ¼ D0 þD1ðJ=J0Þ, DðJÞ ¼ D0 þD2ðJ=J0Þ2,
andDðJÞ ¼ D1ðJ=J0Þ þD2ðJ=J0Þ2. All three models were
found to adequately describe the echo amplitudes measured
during scans of the nonlinear tune shift and the delay between
the dipole and quadrupole kicks. Next, turn by turn data were
used to extract both the amplitude and the FWHMof the pulse
width.HerebothmodelswithD0 donot describe thedatawith
larger pulse widths, so the only model that successfully
describes both the amplitude and the FWHM data is the
ðD1; D2Þ model. We find that D1 is an order of magnitude

larger than D2 in most cases; it increases linearly with the
charge, while D2 is nearly independent of the charge. Using
these charge dependencies, the ðD1; D2Þ model also
adequately describes another set of data where the echo
amplitudes were measured as a function of the charge.
These results show that transverse echoes can indeed be

used to measure transverse beam diffusion in existing and
future hadron synchrotrons. We make some observations
on requirements for future measurements. The diffusion
measurements require good control of several machine and
beam parameters such as the initial dipole kick, the
quadrupole kick, machine nonlinearity, tunes, and beam
emittance, to name the most important. Injection oscilla-
tions can strongly influence the echo amplitude and pulse
shape, so these need to be controlled to the extent possible.
Alternatively, if available, a fast dipole kicker in the ring
would be preferable to initiate the echo. In such a case, a
transverse damper can damp initial oscillations and then be
turned off before the dipole kicker is used. While the echo
amplitude variation with scans of the tune shift and time
delay are useful, detailed analysis of the turn by turn data
yields more information. As an example of this, we found
that the FWHM scales quadratically with the charge and
therefore is more sensitive to intensity changes than the
echo amplitude. The proximity of resonances can also spoil
echoes, so the tunes and the dipole kick amplitudes need to
be chosen carefully as well.

ACKNOWLEDGMENTS

Fermilab is operated by Fermi Research Alliance, LLC
under U.S. Department of Energy Contract No. DE-AC02-
07CH11359. Brookhaven National Laboratory is
operated by Brookhaven Science Associates, LLC under
U.S. Department of Energy Contract No. DE-AC02-
98CH10886.

[1] K. Mess and M. Seidel, Collimators as diagnostic tools in
the proton machine of HERA, Nucl. Instrum. Methods
Phys. Res., Sect. A 351, 279 (1994).

[2] W. Fischer, M. Giovannozzi, and F. Schmidt, Dynamic
aperture experiment at a synchrotron, Phys. Rev. E 55,
3507 (1997).

[3] R. P. Fliller III, A. Drees, D. Gassner, G. McIntyre, S.
Peggs, and D. Trbojevic, Beam diffusion measurement in
RHIC, in Proceedings of the 2003 Particle Accelerator
Conference, Portland, OR (IEEE, New York, 2003),
p. 2904.

[4] G. Valentino, R. Assmann, R. Bruce, F. Burkart, V.
Previtali, S. Redaelli, B. Salvachua, G. Stancari, and A.
Valishev, Beam diffusion measurements using collimator
scans in the LHC, Phys. Rev. STAccel. Beams 16, 021003
(2013).

[5] G. Stancari, Measurements of beam halo diffusion and
population density in the Tevatron and in the Large Hadron
Collider, in Proceedings of HB2014, 54th ICFA Advanced

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  1  2  3  4  5  6  7  8  9  10

A
F

D1/D2

JA/J0=36
JA/J0=100

JA/J0=144

FIG. 10. Dependence of AF, defined in Eq. (38), on the ratio of
diffusion coefficients D1=D2 for three values of the ratio of the
action at the absorbing aperture JA to the initial emittance J0.

DIFFUSION MEASUREMENT FROM OBSERVED … PHYS. REV. ACCEL. BEAMS 20, 011001 (2017)

011001-11

http://dx.doi.org/10.1016/0168-9002(94)91354-4
http://dx.doi.org/10.1016/0168-9002(94)91354-4
http://dx.doi.org/10.1103/PhysRevE.55.3507
http://dx.doi.org/10.1103/PhysRevE.55.3507
http://dx.doi.org/10.1103/PhysRevSTAB.16.021003
http://dx.doi.org/10.1103/PhysRevSTAB.16.021003


Beam Dynamics Workshop on High-Intensity, High Bright-
ness and High Power Hadron Beams, 2014 (Michigan
State University, East Lansing, 2014), p. 294.

[6] G. V. Stupakov, Report No. SSCL-579, 1992.
[7] G. V. Stupakov and S. K. Kaufmann, Echo effect in

accelerators, AIP Conf. Proc. 326, 522 (1995); Report
No. SSCL-587, 1992.

[8] G. V. Stupakov and A.W. Chao, Effect of diffusion on
bunched beam echo, in Proceedings of the Particle
Accelerator Conference, Vancouver, BC, Canada, 1997
(IEEE, New York, 1997), p. 1834.

[9] L. K. Spentzouris, J.-F. Ostiguy, and P. L. Colestock, Direct
Measurement of Diffusion Rates in High Energy Synchro-
trons Using Longitudinal Beam Echoes, Phys. Rev. Lett.
76, 620 (1996).

[10] O. Bruning, T. Linnecar, F. Ruggiero, W. Scandale, E.
Shaposhnikova, and D. Stellfeld, Beam echoes in the
CERN SPS, in Proceedings of the Particle Accelerator
Conference, Vancouver, BC, Canada, 1997 (IEEE,
New York, 1997), p. 1816.

[11] G. Arduini, F. Ruggiero, F. Zimmermann, and M. Zorzano-
Mier, Report No. CERN-SL-Note-2000-048-MD, 2000.

[12] W. Fischer, T. Satogta, and R. Tomas, Measurement of
transverse echoes in RHIC, in Proceedings of the 21st
Particle Accelerator Conference, Knoxville, TN, 2005
(IEEE, Piscataway, NJ, 2005), p. 1955.

[13] S. Sorge, O. Boine-Frankenheim, and W. Fischer, Analysis
of measured transverse beam echoes in RHIC, in Proceed-
ings of ICAP06, International Computational Accelerator
Physics, Chamonix, France, 2006 (2006), p. 234.

[14] S. Nagaitsev, A. Valishev, V. V. Danilov, and D. N.
Shatilov, Design and simulation of IOTA–a novel concept
of Integrable Optics Test Accelerator, in Proceedings
of the 3rd International Particle Accelerator Conference,
New Orleans, LA, 2012 (IEEE, Piscataway, NJ, 2012),
p. 16.

[15] A. W. Chao, lecture notes at http://www.slac.stanford.edu/
~achao/lecturenotes.html.

[16] T. Chen et al., Measurements of a Hamiltonian System and
Their Description by a Diffusive Model, Phys. Rev. Lett.
68, 33 (1992).

[17] F. Zimmermann, Transverse proton diffusion, Part. Accel.
49, 67 (1995).

[18] D. Edwards and M. J. Syphers, Introduction to the
Physics of High Energy Accelerators (Wiley, New York,
1993).

[19] Wolfram Research Inc., Mathematica, Version 10.4,
Champaign, IL, 2016.

[20] C. W. Gardiner, Handbook of Stochastic Methods
(Springer, New York, 1985).

[21] T. Sen, Diffusion dynamics in a Tevatron store, J. Instrum.
6, P10017 (2011).

TANAJI SEN and WOLFRAM FISCHER PHYS. REV. ACCEL. BEAMS 20, 011001 (2017)

011001-12

http://dx.doi.org/10.1063/1.47305
http://dx.doi.org/10.1103/PhysRevLett.76.620
http://dx.doi.org/10.1103/PhysRevLett.76.620
http://www.slac.stanford.edu/%7Eachao/lecturenotes.html
http://www.slac.stanford.edu/%7Eachao/lecturenotes.html
http://www.slac.stanford.edu/%7Eachao/lecturenotes.html
http://www.slac.stanford.edu/%7Eachao/lecturenotes.html
http://www.slac.stanford.edu/%7Eachao/lecturenotes.html
http://www.slac.stanford.edu/%7Eachao/lecturenotes.html
http://dx.doi.org/10.1103/PhysRevLett.68.33
http://dx.doi.org/10.1103/PhysRevLett.68.33
http://dx.doi.org/10.1088/1748-0221/6/10/P10017
http://dx.doi.org/10.1088/1748-0221/6/10/P10017

