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We analyze single bunch transverse instabilities due to wakefields using a Fokker-Planck model. We first
expand on the work of T. Suzuki, Part. Accel. 12, 237 (1982) to derive the theoretical model including
chromaticity, both dipolar and quadrupolar transverse wakefields, and the effects of damping and diffusion
due to the synchrotron radiation. We reduce the problem to a linear matrix equation, whose eigenvalues and
eigenvectors determine the collective stability of the beam. We then show that various predictions of the
theory agree quite well with results from particle tracking simulations, including the threshold current for
transverse instability and the profile of the unstable mode. In particular, we find that predicting collective
stability for high energy electron beams at moderate to large values of chromaticity requires the full Fokker-
Planck analysis to properly account for the effects of damping and diffusion due to synchrotron radiation.
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I. INTRODUCTION

Understanding, predicting, and controlling collective
instabilities is an important part of storage ring design
and operation. Single bunch transverse instabilities are of
particular importance in high-energy electron storage rings,
as they typically set the limit on the maximum achievable
current [1–4]. The standard analysis of these instabilities
decomposes the linearized Vlasov equation into normal
modes, and then stability is determined by comparing the
maximum growth rate with the transverse synchrotron and
Landau damping rates (see, e.g., [5–9]). However, syn-
chrotron emission results in both damping and diffusion in
phase space, so that when synchrotron radiation provides
the dominant damping mechanism it can render the Vlasov
model incomplete. This is often the case for high energy
electron storage rings, in which case a Fokker-Planck
description must be employed to accurately predict stabil-
ity. This paper builds on the work of Ref. [10] to develop a
more complete Fokker-Planck analysis of transverse
stability, where particular attention is paid to the dynamics
at large chromaticity.
This paper is organized as follows. We derive the linear

equation of transverse stability from the Fokker-Planck
equation in Sec. II. We work out the derivation in some
detail, even though most of the elements of our calculation
can be found in the papers [5,6,10–12] and the books [7,8].
The (to our knowledge) new parts of the analysis include
the explicit treatment of the chromaticity via a canonical

transformation that naturally introduces the head-tail phase
in Sec. II A, and the inclusion of the quadrupolar wakefield
term throughout (although some of the latter was hinted at
in the Ph.D. theses [13,14]). In Sec. II B we include the
Fokker-Planck dynamics, which leads to the equilibrium
and perturbed distribution discussed in Sec. II C. Those
who are familiar with the linearization of the Vlasov
equation can probably skim Sec. II A, while those who
have experience with the Fokker-Planck analysis can
probably skip directly to the linearized equation of trans-
verse stability derived in Sec II D and given by Eq. (51).
In Sec. III we apply Sacherer’s formalism [5,6] to derive

the matrix equation that governs transverse stability to
wakefields in an electron storage ring, which we write in
Eq. (72). This procedure is quite similar to that first applied
to the Fokker-Planck equation in Ref. [10], but we more
fully investigate arbitrary values of chromaticity. We
reproduce Ref. [10]’s result showing that the damping of
high-order modes increases linearly with mode number, but
also derive a much simpler expression for the diffusion-
induced coupling between the modes, and find that
these coupling terms do not play a significant role in the
dynamics.
Section IV compares predictions from our analysis to

those of tracking simulations using the code ELEGANT [15].
For this comparison we use the multibend achromat (MBA)
upgrade lattice planned for the Advanced Photon Source as
our model storage ring [16], and the anticipated resistive
wall transverse impedance as our source of collective
instabilities; application to other lattices and/or impedances
is relatively straightforward. We begin by reviewing the
small-chromaticity limit assuming a purely dipolar imped-
ance, where we find very similar results to those of the
standard analysis of the transverse mode coupling insta-
bility [17–20] and that of Ref. [10].
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Next, we investigate increasing the current limit further
by operating at relatively high chromaticity in Sec. IV B.
The large, positive chromaticity stabilizes the low-order
modes, so that higher-order modes determine the dynamics.
Because higher-order modes are more susceptible to damp-
ing and diffusion, we find that in the high-chromaticity
limit including the full Fokker-Planck operator is essential
for properly predicting the stability within Sacherer’s
matrix formulation. Indeed, our theoretical predictions
closely match simulation results over a wide range of
chromaticity, both in terms of the current at which the beam
goes unstable, and in predicting the phase space distribution
of the unstable beam. In addition, we make a brief compari-
son of our predictions with those of the “post head-tail”
theory [21].
Finally, we extend the simulations to first include the

quadrupolar transverse impedance due to the nearly flat,
small gap insertion device chambers in Sec. IV C, and then
the longitudinal potential provided by the longitudinal
wakefield in Sec. IV D. The former quadrupolar contribu-
tion changes the frequency shifts of the modes as explained
in Ref. [22]; both our theory and simulation predict that
including ZQ can increase the maximum stable current by
10% to 40%. We also show that the longitudinal impedance
can be included with a straightforward extension of the
theory, but only if it is a small perturbation to the linear
dynamics.
We believe that our simulations show that the linearized

Fokker-Planck theory describes transverse, single-bunch
instabilities in electron storage rings provided one knows
both the transverse impedance and the equilibrium longi-
tudinal distribution. The present work assumes that the
longitudinal potential is dominated by the linear rf focus-
ing, so that it directly applies only to rings in which the
longitudinal impedance is a small perturbation, and to rf
systems that do not employ bunch-lengthening harmonic rf
cavities. It appears that the present theory can be extended
to include the latter harmonic rf with only a modest increase
in computational complexity, but generalizing it to encom-
pass an arbitrary longitudinal impedance may not be
reasonable. Finally, many next-generation, low-emittance
storage rings have large second order chromatic effects that
we plan to address in a subsequent publication.

II. GOVERNING EQUATIONS

Under Hamiltonian (conservative) flow, the evolution of
the electron distribution function F is given by

∂F
∂s þ fF;Hg ¼ 0; ð1Þ

where s is the propagation coordinate along the ring and
the canonical Poisson bracket is defined in terms of the
positions X and momenta P via

fF;Hg≡ ∂H
∂P ·

∂F
∂X −

∂H
∂X ·

∂F
∂P : ð2Þ

Our convention is to normalize F such that integrating over
all phase-space coordinates Z ¼ ðX;PÞ is unity.
In electron storage rings, however, the Hamiltonian

dynamics is modified by the emission of synchrotron
radiation, which leads to a damping and diffusion in phase
space. As shown in, e.g., [23], and derived using an
alternate method in Appendix A, this damping and dif-
fusion can be included by modifying (1) to

∂F
∂s þ fF;Hg ¼ ∂F

∂s
����
F:P:

; ð3Þ

where the right-hand side represents a Fokker-Planck
operator that gives the damping and diffusion associated
with synchrotron emission.
We assume that the transverse degrees of freedom are

nearly uncoupled, in which case we need only consider
two degrees of freedom and take X ¼ ðx; zÞ, where x is the
horizontal transverse coordinate and the longitudinal co-
moving coordinate z≡ s − ct. Their respective momenta
are the transverse angle x0 and the negative energy
deviation pz ≡ −ðγ − γ0Þ=γ0, where γ0 is the reference
Lorentz factor; we choose the negative energy deviation
rather than the usual δ≡ ðγ − γ0Þ=γ0 so that the associated
Hamiltonian is positive for particles above transition [in
this case particles with positive pz (lower energy) travel a
shorter path and are displaced a positive amount in z after
one turn].
We consider Hamiltonian motion that encompasses the

linear optics of the lattice, the linearized rf acceleration,
the dependence of the transverse motion on the energy
due to chromaticity, and the forces due to wakefields.
Furthermore, we assume that the chromatic and wakefield
potentials constitute a perturbation over one turn, in which
case we can approximate H by its value integrated over
one turn. Hence, we write

H ¼ 1

CR

I
dsHðxβ; z; x0β; pz; sÞ; ð4Þ

where H is the single particle Hamiltonian and CR is the
ring circumference; in betatron coordinates xβ ≡ xþ ηxpz

and x0β ≡ x0 þ η0xpz, where ηxðsÞ and η0xðsÞ are the
dispersion function and its derivative, respectively, we have

H ¼ 1

2
x0β

2 þ 1

2
KðsÞx2β þ

αc
2
p2
z þ Vzðz; sÞ

þ Vchromðpz; xβ; ; sÞ þ Vwakeðz; xβ; sÞ: ð5Þ

Here, KðsÞ is the linear focusing due to quadrupoles, αc is
the momentum compaction (we assume that we are well
above transition, αc ≫ 1=γ2), and Vz, Vchrom, and Vwake are
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the conservative synchrotron, chromatic, and transverse
wakefield potentials, respectively.
Finally, dynamical consistency demands that we also

integrate the Fokker-Planck diffusion and damping over
one turn. In the next two sections we first detail the
Hamiltonian dynamics, and then determine the Fokker-
Planck operator ∂F=∂sjF:P:.

A. Hamiltonian dynamics

We will find it convenient to analyze the transverse
stability by first transforming to the transverse action-angle
coordinates, ðxβ; x0βÞ → ðΨ;J Þ. These are given in terms of
the Courant-Snyder beam envelope function βzðsÞ [24] via

xβ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2βxJ

p
cosΨ; ð6Þ

x0β ¼ −

ffiffiffiffiffiffiffi
2J
βx

s
sinΨþ β0x

2

ffiffiffiffiffiffiffi
2J
βx

s
cosΨ; ð7Þ

while the new Hamiltonian becomes

H ¼ 1

βx
J þ αc

2
p2
z þ Vz þ Vchrom þ Vwake: ð8Þ

Now, we write out the averaged Hamiltonian. First, the
uncoupled part of H is

1

CR

I
ds

�
J
βx

þ αc
2
p2
z þ Vzðz; sÞ

�
¼ ωβ

c
J þ αc

2
p2
z þ VzðzÞ

≡ ωβ

c
J þHzðz; pzÞ; ð9Þ

where ωβ is the betatron frequency and we have defined the
longitudinal Hamiltonian Hz as shown. Second, we con-
sider the chromatic potential Vchrom, which comes from
chromatic aberrations in the focusing quadrupoles and in
the sextupoles magnets designed to correct these aberra-
tions. For a sextupole with magnetic field components
Bx ¼ ðmc=eÞ2b2xy and By ¼ ðmc=eÞ2b2ðx2 − y2Þ, the
chromatic potential is [25]

Vchrom ¼
I

ds½KðsÞ − 2b2ðsÞηxðsÞ�
x2βpz

2

¼ J ½1þ cosð2ΨÞ�pz
1

CR

I
ds

βx
2
½K − 2b2ηx�

¼ −
ω0ξx
c

J ½1þ cosð2ΨÞ�pz; ð10Þ

where we have introduced the revolution frequency ω0 ≡
2πc=CR and the chromaticity

ξx ≡ −
1

4π

I
dsβxðsÞ½KðsÞ − 2b2ðsÞηxðsÞ�: ð11Þ

Third, the wakefield potential is found as follows. We
model Vwake as a short-range (single bunch) force that
is comprised of a sum over many localized “wakefield
elements.” At each wakefield element electrons generate
electromagnetic fields that provide a kick to all trailing
particles. The total kick due to the lth element is obtained
by summing over all the source electrons using the electron
distribution function F, so that the wake potential

Vwake ¼
X
l

δðs − slÞ
e2Ne

γmc2

Z
dẐFðẐ; sÞ

×
�
xβx̂βWl

Dðz − ẑÞ þ 1

2
x2βW

l
Qðz − ẑÞ

�
; ð12Þ

where Ne is the number of electrons in a bunch and we
recall that Z denotes the set of all phase space coordinates.
In addition, Eq. (12) divides the transverse wakefield into
its dipolar and quadrupolar componentsWD andWQ in the
usual way. For the former WD the kick strength scales
linearly with the displacement of the source electron, while
for the latter WQ a test electron receives a kick that is
proportional to its own x coordinate; this is the general,
linearized wakefield produced by vacuum chambers that
have left-right and top-bottom mirror symmetry (see, e.g.,
[26]). Note that both wakefields depend on the distance
between the source and test electron, and that in the
ultrarelativistic limit the wakefield of any particle can only
affect those electrons that are behind it, Wðz − ẑÞ ¼ 0
if ẑ < z.
Averaging Vwake over the ring is trivial: we merely get a

sum over the various wakefield elements at their location.
The interesting part comes when we make the coordinate
change to action-angle variables. Using the fact that the
Jacobian of a canonical transformation is unity, we find that
the transverse wakefield potential (12) becomes

Vwake ¼
e2Ne

γmc2
ω0

2πc

X
l

Z
dẐFðẐ; sÞ

×

�
2

ffiffiffiffiffi
J

p
cosΨ

ffiffiffiffiffi
Ĵ

q
cos Ψ̂βlxWl

Dðz − ẑÞ

þJ
2
½1þ cosð2ΨÞ�βlxWl

Qðz − ẑÞ
�
; ð13Þ

and we derive the fact that the effect of the transverse
wakefield is scaled by the local beta function. While this
β-function scaling has been well-known for decades, it
apparently was first proven in [13], which in fact gener-
alized our Eq. (13) to elements with finite extent in s; the
expression in Ref. [13] reduces to (13) if the wakefield
source has a length much less then c=ωβ, or alternatively if
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it is nearly constant over that length as might be the case for
the resistive wall wake.
Our ultimate interest will be to determine the transverse

stability, so that we will concern ourselves with both the
equilibrium distribution and with the transverse dynamics
associated with the betatron motion ∼eiΨ. In this case the
terms ∝ cosð2ΨÞ result in oscillatory corrections that we
can, to lowest order, ignore. Hence, we will drop these
terms from (10) and (13), and write our ring-averaged
Hamiltonian as

H ¼ ωβ

c
J þ αc

2
p2
z þ Vz −

ω0ξx
c

Jpz þ Vwake: ð14Þ

Our next step will be to eliminate the chromatic potential
fromH using an appropriate coordinate transformation. We
do this using the “type-three” [27,28] mixed-variable
generating function given by

Sξ3ðΨ; z;J ; pzÞ ¼ −ΨJ − zpz þ
ω0ξx
αcc

zJ ; ð15Þ

where bars indicate the new coordinates. The new longi-
tudinal variables are given by

z ¼ −
∂Sξ3
∂pz

¼ z pz ¼ −
∂Sξ3
∂z ¼ pz −

ω0ξx
αcc

J : ð16Þ

We will find momentarily that J ¼ J , so that inserting the
new longitudinal momentum into (14) cancels the chro-
matic term ðω0ξx=cÞpzJ . In addition, the transverse
Hamiltonian gets a nonlinear contribution such that

ωβ

c
J →

ωβ

c
J
�
1 −

ω2
0ξ

2
x

2ωβαcc
J
	
: ð17Þ

However, the correction in parentheses is typically entirely
negligible (for the APS and APSU it is ≲10−7), and we
neglect the term ∼J 2 in what follows.
Along with the new longitudinal coordinates (16),

the generating function Sξ3 also leads to the transverse
coordinates

Ψ ¼ −
∂Sξ3
∂J ¼ Ψ −

ω0ξx
αcc

z J ¼ −
∂Sξ3
∂Ψ ¼ J : ð18Þ

We find that the new betatron angle is related to the old one
by adding on the so-called “head-tail phase” [29,30]

ω0ξx
αcc

z ¼ 2πξx
αcCR

z≡ kξz: ð19Þ

The head-tail phase arises because the betatron frequency
depends linearly on the energy for ξx ≠ 0. This chromatic
effect leads to the betatron phase accumulating a shift that is

proportional to the longitudinal coordinate z as it performs
synchrotron oscillations.
In summary, at lowest order the chromatic (head-tail)

coordinate transformation eliminates the chromatic part of
H while replacing the betatron phase via Ψ → Ψ − kξz.
The other new coordinates are essentially the same as the
old ones, so for simplicity we will only retain the bar on the
new betatron phase; the new Hamiltonian is then

H ¼ ωβ

c
J þHzðz; pzÞ þ Vwakeðz;Ψ;J Þ; ð20Þ

where the wake potential

Vwake ¼ χJ
Z

dẐFðẐ; sÞWβ
Qðz − ẑÞ

þ 4χ
ffiffiffiffiffi
J

p
cosðΨ − kξzÞ

Z
dẐFðẐ; sÞ

×
ffiffiffiffiffi
Ĵ

q
cosðΨ̂ − kξẑÞWβ

Dðz − ẑÞ: ð21Þ

For convenience we have defined the coupling constant χ
and the total, beta function-weighted dipole and quadrupole
wakefields as follows:

χ ≡ e2Ne

2γmc2CR
¼ I

IA

2π

γZ0c
; ð22Þ

Wβ
D;Qðz − ẑÞ≡X

l

βlxWl
D;Qðz − ẑÞ; ð23Þ

where the average bunch current I ≡ ecNe=CR, the Alfvén
current IA ≡ 4πϵ0mc3=e ≈ 17 kA, and the impedance of
free space Z0 ≡ 1=ðϵ0cÞ ≈ 377 Ω (ϵ0 is the vacuum
permittivity).

B. Dissipative (Fokker-Planck) dynamics

We have specified the conservative (Hamiltonian) part of
Eq. (3), and now need to add the dissipative right-hand side.
As mentioned before, this dissipative Fokker-Planck oper-
ator accounts for the stochastic emission of synchrotron
radiation and for the subsequent energy replacement deliv-
ered by the rf cavities. We write the average change in mean
energy, angle, and mean square energy as hΔpzi, hΔx0i, and
hðΔpzÞ2i, respectively, so that the dissipative evolution over
one turn is (see Appendix A for more details)

∂F
∂s

����
F:P:

≈ −
1

CR

I
ds

∂
∂pz

�hΔpzi
Δs

FðZ; sÞ
�
SRþrf

−
1

CR

I
ds

∂
∂x0

�hΔx0i
Δs

FðZ; sÞ
�
rf

þ 1

CR

I
ds

∂2

∂p2
z

�hðΔpzÞ2i
2Δs

FðZ; sÞ
�
SR
: ð24Þ
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The first two terms give the damping due to energy loss from
synchrotron emission and its replacement by the rf-cavities,
while the final term gives a diffusive spreading in energy due
to the stochastic nature of synchrotron emission; we give a
brief description of each of these below.
We first consider the average change in the mean energy

due to synchrotron emission and its replenishment from the
rf cavities over one turn. We will choose the rf to cancel the
energy lost by the reference electron over one turn, so that
the term ∝ hΔpzi results in a damping of the coordinates
toward the reference orbit. As was shown in [11] (see also,
e.g., [23,31]), the explicit expression for the mean energy
change is

hΔpzi
Δs

¼ PγðsÞ
γ0mc3

−
VrfðsÞ
γ0mc2

ð25Þ

≈
Pγ0ðsÞ
γ0mc3

−
VrfðsÞ
γ0mc2

− pz
2Pγ0ðsÞ
γ0mc3

þ x
Pγ0ðsÞ
γ0mc3

�
κ

ρðsÞ þ
2

By

∂By

∂x
�
; ð26Þ

where VrfðsÞ is the energy gain per unit length from the rf,
PγðsÞ is the power emitted to synchrotron radiation by an
electron of energy γ at location s, ρ is the bending radius,
By is the bending magnetic field, and κ is a geometric
quantity to be explained shortly. Stable motion requires the
rf energy gain to match that lost due to radiation emission
of the reference particle, so that

H
dsðVrf − Pγ0=cÞ ¼ 0.

The final term on the first line in (26) reflects the fact that
higher energy electrons radiate more, which tends to damp
the energy towards its reference value γ0. The second line
∝ x is nonzero if the emission depends on the horizontal
displacement, which may occur if the path length or field
strength depends on x. The former effect is reflected by the
purely geometric term κ=ρ: for rectangular dipoles the path
length is independent of x and κ ¼ 0, while for sector
magnets the path length through the dipole increases
linearly with x and κ → 1 (the κ for other magnet shapes
can also be determined). The final term in (26) ∝ ∂By=∂x
allows for the field strength to vary transversely.
The second damping term in the Fokker-Planck operator

(24) arises because synchrotron emission reduces the total
electron energy, while the rf only replaces the longitudinal
momentum component. This in turn leads to an effective
damping of the electron angle given by [11]

hΔx0i
Δs

≈ x0
Pγ0ðsÞ
γ0mc3

: ð27Þ

Finally, the third term in Eq. (24) gives the mean square
energy increase due to the uncertainty associated with
photon emission. We have [11]

hðΔpzÞ2i
Δs

¼ 55

48
ffiffiffi
3

p αℏ2γ50
ðmcÞ2

1

ρðsÞ3 ; ð28Þ

where α is the fine structure constant and ℏ is Planck’s
constant divided by 2π.
We have specified the Fokker-Planck operator in terms

of pz, x, and x0; to apply it in Eq. (3) we need to transform
all expressions into the action-angle coordinates of the
betatron motion. Doing this requires inverting the coor-
dinate relationships (6)–(7) into

J ¼ 1

2βx
ðxþ ηxpzÞ2

þ βx
2

�
ðx0 þ η0xpzÞ −

β0x
2βx

ðxþ ηxpzÞ
�
2

ð29Þ

tanΨ ¼ −βx
x0 þ η0xpz

xþ ηxpz
þ β0x

2
; ð30Þ

and transforming the derivatives using

∂
∂pz

→
∂
∂pz

þ ∂J
∂pz

∂
∂J þ ∂Ψ

∂pz

∂
∂Ψ ð31Þ

∂
∂x0 →

∂J
∂x0

∂
∂J þ ∂Ψ

∂x0
∂
∂Ψ ; ð32Þ

where we have neglected a small chromatic correction to
the last line coming from the transformation (16). Carrying
out the coordinate transformation is a long exercise in
applying the chain rule. In terms of the new (action-angle)
coordinates, the resulting Fokker-Planck equation is (see,
e.g., [23])

∂F
∂s þ fF;Hg ¼ Dz

∂2F
∂p2

z
þ 2

cτz

�
pz

∂F
∂pz

þ F

	

þDx

�
J

∂2F
∂J 2

þ ∂F
∂J þ 1

4J
∂2F
∂Ψ2

	

þ 2

cτx

�
J

∂F
∂J þ F

	
: ð33Þ

Here we have neglected terms ∼e�2iΨ that oscillate at twice
the betatron frequency, cross derivatives between the
longitudinal and transverse plane that will result in a small
modification of the equilibrium, and have defined τz and
Dz to be the usual longitudinal damping time and diffusion
coefficient, respectively, with τx and Dx their transverse
counterparts. The inverse damping times are

1

τz
¼ 1

CR

I
ds

PγðsÞ
2γmc2

�
2þ ηx

�
κ

ρ
þ 2

Bx

∂B
∂x

	�
ð34Þ

1

τx
¼ 1

CR

I
ds

PγðsÞ
2γmc3

�
1 − ηx

�
κ

ρ
þ 2

Bx

∂B
∂x

	�
; ð35Þ
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while the diffusion coefficients

Dz ¼
55γ5

48
ffiffiffi
3

p αℏ2

ðmcÞ2
1

CR

I
ds

1

ρðsÞ3 ð36Þ

Dx ¼
55γ5

48
ffiffiffi
3

p αℏ2

ðmcÞ2
1

CR

I
ds

βxη
0
x
2 þ 2αxηxη

0
x þ γxη

2
x

ρðsÞ3 :

ð37Þ

In Eq. (37) we have introduced the usual Courant-Snyder
(Twiss) parameters αx and γx, with αx ≡ −β0x=2 and
γxβx ¼ 1þ α2x; the integrand in (37) is often written as
“curly H” [11].
Finally, we will find it convenient to rewrite Eq. (33) in

terms of the following products of damping and diffusion
coefficients,

σ2δ ≡ cDzτz
2

; ε0 ≡ cDxτx
2

: ð38Þ

We will show that σδ equals the equilibrium energy spread
while ε0 is the equilibrium emittance ε0, as our choice of
notation suggests. Then, the Fokker-Planck equation (33)
becomes

∂F
∂s þ fF;Hg ¼ 2

cτz

�
σ2δ

∂2F
∂p2

z
þ pz

∂F
∂pz

þ F
�

þ 2

cτx

�
ε0J

∂2F
∂J 2

þ ε0
4J

∂2F
∂Ψ2

þ ðJ þ ε0Þ
∂F
∂J þ F

�
: ð39Þ

C. Equilibrium and perturbed distributions

The Hamiltonian left-hand side of (33) vanishes if the
distribution function depends only on the conserved quan-
tities ofH. For the unperturbed motion with Vwake ¼ 0, the
two conserved quantities are the betatron action J and
the longitudinal Hamiltonian Hz. Furthermore, since the
unperturbed H is separable we assume that F0 is as well,
and write the equilibrium distribution

F0ðz;Ψ; pz;J ; sÞ ¼ g0ðHzÞf0ðJ Þ: ð40Þ

Inserting F0 into the Fokker-Planck equation (33) leads to

0 ¼ f0

�
2

cτz

∂
∂pz

ðpzg0Þ þDz
∂2g0
∂p2

z

�

þ g0

�
2

τx

∂
∂J ðJ f0Þ þDx

�
J

∂2f0
∂J 2

þ ∂f0
∂J

	�
: ð41Þ

The nontrivial solution requires both terms in square
brackets to vanish, in which case it is straightforward to

show that the equilibrium solution is a Gaussian in energy
pz and a decaying exponential in action J ,

F0ðz; pz;J Þ ¼
exp f− 1

2σ2δ
½p2

z þ 2
αc
VðzÞ�g

2πσδσz

exp ð− J
ε0
Þ

2πε0

¼ expð−Hz=αcσ2δÞ
2πσδσz

expð−J =ε0Þ
2πε0

: ð42Þ

To include the effects of wakefields, we now add to the
equilibrium F0 the perturbed distribution F1. While the
unperturbed distribution is the simple function of J andHz
given by Eq. (42), we will choose the perturbed distribution
to model dipole oscillations of the (possibly unstable)
beam. Since the longitudinal and transverse physics are
largely uncoupled, we assume that both F0 and F1 are
separable into their transverse and longitudinal parts,
writing

Fðz;Ψ; pz;J ; sÞ ¼ f0ðJ Þg0ðHzÞ
þ f1ðΨ;J ; sÞg1ðz; pz; sÞ: ð43Þ

The transverse physics is dominated by the betatron
oscillations that occur on a time scale much faster than any
other dynamics considered here. Hence, it is reasonable to
assume that the perturbation along x is well described by a
simple dipole making betatron oscillations, while all the
wakefield-driven complexity appears in the (relatively)
slowly evolving longitudinal direction. One can envision
a sausage-like electron bunch that may flop around longi-
tudinally due to wakefields as it executes its betatron
oscillations. Following Sacherer [5], such a simple dipole
in x is given by

f1ðΨ;J ; sÞ ¼ −DðsÞ
ffiffiffiffiffiffiffiffi
1

2
J

r
f00ðJ ÞeiΨe−iωβs=c; ð44Þ

which can be understood by computing the complex dipole
moment

Z
dxβdx0β

xβ þ iβxx0βffiffiffiffiffi
βx

p f1 ∼
Z

dΨdJ
ffiffiffiffiffiffiffi
2J

p
e−iΨf1ðΨ;J Þ

¼ DðsÞe−iωβs=c: ð45Þ

Whether or not the dipole amplitude DðsÞ increases or
decreases will depend on the wakefields and on the beam
current.
Furthermore, we will assume that the perturbed distri-

bution is small and linearize the resulting equation, in
which case F1 can be expressed as a linear sum of
oscillating modes ∝ e−iΩs=c, withΩ the complex frequency.
Hence, we write the perturbed distribution
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F1 ¼ −DðsÞ
ffiffiffiffiffiffiffiffi
1

2
J

r
f00ðJ ÞeiΨe−iωβs=cg1ðz; pz; sÞ

¼ −
ffiffiffiffiffiffiffiffi
1

2
J

r
f00ðJ ÞeiΨ ~g1ðz; pzÞe−iΩs=ce−iωβs=c; ð46Þ

where in the second line we isolate the time dependence by
defining DðsÞg1ðz; pz; sÞ ¼ ~g1ðz; pzÞe−iΩs=c. Note that Ω
represents the frequency difference in the oscillation from
the betatron frequency, and the chromatic dependence is
contained in Ψ.
We can now specify the wakefield potential (21) in terms

of the distribution function (43), using F0 and F1 given by
Eqs. (42) and (46), respectively. Upon inserting F into the
expression for Vwake we obtain

Vwake ¼ χJ
Z

dẑdp̂zg0ðẑ; p̂zÞWβ
Qðz − ẑÞ

þ χ
ffiffiffiffiffiffiffi
2J

p
cosðΨ − kξzÞe−iðΩþωβÞs=c

×
Z

dẑdp̂z ~g1ðẑ; p̂zÞeikξ ẑWβ
Dðz − ẑÞ: ð47Þ

Note that only the perturbed distribution contributes to the
dipolar term, since the kick due toWD is proportional to the
displacement of the source electron. The quadrupolar term,
on the other hand, scales with the test electron action J and
with the number of driving electrons ∼F0.

D. Linearized equation for the transverse motion

We have assumed that the perturbed distribution per-
forms simple betatron oscillations along x, which has led to
the prescribed transverse dependence of F1 given by
Eq. (46). Hence, we can now integrate out the transverse
degrees of freedom to obtain an equation for the longi-
tudinal perturbation ~g1. Operationally, we will evaluate the

dipole motion by multiplying Eq. (39) by
ffiffiffiffiffiffiffi
2J

p
e−iΨ and

integrating overΨ and J . Only those terms of the equation

that originally vary as ∼eiΨ will survive this integration.
Using the wakefield (47) and the distribution function
defined by Eqs. (42) and (46), the Hamiltonian part of (39)
that oscillates near the betatron frequency is

∂F
∂s þ fF;Hg ¼ −

iðΩþ ωβÞ
c

F1 þ
ωβ

c
∂F1

∂Ψ
þ ∂VQ

wake

∂J
∂F1

∂Ψ −
∂VD

wake

∂Ψ
∂F0

∂J
þ fF1;Hzg þ � � � ; ð48Þ

where we use “…” to denote those terms that do not

oscillate ∼eiΨ, are nonlinear in ~g1, or are otherwise small.
In particular, the force due to the wakefields results by
neglecting the second line in

fF1; Vwakeg ¼ ∂VQ
wake

∂J
∂F1

∂Ψ −
∂VD

wake

∂Ψ
∂F1

∂J
þ fF1; VD

wakeg −
∂Vwake

∂z
∂F1

∂pz
; ð49Þ

since fF1; VD
wakeg is nonlinear in F1 while the second term

is a factor εx=σzσδ ≪ 1 smaller than those of the first line.
Now, we insert (48) and the expression for F1 Eq. (46)

into the Fokker-Planck equation (39), multiply by

i
ffiffiffiffiffiffiffi
2J

p
e−iΨeiðΩþωβÞs=c and integrate over Ψ to get

− J f00

��
Ω
c
− χ

Z
dẑdp̂zg0W

β
Q

	
~g1

−χg0
Z

dẑdp̂z ~g1eikξðẑ−zÞW
β
D þ if~g1;Hzg

�

¼ −J f00
2

cτz

�
σ2δ

∂2 ~g1
∂p2

z
þ pz

∂ ~g1
∂pz

þ ~g1

�

þ J f00
i
cτx

~g1 −
2i
cτx

∂
∂J ðε0J 2f000 þ J 2f00Þ~g1: ð50Þ

Here, we have rewritten the transverse derivatives so that
the next integration over J is trivial if we use the fact that
−J f00 ¼ −dðJ f0Þ þ f0 and that

R
dJ f0 ¼ 1=2π. Hence,

integrating out the transverse degree of freedom implies
that the lowest order dipole varies longitudinally with a
perturbation ~g1 that obeys

�
Ωþ i=τx

c
− χ

Z
dp̂zdẑW

β
Qðz − ẑÞg0ðẑ; p̂zÞ

�
~g1

− χg0

Z
dp̂zdẑW

β
Dðz − ẑÞeikξðẑ−zÞ ~g1ðẑ; p̂zÞ

þ if~g1;Hzg ¼ 2i
cτz

�
σ2δ

∂2 ~g1
∂p2

z
þ pz

∂ ~g1
∂pz

þ ~g1

�
: ð51Þ

There are several interesting points that we would like to
make regarding the linearized equation (51). First, we find
that the transverse dissipative dynamics reduces to betatron
damping such that Ω ∼ −i=τx in the χ → 0 limit. This
simplification is due to the assumed perturbation f1:
Eq. (44) describes rigid transverse dipole oscillations
whose shape in transverse phase-space is left invariant
by diffusion. Hence, only a damping term remains after we
integrate out the transverse degree of freedom. This should
be contrasted with the right-hand side of (51), which
reflects both damping and diffusion due to dynamics in
the longitudinal plane.
The second thing to note about (51) is that quadrupolar

wakefield alone cannot lead to an instability. In fact, if WD
were to hypothetically vanish, we could eliminateWQ from
(51) entirely by making the replacement
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~g1ðz; pzÞ → ~~g1ðz; pzÞe−iχs
R

dp̂zdẑW
β
Qðz−ẑÞg0ðẑ;p̂zÞ ð52Þ

in the perturbation Eq. (46). We can understand this
physically because in the linear limit WQ acts much like
a quadrupole magnet on any individual electron, giving rise
to only a current-dependent tune shift. Third, we find that
the head-tail phase appears in the dipolar wakefield term.
Writing the wakefield as an impedance via the Fourier
transform gives

Wβ
Dðz − ẑÞeikξðẑ−zÞ ¼ −

ic
2π

Z
dkZβ

DðkÞeikðz−ẑÞeikξðẑ−zÞ

¼
Z

dk
cZβ

DðkÞ
2πi

eiðk−kξÞðz−ẑÞ; ð53Þ

so that the frequencies that contribute to the dipolar
impedance are effectively shifted by the head-tail frequency
ckξ. We will see later that this can be used to stabilize
lower-order modes by increasing the chromaticity, thereby
increasing the beam current at which transverse collective
instabilities occur.
In the next section we turn to solving (51) when Hz

describes the simple harmonic motion of a usual rf system.
Our solution will make use of Sacherer’s formalism to find
the linear eigenmodes and complex eigenfrequencies asso-
ciated with Eq. (51).

III. LINEAR MODES FOR SIMPLE
HARMONIC RF FOCUSING

We take the longitudinal Hamiltonian to be that of the
linear rf focusing,

Hz ¼ Hsynch ¼
αc
2
p2
z þ

ω2
s

2αcc2
z2; ð54Þ

where ωs is the synchrotron frequency. This Hamiltonian
describes simple harmonic motion, and we will find it
convenient to introduce longitudinal action-angle coordi-
nates just as we did for the transverse motion. Again, we
make the transformation ðz; pzÞ → ðΦ;IÞ using the “type-
one” mixed-variable generating function

SI1 ðΦ; zÞ ¼ −
ω2
sz2

2αcc
tanΦ; ð55Þ

with I ¼ −∂SI1=∂Φ and pz ¼ ∂SI1=∂z; we obtain the
familiar expressions

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Iαcc
ωs

s
cosΦ pz ¼ −

ffiffiffiffiffiffiffiffiffiffiffi
2Iωs

αcc

s
sinΦ; ð56Þ

so that the synchrotron Hamiltonian Hz ¼ ωsI=c. Using
Eq. (42) for F0, we find that the longitudinal equilibrium

for simple harmonic motion is uniform in angle and
decreases exponentially with action,

g0ðIÞ ¼
αccσ2δ
2πωs

e−ωsI=αccσ2δ ≡ e−I=hIi

2πhIi ; ð57Þ

where we have defined the average longitudinal action

hIi ¼ αcc
ωs

σ2δ ¼
ωs

αcc
σ2z ¼ σzσδ: ð58Þ

Now that the linear synchrotron Hamiltonian has speci-
fied the longitudinal equilibrium (57), we can simplify the
quadrupolar term from (51). In particular, we write

Z
dp̂zdẑg0W

β
Q ¼

Z
dÎdΦ̂g0ðIÞ

Z
dk

cZβ
QðkÞ
2πi

eikðz−ẑÞ

¼
Z

dk
cZβ

QðkÞ
2πi

eikz

×
Z

dr̂dΦ̂
e−r̂

2π

X
l

i−lJlðkσz
ffiffiffiffiffi
2r̂

p
ÞeilΦ̂

¼ c
2πi

Z
dkZβ

QðkÞeikze−k
2σ2z=2; ð59Þ

where the second line uses the scaled action r≡ I=hIi,
expresses ẑ in terms of action-angle variables and σz using
(56) and (58), and applies the Jacobi-Anger identity

eix cosΦ ¼
X
l

ilJlðxÞeilΦ; ð60Þ

with JlðxÞ the Bessel function of order l. The final
expression Eq. (59) obtains from the p ¼ m ¼ 0 case of
the integral [32]Z

∞

0

dxe−xJmð2y
ffiffiffi
x

p Þxm=2Lm
p ðxÞ ¼

1

p!
y2pþme−y

2

; ð61Þ

where Lm
p ðxÞ is the associated Laguerre polynomial; this

integral will prove useful later as well.
We also must express the Fokker-Planck diffusion and

damping operators in terms of the action-angle variables.
Convenient expressions can be found in terms of the scaled
action r≡ I=hIi; for example, derivatives with respect to
pz become

∂
∂pz

¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Iαcc
ωs

s
sinΦ

∂
∂I −

ffiffiffiffiffiffiffiffiffiffiffi
αcc
2Iωs

r
cosΦ

∂
∂Φ

¼ −
ffiffiffiffiffi
2r

p

σδ
sinΦ

∂
∂r −

1

σδ
ffiffiffiffiffi
2r

p cosΦ
∂
∂Φ : ð62Þ

Using Eqs. (56), (59), and (62), the linearized Fokker-
Planck equation (51) becomes
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�
Ωþ i=τx

c
þ iωs

c
∂
∂Φþ icχ

2π

Z
dkZβ

QðkÞe−k
2σ2z=2eikz

�
~g1

þ icχ
2π

g0

Z
dÎdΦ̂~g1ðΦ̂; ÎÞ

Z
dkZβ

DðkÞeiðk−kξÞðz−ẑÞ

¼ 2i
cτz

�
r
∂2

∂r2 þ ðrþ 1Þ ∂
∂rþ 1þ 4rþ 1

4r
∂2

∂Φ2

�
~g1

−
�
ie2iΦ

cτz

�
r
∂2

∂r2 þ r
∂
∂rþ i

∂2

∂r∂Φþ 1 − r
2i

∂
∂Φ −

1

4r
∂2

∂Φ2

�

− c:c:

�
~g1: ð63Þ

where our notation is such that z ¼ zðΦ; IÞ and ẑ ¼ zðΦ̂; ÎÞ.
We solve (63) by expanding the perturbation ~g1 as a

series of orthogonal, linear modes. Since ~g1 is periodic in Φ
the angular dependence is given by the Fourier harmonics
einΦ, and we expand the perturbation as

~g1ðΦ; IÞ ¼
X
q;n

anqgnqðIÞg0ðIÞeinΦ

¼
X
q;n

anqgnqðIÞ
e−I=hIi

2πhIi e
inΦ: ð64Þ

Here, anq is the mode coefficient while gnqðIÞ is the mode
function for the action (radial) mode q and angular
(azimuthal) mode n. We now insert the angular expansion
(64) into the linear equation (63). First, we use the Bessel
expansion (60) to rewrite the z dependence in the quad-
rupolar wakefield term as

icχ
2π

~g1ðΦ;IÞ
Z

dkZβ
QðkÞe−k

2σ2z=2eikz

¼ icχ
2π

X
q;n

anqgnqðIÞg0ðIÞeinΦ

×
Z

dkZβ
QðkÞe−k

2σ2z=2
X
l

ilJlðkσz
ffiffiffiffiffi
2r

p
ÞeilΦ: ð65Þ

Next, inserting the angular decomposition (64) into the
integral in the dipolar wakefield term givesZ

dkdÎdΦ̂Zβ
DðkÞeiðk−kξÞðz−ẑÞ ~g1

¼
Z

dkZβ
Dðkþ kξÞeikz

Z
dr̂dΦ̂

X
q;n

anqgnqðr̂Þ
e−r̂

2π
einΦ̂

×
X
l

ilJ−lðkσz
ffiffiffiffiffi
2r̂

p
ÞeilΦ̂

¼
Z

dkZβ
Dðkþ kξÞ

X
l

ilJlðkσz
ffiffiffiffiffi
2r

p
ÞeilΦ

×
X
q;n

anq
in

Z
dr̂gnqðr̂ÞJnðkσz

ffiffiffiffiffi
2r̂

p
Þe−r̂: ð66Þ

We insert (65) and (66) into (51), multiply by e−imΦ, and
integrate over angle, to find that the left-hand (Hamiltonian)
side of the mode equation (63) becomes

X
q

amq
c
ðΩ −mωs þ i=τxÞgmq ðrÞe−r

þ icχ
2π

Z
dkZβ

QðkÞe−k2σ2z=2

×
X
q;n

anq
in−m

Jm−nðkσz
ffiffiffiffiffi
2r

p
Þgq;nðrÞe−r

þ icχ
2π

Z
dkZβ

DðkÞJm½ðk − kξÞσz
ffiffiffiffiffi
2r

p
�e−r

×
X
q;n

anq
in−m

Z
dr̂Jn½ðk − kξÞσz

ffiffiffiffiffi
2r̂

p
�gnqðr̂Þe−r̂: ð67Þ

In the limit r → 0, the dipole wakefield term implies that
gmq ðrÞ ∼ Jmð

ffiffiffi
r

p Þ ∼ rjmj=2, which is consistent with the
quadrupole wakefield contribution. As emphasized in
Ref. [8], the r → 0 behavior singles out a unique set of
basis functions gmq ðrÞ. In our case, it implies that the mode
functions associated with the angular dependence eimΦ

must form a complete basis for functions that behave as
rjmj=2 at small r. To satisfy this small r limit, we specify the
modes to be given by the Gauss-Laguerre functions as
follows:

~g1ðΦ; rÞ ¼
X
q;n

anqgnqðrÞ
e−r

2π
einΦ

¼
X∞
q¼0

X∞
n¼−q

anq
rn=2Ln

qðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðqþ nÞ!=q!p e−r

2π
einΦ: ð68Þ

The angular expansion over the range −q ≤ n < ∞ appears
to be a departure from the previous work in Ref. [10],
where the Fourier sum was assumed to run over all integer
n, and each term in the summation had n replaced by jnj. It
turns out that one can show that the two expansions are
equivalent, but we have found that our representation is
simpler to manipulate; for an example we refer the reader
Appendix B, where we apply Eq. (68) to the decoherence of
a kicked beam.
Regardless, these technical details do become important

when we consider dynamics at large chromaticity, where
stability depends largely on the higher order modes. In this
case it is also important to completely calculate the Fokker-
Planck contributions. As we show in Appendix A, these
dissipative terms can be written in a much simpler way than
that presented in Ref. [10]; after a somewhat lengthy
calculation, we find that
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�
r
∂2

∂r2 þ ðrþ 1Þ ∂
∂rþ 1þ 4rþ 1

4r
∂2

∂Φ2

−
�
e2iΦ

2

�
r
∂2

∂r2 þ r
∂
∂rþ i

∂2

∂r∂Φ
þ 1 − r

2i
∂
∂Φ −

1

4r
∂2

∂Φ2

	
− c:c:

��
~g1

¼
X
n;q

anq
rn=2e−rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðqþ nÞ!=q!p einΦ

2π

�
−
�
qþ n

2

	
Ln
qðrÞ

þ e2iΦrLnþ2
q−1ðrÞ þ e−2iΦ

ðnþ qÞðqþ 1Þ
r

Ln−2
qþ1ðrÞ

�
:

ð69Þ

As we did with the Hamiltonian part, we eliminate the
angular dependence by multiplying Eq. (63) by e−imΦ and
integrating over Φ, finding that the dissipative right-hand
side of Eq. (63) becomes

Z
2π

0

dΦ
e−imΦ

2π

2i
cτz

�
σ2δ

∂2 ~g1
∂p2

z
þ pz

∂ ~g1
∂pz

þ ~g1

�

¼ −
i
cτz

X
q

rm=2e−rLm
q ðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðqþmÞ!=q!p ð2qþmÞamq

þ i
cτz

X
q

rm=2e−rLm
q−1ðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðqþm − 2Þ!=q!p am−2

q

þ i
cτz

X
q

rm=2e−rLm
qþ1ðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðqþmþ 2Þ!=q!p ðqþ 1Þðqþmþ 1Þamþ2

q :

ð70Þ

Now, we have all the necessary pieces to write down a
solution to Eq. (63), namely, the Hamiltonian left-hand side
given by Eq. (67), and the dissipative right-hand side
Eq. (70). We isolate the mode coefficient amp by multiplying
both sides by rm=2Lm

p ðrÞ, integrating over r, and using the
orthogonality relation

Z
∞

0

drrme−rLm
p ðrÞLm

q ðrÞ ¼
ðpþmÞ!

p!
δp;q: ð71Þ

We further simplify the resulting equation by applying the
integral (61), and then write the resulting linear mode
equation as

�
Ω −mωs þ

i
τx

þ i
τz
ð2pþmÞ

�
amp

þ
X
n;q

ðDþQÞm;n
p;q a

n
q ¼ iðRm

pam−2
pþ1 þ Tm

pa
mþ2
p−1 Þ: ð72Þ

Here we have defined the coupling matrix associated with
the dipole wakefield as

Dm;n
p;q ¼ icI

IA

im−n

γZ0

Z
dkZβ

Dðkþ kξÞe−k2σ2z

×
ðkσz=

ffiffiffi
2

p Þ2pþmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p!ðpþmÞ!p ðkσz=

ffiffiffi
2

p Þ2qþnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q!ðqþ nÞ!p ; ð73Þ

that from the quadrupolar wakefield as

Qm;n
p;q ¼ icI

IA

in−m

γZ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p!

ðpþmÞ!
q!

ðqþ nÞ!

s

×
Z

dkZβ
QðkÞe−k

2σ2z=2

Z
∞

0

dye−yyðnþmÞ=2

× Jn−mðkσz
ffiffiffiffiffi
2y

p
ÞLm

p ðyÞLn
qðyÞ; ð74Þ

and the diffusive coupling terms

Rm
p ¼ 1

2τz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpþ 1ÞðpþmÞ

p
;

Tm
p ¼ 1

2τz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðpþmþ 1Þ

p
: ð75Þ

Equation (72) is a matrix equation for the linear
orthogonal modes amp , and solving it numerically requires
truncating the equation at some finite number of modes
Nmode; since each amp is indexed by both p and m, this
involves picking a set of ðp;mÞ pairs that approximately
spans the unstable solution. Then, Eq. (72) becomes an
Nmode × Nmode matrix equation for the vectors amp , which
can be solved for the Nmode eigenvalues and eigenvectors.
The instability threshold current Ithresh is defined by the
smallest I for which any Ω gets a positive imaginary part.
We have found that Nmode increases as ξx increases both
because one needs to include more radial modes (indexed
by p), and because one needs to extend the range of
azimuthal modes to more negative m.
Perhaps the first property evident from (72) is the fact

that the mode of radial order p and azimuthal numberm has
an effective damping rate given by

1

τ

����
p;m

¼ 1

τx
þ 2pþm

τz
: ð76Þ

Thismode-dependent dampingwas first derived inRef. [10],
although to our knowledge the full consequences of Eq. (76)
have not been entirely appreciated. First, it implies that the
small amplitude decoherence of a kicked beam depends on
the chromaticity as we show in Appendix B. Second and
more importantly, this mode-dependent damping becomes
crucial for properly calculating collective effects at large
positive chromaticity when the higher-order modes dictate
transverse stability. Physically, the enhanced “damping” of
higher-order modes comes about because diffusion smooths
out shorter-wavelength perturbations faster than those that
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vary over larger distances. The last consequence of the
Fokker-Planck operator is in the coupling terms (75). These
terms are smaller than the diagonal damping, and we have
found that including these off-diagonal terms typically
increases the maximum stable current by a few to several
percent. Regardless, the terms R and T are easy enough to
include.
Finally, the dipole and quadrupole wakefields couple the

modes together through the matrices D and Q, respectively.
To represent real wakefields the imaginary parts of Zβ

QðkÞ
and Zβ

DðkÞ must be symmetric functions of k, while the real
parts are antisymmetric. This implies that the quadrupolar
matrixQ is purely real, while the dipolarD is complex unless
the chromaticity vanishes so that kξ ¼ 0. Furthermore, the
quadrupolarmatrix is symmetric,Qm;n

p;q ¼ Qn;m
q;p , so thatQ is a

real, symmetric matrix with purely real eigenvalues.

IV. COMPARISON WITH TRACKING

In this section we compare predictions of the Fokker-
Planck theory Eq. (72) with simulations using the particle
tracking code ELEGANT and its parallel version PELEGANT
[15,33]. We use the multi-bend achromat (MBA) upgrade
lattice planned for the Advanced Photon Source as our
model storage ring [16], whose lattice functions and
relevant parameters are summarized in Fig. 1. We track
particles through the ring using the ILMATRIX element in
ELEGANT, which allows for fast, symplectic particle
tracking through a periodic cell including chromatic and
amplitude-dependent tunes, beta functions, and dispersion.
ILMATRIX does this by computing a linear matrix for each
particle that is determined both by user-supplied parameters
and the particle coordinates. The user-supplied quantities
include the Twiss parameters, tunes, dispersion, etc, and
how these quantities depend on the particle energy (giving
chromatic effects through third order in pz) and on the
transverse coordinates (which provide the nonlinear terms
in J ). We have found that the ILMATRIX element
provides a fast and reasonably accurate way to track
particles through a wide variety of lattices.

Since the ILMATRIX element allows for higher-order
chromatic and nonlinear terms in the Hamiltonian, our
tracking can potentially include more physics then does our
theoretical model. We have found numerically that includ-
ing the dependence of the tune on the oscillation amplitude
does not affect the instability threshold for either the
present APS or the MBA upgrade lattice, but does change
the large amplitude oscillation dynamics. In other words,
for our parameters effects of Landau damping are negli-
gible, and we expect them to be similarly small for most
high-energy electron storage rings. On the other hand, the
MBA’s large second order chromaticity is an important
effect that can reduce transverse instability thresholds by
20% or more. The simulations shown here artificially set
the second order chromaticity to zero, and we plan to
address its inclusion in a subsequent paper.
We complete our tracking simulation by modeling the

acceleration from the rf cavity, thedamping anddiffusion due
to synchrotron emission, and the effects of impedance as
lumped elements applied once per turn; within ELEGANT

these correspond to the RFCA, SREFFECTS, and
ZTRANSERSE elements, respectively. For our studies here
we will take a simple model of the transverse impedance,
assuming that its source is limited to the resistive wall of the
vacuum chamber. Specifically, we assume that the chamber
is either round or essentially flat with a half-gap of bðsÞ that
varies slowly over its length. Then, the ring-average dipole
impedance can be approximated by

Zβ
DðkÞ ¼ ηD

I
dsβxðsÞ

sgnðkÞ − i
πbðsÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z0ρðsÞ
2jkj

s
; ð77Þ

where ρðsÞ is the piecewise constant resistivity, sgnðkÞ gives
the sign of k, and the factor ηD depends on the chamber
geometry, with ηD ¼ 1 for round chambers and ηD ¼ π2=24
for flat chambers (see, e.g, [34,35]).
We list the lengths, minimum half-gap, and resistivity of

the various vacuum chambers planned for the MBA in
Table I. Note that for most of the ring the half-gap bðsÞ is
constant at either its nominal value of 11 mm or at the
minimum half-gap b ¼ 3 mm in each of the 35, 5-m long
insertion devices (IDs). The one exception is the transition
pieces to and from the IDs, where we take bðsÞ to vary

FIG. 1. Lattice Twiss functions and parameters used in the
tracking simulations.

TABLE I. Resistive wall impedance elements.

Element hβxi (m) b (mm) ρ (Ωm) L (m)

Flat IDs 7 3 3.16 × 10−8 150
Round IDs 7 3 3.16 × 10−8 25
ID transition 8 11 → 3 3.16 × 10−8 6.3
ID transition 8 3 → 11 3.16 × 10−8 6.3
Al chamber 10 11 3.16 × 10−8 605
Cu chamber 3 11 1.68 × 10−8 224
SS 314L chamber 9 11 95.2 × 10−8 85
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linearly over the 0.18m length. This distinction is not crucial,
since the transitions contribute ∼2% of the total resistive
wall impedance, while the small-gap IDs account for about
70% ofZβ

D.We can summarize all this by saying that we take
the scaled, β function-weighted dipolar impedance to be

Zβ
DðkÞ ¼ ZRW

sgnðkÞ − i

jk½1=m�j1=2 with ZRW ¼ 25 MΩ: ð78Þ

Finally, while the quadrupolar impedance vanishes in
round vacuum chambers, the flat ID chambers have
ZQðkÞ ¼ −ZDðkÞ; we add this effect in Sec. IV C.

A. Transverse mode coupling in
the low-chromaticity limit

The limit of zero chromaticity has been studied exten-
sively in the past, and we only briefly review the relevant
physics. For ξx ¼ 0 the impedance matrix D becomes
purely real, and it turns out that stability is almost entirely
dictated by the modes with indices (p ¼ 0, m ¼ 0) and
(p ¼ 1, m ¼ −1). In this case the matrices are 2 × 2 and
closed form solutions can be found. Furthermore, all the
Fokker-Planck damping and diffusive terms are small since
ωs ≫ 1=τz, 1=τx, and the instability mechanism is well-
described by the usual transverse mode coupling instability
(TMCI) theory [17–20]. As we show in Fig. 2(a), the
impedance shifts the (approximately real) frequency of the
(0,0) mode towards that of the ð0;−1Þ mode, and an
instability arises when the two frequencies “merge” and the
two eigenfrequencies become (approximate) complex con-
jugates of each other at Ithresh ≈ 0.52 mA.
While the two-mode theory continues to be valid at small

chromaticity, the mode coupling picture just described
becomes less accurate as ξx grows. We show in Fig. 2(b)
the dependence of Ω on the current when ξx ¼ 0.75.
Although Fig. 2(b) indicates that the general behavior of
ΩðIÞ is similar to the case of vanishing chromaticity, the
beam becomes unstable at Ithresh ≈ 0.39 mA without any
obvious merging of ℜðΩÞ that would indicate mode
coupling.
Finally, we compare the predicted instability threshold

current of the two-mode theory to that found in simulations
in Fig. 2(c). At zero chromaticity we see that doubling the
rf voltage increases Ithresh by a factor 1.2 ≈ 21=4. This is
because the instability arises when the impedance shifts
the frequency of the (0,0) mode by an amount of order
ωs ∝ V1=2

rf . Since the strength of the resistive wall imped-
ance scales as

D ∼
Z

dk
e−k

2σ2z

jkj1=2 ðkσz=
ffiffiffi
2

p
Þ2ðpþqÞþmþn

∝
1

σ1=2z

Z
dx

e−2x
2

jxj1=2 x
2ðpþqÞþmþn ∝ V1=4

rf ; ð79Þ

the current at which the instability occurs scales as V1=4
rf .

Note that this statement depends on the impedance;
if the wakefield is constant behind the driving charge
Zβ
DðkÞ ∼ 1=k and Ithresh ∼ ωs ∼ V1=2

rf [7,8].
For small but nonzero chromaticity, Fig. 2(c) shows that

the instability threshold current first decreases and then
increases. While the specific shape of this curve will
inevitably depend on the precise form of ZD, the initial drop

FIG. 2. Real and imaginary parts of Ω for the two-mode theory
with ξx ¼ 0 (a) and ξx ¼ 0.75 (b). Panel (c) compares the
instability threshold predicted by theory and simulation for
two different rf voltages. The two mode theory follows the
theory reasonably well provided kξσz ¼ 2πξxσz=αcCR ≲ 0.7.
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in Ithresh is related to the fact that ZDðkþ kξÞ is complex for
kξ ≠ 0.When the chromaticity becomes sufficiently large the
two-mode approximation fails, as it predicts that the beam is
stable at any current when ξx > 1.9 for Vrf ¼ 4.1 MV, and
ξx > 3 for Vrf ¼ 8.2 MV. For both voltages the two-mode
approximation ceases to be valid when the rms head-tail
phase kξσz ≳ 0.7. Hence, we conclude that the two-mode
approximation applies in general only if kξσz ≲ 1. For higher
values of ξx the unstable solution is comprised of a more
complicated superposition of modes, and requires solving
the problem with matrices that are larger than 2 × 2.
Furthermore, in this regime the unstable modes include
terms with relatively high radial and azimuthal mode
numbers p and m, in which case predicting transverse
collective instability requires including the Fokker-Planck
damping and coupling terms. We compare theory and
simulation at arbitrary values of ξx in the next section.

B. Transverse instabilities at high chromaticity

As previously mentioned, when ξxσz ≳ 1 the reduced
model comprised of two modes becomes stable. In this case
one must enlarge the matrices of Eq. (72) to include higher-
order azimuthal and radial modes, and we have found that
the matrix size required to obtain convergence increases
with ξx; for the largest chromaticity examples presented
here we found that ∼500 modes were needed.
We plot in Fig. 3(a) the instability threshold current as a

function of chromaticity for two different rf voltages.
Figure 3(a) shows that the Fokker-Planck theory closely
follows the simulation results over a wide range of ξx.
When kξσz ≳ 1 the threshold current increases with ξx, and
the longer bunch (smaller voltage) has a larger Ithresh for a
given chromaticity. In fact, when kξσz ≳ 1 both simulation
and theory indicate that Ithresh is approximately a function
of kξσz alone. As we show in Fig. 3(b), plotting Ithresh as a
function of ξxσz results in the curves from Fig. 3(a)
collapsing onto each other. Here, we only plot the simu-
lation results from Fig. 3(a) as the solid red and dashed blue
lines for clarity. The other two green and black lines labeled
Wconst use the same lattice but assume that the wakefield is
constant behind the exciting charge. This seems to indicate
that Ithresh may be approximately a function of only kξσz for
other impedances as well, provided kξσz ≳ 1.
An entirely different theoretical approach to predicting

single-bunch collective instabilities at large chromaticity
was also reported in Ref. [21]. This so-called “post head-
tail” theory is based on Laclare’s formulation of single-
bunch collective effects [36], and was shown to agree quite
well with measurements at the ESRF over a wide range of
(relatively large) chromaticity. A big advantage of the post
head-tail theory is that the instability threshold current can
be calculated using an attractively simple (though approxi-
mate) formula. However, attempts to compare our simu-
lations to the formula in Ref. [21] were not very successful.

We found that although the post head-tail instability
threshold appears to have the correct qualitative depend-
ence on lattice and impedance parameters, its slope with ξx
is smaller than that shown in Fig. 3(a) by about a factor of
two. At this point we are not sure if the discrepancy arises
from a misapplication of their theory, from a failure of some
of the simplifying approximations, or from something else.
For example, the simple formula in Ref. [21] is based on a
broad-band resonator impedance model, while we focus on
the resistive wall. In addition, we have found that the
projection onto z of the unstable mode observed in
simulations only somewhat resembles the “shaker-mode”
assumed in Ref. [21]. Hence, at present it appears that
further work must be done to assess whether the post head-
tail theory may apply to our present study.
Not only does the theory predict the instability threshold

current derived from tracking simulations, but it also
accurately describes the unstable mode profile in longi-
tudinal phase space. We demonstrate this in Fig. 4, where
we compare the real (left) and imaginary (right) parts of ~g1

FIG. 3. (a) Maximum stable current Ithresh as a function of
chromaticity for two different rf voltages. As the chromatic head-
tail shift becomes larger than unity the current threshold is higher
for the lower rf voltage that has a longer bunch length. (b) shows
that the Ithresh is approximately a function of kξσz for both the
resistive wall impedance ZRW and the constant wake Wconst
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computed using the matrix theory (top) with that obtained
from ELEGANT simulations (bottom). The parameters for
this comparison are Vrf ¼ 4.1 MV, ξx ¼ 5, and a single
bunch current I ¼ 2.25 mA > Ithresh ≈ 2.05 mA. The
agreement is quite remarkable: both show the approximate
azimuthal symmetry associated with the m ¼ −4 mode,
while more detailed features indicate other modal compo-
nents. The theory predicts that ∼70% of ~g1 is comprised of
Gauss-Laguerre modes with m ¼ −4, while the m ¼ −3,
m ¼ −5, and m ¼ −2 azimuthal components account for
9%, 6%, and 5% of the unstable solution, respectively.
To properly interpret the phase portraits in Fig. 4, recall

that they map out how the unstable betatron motion varies
in the longitudinal plane. Hence, red indicates electrons that
on average have a larger transverse displacement then the
mean, while blue denotes a locally smaller betatron
oscillation amplitude. In addition, if one views these phase

protraits over many successive turns as a movie, the main
lobes appear to approximately rotate clockwise at the
synchrotron frequency, and the pattern shown in Fig. 4
repeats approximately every quarter synchrotron period.
However, this “rotation” of the real and imaginary parts is
not rigid, since the pass number dependence e−iΩs mixes
the real and imaginary parts of ~g1.
We obtained the simulation plots in Fig. 4(c) and (d) by

extracting the perturbed distribution ~g1 from the particle
coordinates using its definition (46); operationally, we
make a weighted histogram of all Nsim simulation particles
in longitudinal phase space, where the weight on the jth
particle is

ffiffiffiffiffiffiffiffiffi
2J j

p
e−iΨjeiωβs=c

NsimðΔzÞðΔpzÞ
¼ xj þ iβxx0j

Nsim
ffiffiffiffiffi
βx

p eiðωβs=c−kξzjÞ

ðΔzÞðΔpzÞ
; ð80Þ

FIG. 4. Comparison of the real and imaginary parts of the longitudinal distribution function ~g1 obtained theoretically [(a) and (b)] and
via simulation [(c) and (d)] at a chromaticity of 5 units. As indicated by the four pairs of lobes, the growing mode is dominated by the
azimuthal mode number m ¼ −4; theory indicates that ∼70% of the mode content has m ¼ −4, while ∼20% has m ¼ −2, m ¼ −3, or
m ¼ −4. These plots map the variation in the longitudinal plane of the unstable betatron oscillation; at this turn in the simulation the
betatron amplitude is about twice the rms beam size at equilibrium, while the maximum longitudinal variation is a little less than σx=2.
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and Δz and Δpz are the bin sizes in z and pz, respectively.
This gives ~g1 up to a constant complex factor. We eliminate
its magnitude by dividing by the mean betatron oscillation
amplitude h ffiffiffiffiffiffiffi

2J
p i, and find the phase by applying this

procedure for many successive turns and choosing the best
match. Finally, we have applied a simple nearest-neighbor
smoothing to reduce the particle ganularity from the
simulation-derived ~g1.

C. Effect of transverse quadrupolar impedance

We have shown that the Fokker-Planck theory makes
predictions that agree quite well with ELEGANT simulation
results if we assume that the transverse collective effects are
due to a purely dipolar impedance ZD. In this section we
show that the theory also performs well when we include
the quadrupolar impedance ZQ due to chambers that are not
axially symmetric. Again, we limit our discussion to the
resistive wall impedance of round and essentially flat
chambers, in which case the horizontal quadrupolar imped-
ance ZQ ¼ 0 and ZQ ¼ −ZD, respectively (the vertical
impedance ZQ;y ¼ −ZQ;x). Then, we can write that the total

impedance Zβ
QðkÞ ¼ rQZ

β
DðkÞ, with jrQj ≤ 1. As was

pointed out in Ref. [22], this form of the quadrupolar
impedance can cancel some of the impedance-induced
frequency shift of ℜðΩÞ, so that the mode coupling
instability occurs at higher current.
We begin by analyzing the small chromaticity limit

where the stability analysis can be approximated with two
modes and analytic solutions can be found. These expres-
sions become particularly compact when ξx ¼ 0 and
ωs ≫ 1=τx;z, in which case we drop the damping terms
from (72) and all the 2 × 2 matrices are purely real.
Computing the matrix elements of D and Q, we find that
two-mode stability equation of TMCI is�Ωþ A0ð1þ rQÞ A1ð1þ rQÞ

−A1ð1 − rQÞ Ωþ ωs þ A0
1þ7rQ

8

��
a00
a−11

�
¼ 0;

ð81Þ
where rQ if the ratio between the quadrupolar and dipolar
resistive wall impedance, and we have defined

A0 ≡ Γð1
4
ÞI

γIA

cZRW

Z0
ffiffiffiffiffi
σz

p ; A1 ≡ Γð3
4
ÞI

γIA

cZRW

Z0

ffiffiffiffiffiffiffi
2σz

p : ð82Þ

Solving (81) for Ω is simple enough, as is determining
the condition on I such that the beam is stable. Although
not physically relevant, it turns out thatΩ is always real and
there is no instability if jrQj ≥ 1. More realistically we have
jrQj < 1, in which case we have an instability when

A0 ≥
8Γð1

4
Þωs

ð7þ rQÞΓð14Þ þ 8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − r2QÞ

q
Γð3

4
Þ
: ð83Þ

If we write the ratio of the instability threshold current
including the quadrupolar impedance to that without we
find that

IDþQ
thresh

Ithresh

����
RW

¼ 7Γð1
4
Þ þ 8

ffiffiffi
2

p
Γð3

4
Þ

ð7þ rQÞΓð14Þ þ 8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − r2QÞ

q
Γð3

4
Þ
: ð84Þ

We plot this ratio in Fig. 5(a). For the specific case of the
resistivewall elements listed in Table I, we have ZD ¼ −ZQ

for the 150 m of flat ID chambers, and ZQ ¼ 0 otherwise.
This implies that the MBA has a ring-summed, beta-
function-weighted impedance Zβ

QðkÞ ≈ −Zβ
DðkÞ=2, and that

including ZQ increases the ξx ¼ 0 instability threshold
current by about 10%.
We show how the instability threshold changes at small

chromaticity in Fig. 5(b). Here we compare simulation
results with the predictions of the complex two-mode
theory. At zero chromaticity both theory and simulation
indicate that Ithresh is about 10% larger when ZQ is
included, and we again find that at small but nonzero
chromaticity (0 < kξσz ≲ 0.5) Ithresh decreases with ξx. For
chromaticities larger than ∼1.6 the two mode theory again
fails, and we must include higher order modes and all the
terms of the Fokker-Planck theory.

FIG. 5. (a) Change in the resistive wall instability threshold
current at ξx ¼ 0 as a function of the quadrupolar to dipolar
impedance ratio rQ. (b) Comparison of the two-mode theory and
simulation for the purely dipolar impedance ZD and the sum
ZD þ ZQ.
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We plot the stability threshold current over a wide range
of chromaticity in Fig. 6(a), where the theory sets Zβ

Q ≈
−Zβ

D=2 and allows for many radial and azimuthal modes
(up 20–25 for each). Here we see that the quadrupolar
impedance has a sizeable impact on the stability threshold
once kξσz ≳ 2, corresponding to ξx > 3.5 here; Fig. 6(a)
shows that the quadrupolar impedance increases Ilimit by
10%–40% in both the simulation and theory.
We conclude our discussion of collective instabilities

includingZQ by comparing a theoretically predicted unstable
mode profile to that derived from tracking. We choose the
same ξx ¼ 5 as that of Fig. 4, although we now increase the
single-bunch current to I ¼ 2.9 mA > Ithresh ≈ 2.75 mA.
The agreement in mode profiles in Fig. 6(b) and (c) is
reasonably good, although not quite as impressive as before.
For the unstable distributions shown in Fig. 6, three quarters
of the Gauss-Laguerre basis functions are nearly evenly
divided betweenm ¼ −4 (at 35%) andm ¼ −3 (with 30%),
while the remaining modes are scattered over several
different values of m. In general, we have found that the
quadrupolar impedance results in unstable modes whose
basis functions are more evenly divided over various
azimuthal mode numbers.

D. Effect of the longitudinal impedance

The previous two sections have shown that the Fokker-
Planck theory closely agrees with ELEGANT simulations
provided the longitudinal potential is given entirely by a
single frequency rf system with Vz ¼ Vsynch ∝ z2, which
leads to a longitudinal equilibrium that is Gaussian in
position and energy. In this section we investigate to what
degree a longitudinal impedance may be incorporated into
the theory. Adding a longitudinal impedance gives rise to a
distortion of Vz that depends on the current profile of the
bunch. In this case the equilibrium distribution function
must also be self-consistent with the total Vz, so the
situation is significantly more complicated. Nevertheless,
our Fokker-Planck theory can be extended to approxi-
mately include a longitudinal impedance Z∥ provided its
resulting Vz is only a small perturbation.
The longitudinal impedance results in a current-

dependent distortion of Vz that lengthens the bunch and
(possibly) increases the energy spread. We can incorporate
these effects within our model by taking

ωs → ωsðIÞ ¼ αc
cσδðIÞ
σzðIÞ

: ð85Þ

Hence, we expect this extension to fail at some current I
that depends on the longitudinal impedance. For our study
here we continue to use the resistive wall Z, with
Z∥ ∝ kb2ZD; more precisely, we use the parameters of
Table I in the formula for the ring-averaged longitudinal
impedance

FIG. 6. Comparison of theory and simulation including the
quadrupolar impedance. (a) plots the current limit with and
without the quadrupolar impedance, which for the resistive wall
elements of Table I has Zβ

QðkÞ ≈ −Zβ
DðkÞ=2. Including ZQ

increases Ithresh by 10–40% at large chromaticity. (b) plots the
real part of the unstable growing mode obtained from the
simulation with ξx ¼ 5, which should be compared to the theory
in panel (c). The unstable ~g1 has ∼35% of the basis functions with
m ¼ −4 and ∼30% with m ¼ −3, and a broader range of
azimuthal variation then the purely dipolar impedance example
of Fig. 4.
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Z∥ðkÞ ¼
I

ds
1 − sgnðkÞi
4πbðsÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Z0ρðsÞjkj

p
; ð86Þ

which is valid for both round and flat chambers.
We compare the predicted instability threshold current

from theory and simulation in Fig. 7. Panel (a) shows that
adding the effects of Z∥ decreases Ithresh by about 10% at
zero chromaticity. This is because Z∥ flattens the longi-
tudinal potential, thereby decreasing the effective synchro-
tron frequency difference between the m ¼ 0 and m ¼ −1
modes, so that mode coupling occurs at a lower current.
Increasing the chromaticity beyond one unit stabilizes these
low-order modes, and one enters the regime where the
bunch lengthening provided by the longitudinal impedance
increases the stability threshold Ithresh.
Figure 7(b) shows how the longitudinal impedance can

significantly enhance the stability limit at higher chroma-
ticity. This is because the nominal Ithresh increases when
ξx ≳ 1.5, and at higher current the effects of Z∥ become
more pronounced. For chromaticities between 2 and 4 units
the theory and simulation agree quite well, with both
showing that the bunch lengthening provided by Z∥ can
approximately double the maximum stable current for
2≲ ξx ≲ 4. On the other hand, for currents above 3 mA
(ξx > 4), the potential well distortion from Z∥ results in a
Vz that is not well approximated by a simple harmonic
oscillator, and the theory overpredicts Ithresh. Figure 7(b)
indicates that the theoretical Ithresh is high by more than
70% at ξx ¼ 5, and the agreement only worsens at higher
chromaticity (and current).
We quantify the change inVz as a function of I in Fig. 7(c).

Here, we plot the difference in the total (rf þ impedance)
potentialVz from the theoretically assumed simple harmonic
oscillator VSHO, scaled by the rf potential at z ¼ 2σz.
The equilibrium potential Vz was determined by solving
the Haïssinski equation [37] with the ELEGANT-associated
program HAISSINSKI written by M. Borland and L. Emery,

and Fig. 7(c) plotsΔVz for current values that correspond to
the simulation-predicted Ithresh for ξx ¼ 0, 2, 3, 4, and 5.
At these values of I the bunch length was found to be a
factor of 1.12, 1.26, 1.44, 1.56, and 1.66 times the σz at zero
current, while σδ remained unchanged. Hence, our simu-
lations appear to indicate that the simple harmonic approxi-
mation holds if the impedance-induced bunch-lengthening
is of order 50% or less. Figure 7(c) indicates that this
corresponds to a potential well distortion of order
0.2Vrfð2σzÞ, although there is no clear indication when
the theory begins to make poor predictions. We expect that
by more accurately describing Vz we could make better
predictions, but we do not see any other way to include Z∥
within a tractable theory.

V. CONCLUSIONS

We have presented an analysis of single-bunch trans-
verse instabilities in storage rings. Our theory is based on
the linearized Fokker-Planck equation, with the solution
given in terms of an eigenvalue problem for the normal
modes of the beam in the presence of transverse wake-
fields. While the usual Vlasov analysis applies at low
chromaticity, at large chromaticity many higher-order
azimuthal and radial modes contribute to the dynamics,
in which case including the damping and diffusion
associated with synchrotron emission becomes critical
to correctly predict stability. Indeed, we find that the
single-bunch stability of the APS-U MBA lattice is nearly
unchanged whether or not transverse nonlinearities and,
hence, Landau damping, are included. Rather, the emis-
sion of synchrotron radiation supplies the dominant
effective damping to the higher-order modes, and calcu-
lating this effect requires the Fokker-Planck terms. Similar
conclusions will apply to any storage ring for which
synchrotron emission is sufficiently strong, which will
typically apply to high energy electron storage rings
designed for x-ray light source applications.

FIG. 7. Effect of adding a longitudinal impedance Z∥. Panel (a) shows that both theory and simulation predict a reduction in Ithresh at
low ξx, which can be attributed to the decrease in the effective synchrotron frequency. At higher ξx and I, (b) shows that the bunch
lengthening due to Z∥ increases the maximum stable current, and the theory agrees well with the simulation for ξx ≲ 4 (I ≲ 3 mA); for
larger currents the theory overestimates Ithresh. Panel (c) shows the difference in the longitudinal potential Vz from that of the assumed
simple harmonic oscillator at the simulation-predicted Ithresh for ξx ¼ 0, 2, 3, 4, and 5.
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APPENDIX A: DERIVATION OF THE FOKKER-
PLANCK EQUATION AND ITS DAMPING

AND DIFFUSION TERMS

We begin with the exact, microscopic distribution
function of electrons on phase space, which we denote
as F ðZÞ, where we recall that the phase space coordinates
Z ≡ ðX;PÞ. By “exact” and “microscopic” we mean that
F ðZÞ tracks all the particle positions and momenta, and
therefore encodes all the classical information about the
electron beam. Since particle number is conserved, F
satisfies the continuity equation

∂F
∂s þ ∂

∂Z · ðZ0F Þ ¼ ∂F
∂s þ ∂

∂X · ðX0F Þ þ ∂
∂P · ðP0F Þ ¼ 0;

ðA1Þ

where the prime indicates a derivative with respect to s.
While exact, (A1) has far more information than we want/
could use, in that its dynamics tracks each electron
trajectory. What we really are interested in is ensemble
averaged quantities, which we denote here by angular
brackets. We take the ensemble average of (A1) and note
that hX0F i ¼ hX0ihF i while hP0F i ≠ hP0ihF i to obtain

∂
∂s hF i þ ∂

∂X · ðhX0ihF iÞ þ ∂
∂P · ðhP0ihF iÞ

¼ ∂
∂P · ½hP0ihF i − hP0F i�: ðA2Þ

We introduce the short-hand F≡ hF i for the ensemble
averaged distribution, and choose the left-hand side to
contain Hamiltonian dynamics governed by external mag-
nets, longitudinal rf focusing, and mean-field wakefields;
in this case

∂
∂X · ðhX0ihF iÞ þ ∂

∂P · ðhP0ihF iÞ ¼ fF;Hg; ðA3Þ

where H is the mean-field Hamiltonian determined by
external forces and the ensemble averaged distribution F.
The right-hand side of (A2) can in general contain many
effects, but we will only include changes to F associated
with the stochastic emission of synchrotron radiation and
the energy replacement delivered by the rf cavities.
Therefore, we write

∂
∂P · ½hP0ihF i − hP0F i� → ∂F

∂s
����
F:P:

ðA4Þ

where the right-hand side represents a to be determined
operator acting on F that accounts for synchrotron radiation
and the acceleration needed to replace the average energy
emitted. Substituting Eqs. (A4) and (A3) into the continuity
equation (A2), we find that

∂F
∂s þ fF;Hg ¼ ∂F

∂s
����
F:P:

ðA5Þ

Equation (A5) governs the evolution of the ensemble
averaged distribution function F. If we were to set the right-
hand side to zero, we would obtain the usual Vlasov
equation in Hamiltonian form. To determine how F
changes due to the emission of synchrotron radiation,
we will adapt the Fokker-Planck derivation presented in
Ref. [38] to our storage ring. We consider an incremental
step Δs along the design orbit that has many such emission
events, and describe the change in F due to synchrotron
emission with a probability distribution P that has no
memory of previous emission events (technically, this
models synchrotron emission as a Markov process).
Thus, we write Pðpz; s;Δpz;ΔsÞ as the probability that
a particle whose negative energy deviation is pz at location
s will change its energy by an amount Δpz over the
distance Δs. The distribution just after synchrotron emis-
sion is related to that just prior via

FðZ; sÞ ¼
Z

dΔpzPðpz − Δpz; s − Δs;Δpz; CRÞ

× Fðx; z; x0; pz − Δpz; s − ΔsÞ

≈
Z

dΔpz

�
PF − Δs

∂
∂s ðPFÞ

−
�
Δpz

∂
∂pz

−
ðΔpzÞ2

2

∂2

∂p2
z

�
ðPFÞ

�
; ðA6Þ

where we have Taylor expanded assuming that the energy
changeΔpz due to emission is small. Using the fact that the
integral of the probability distribution function is unity, i.e.,R
dΔpzP ¼ 1, we see that the first term on the right-hand

side of (A6) cancels the left-hand side, while

Z
dΔpz

∂
∂s ½Pðpz; s;Δpz;ΔsÞF ¼ ∂F

∂s
����
SR
: ðA7Þ

We reorder Eq. (A6) to find that

∂F
∂s

����
SR

≈ −
∂
∂pz

�hΔpzi
Δs

FðZ; sÞ
�
SR

þ 1

2

∂2

∂p2
z

�hðΔpzÞ2i
Δs

FðZ; sÞ
�
SR
: ðA8Þ

Equation (A8) divides the change in F into two terms: the
first is damping of pz, which physically comes about
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because higher energy electrons radiate more; the second
term is a diffusive spreading in energy due to the stochastic
nature of synchrotron emission.
The term associated with rf acceleration differs in that

it has no stochastic/diffusive component. Rather, the rf
serves to replenish the average longitudinal momentum
lost from the emission of synchrotron radiation.
Since the acceleration leaves the transverse momentum
unchanged effectively decreases the electron angle, and
we write

∂F
∂s

����
rf
≈ −

∂
∂pz

�hΔpzi
Δs

FðZ; sÞ
�
rf

−
∂
∂x0 ·

�hΔx0i
Δs

FðZ; sÞ
�
rf
: ðA9Þ

The first term will be chosen to cancel the mean energy
lost in the ring (A8), while the second term is a source of
transverse damping. The Fokker-Planck operator is the
sum of (A8) and (A9) averaged over the ring,

∂F
∂s

����
F:P:

¼ 1

CR

I
ds

�∂F
∂s

����
SR

þ ∂F
∂s

����
rf

	
; ðA10Þ

which in turn becomes (24). To write these expressions
in terms of transverse action-angle coordinates, we must
transform to betatron coordinates and then action-angle
coordinates, ðx; x0Þ → ðxβ; x0βÞ → ðΨ;J Þ. Using the chain
rule, this in turn leads to

∂
∂pz

→
∂
∂pz

−
ηx cosΨþ ð1

2
β0xηx − η0xβxÞ sinΨffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βx=2J

p ∂
∂J

þ ηx sinΨ − ð1
2
β0xηx − η0xβxÞ cosΨffiffiffiffiffiffiffiffiffiffiffi
2J βx

p ∂
∂Ψ : ðA11Þ

Next, we show how to reduce the dissipative Fokker-
Planck dynamics as indicated by Eq. (69). We do this by
applying a number of identities involving the associated
Laguerre polynomial Ln

q, including its differential equation

�
r
d2

dr2
þ ðn − rþ 1Þ d

dr
þ q

�
Ln
qðrÞ ¼ 0; ðA12Þ

its derivative

d
dr

Ln
qðrÞ ¼ −Lnþ1

q−1ðrÞ ðA13Þ

¼ q
r
Ln
qðrÞ −

qþ n
r

Ln
q−1ðrÞ; ðA14Þ

and the recursion relations

qLn
qðrÞ ¼ ðnþ 1 − rÞLnþ1

q−1ðrÞ − rLnþ2
q−2ðrÞ ðA15Þ

Ln
qðrÞ ¼ Lnþ1

q ðrÞ − Lnþ1
q−1ðrÞ: ðA16Þ

We begin with the derivatives of the first term in (69) that
are ∝ einΦ, writing

�
r
∂2

∂r2 þ ðrþ 1Þ ∂
∂rþ 1þ 4rþ 1

4r
∂2

∂Φ2

�

×
rn=2Ln

qðrÞeinΦffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðqþ nÞ!=q!p ¼ rn=2einΦffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðqþ nÞ!=q!p
×

�
r
∂2

∂r2 þ ðn − rþ 1Þ ∂
∂r −

n
2

�
Ln
q ðA17Þ

¼ rn=2einΦffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðqþ nÞ!=q!p �
−q −

n
2

	
Ln
q: ðA18Þ

The first line comes from applying chain rule while
deferring derivatives of the Laguerre function, and the
second line follows once we use the Laguerre differential
equation (A12). Applying similar reasoning to the second
term in Eq. (69) ∝ eiðnþ2ÞΦ gives

e2iΦ

2

�
r
∂2

∂r2 þ r
∂
∂rþ i

∂2

∂r∂Φþ 1 − r
2i

∂
∂Φ −

1

4r
∂2

∂Φ2

�

×
rn=2Ln

qðrÞeinΦffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðqþ nÞ!=q!p ¼ rn=2eiðnþ2ÞΦ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðqþ nÞ!=q!p �

r
∂2

∂r2 − r
∂
∂r

	
Ln
q

ðA19Þ

¼ rn=2eiðnþ2ÞΦ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðqþ nÞ!=q!p �

−ðnþ 1Þ ∂
∂r − q

�
Ln
q; ðA20Þ

while the third term ∝ eiðn−2ÞΦ reduces to

e−2iΦ

2

�
r
∂2

∂r2 þ r
∂
∂r − i

∂2

∂r∂Φ−
1 − r
2i

∂
∂Φ −

1

4r
∂2

∂Φ2

�

×
rn=2Ln

qðrÞeinΦffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðqþ nÞ!=q!p
¼ rn=2eiðn−2ÞΦ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðqþ nÞ!=q!p �

r
∂2

∂r2 þð2n − rÞ ∂
∂r − nþ nðn − 1Þ

r

�
Ln
q

ðA21Þ

¼ rn=2eiðn−2ÞΦ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðqþ nÞ!=q!p �

ðn − 1Þ ∂
∂r − ðqþ nÞ þ nðn − 1Þ

r

�
Ln
q:

ðA22Þ
The diagonal term Eq. (A18) is precisely the one listed

in (69), which gives rise to the damping ð2pþmÞ=τz of
the linear mode ðp;mÞ. The second contribution can be
simplified by first applying the derivative equation (A13)
and then the recursion relation (A15):
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−
�
ðnþ 1Þ ∂

∂rþ q

�
Ln
q ¼ ðnþ 1ÞLnþ1

q−1

− ðnþ 1 − rÞLnþ1
q−1 þ rLnþ2

q−2

¼ rðLnþ1
q−1 þ Lnþ2

q−2Þ: ðA23Þ

Finally, applying the recursion relation (A16) to (A20)
implies that

rn=2eiðnþ2ÞΦ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðqþ nÞ!=q!p �

−ðnþ 1Þ ∂
∂r − q

�
Ln
q

¼ rn=2eiðnþ2ÞΦ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðqþ nÞ!=q!p rLnþ2

q−1ðrÞ ðA24Þ

as we wrote in (69). We deal with (A22) by first using the
derivative (A14) to write�
ðn − 1Þ ∂

∂r − ðqþ nÞ þ nðn − 1Þ
r

�
Ln
q

¼ ðn − 1Þðqþ nÞ
r

ðLn
q − Ln

q−1Þ − ðnþ qÞLn
q

¼ ðn − 1Þðqþ nÞ
r

Ln−1
q ðA25Þ

−
nþ q
r

½ðqþ 1ÞLn−1
qþ1 − ðqþ nÞLn−1

q �

¼ ðqþ nÞðqþ 1Þ
r

ðLn−1
q − Ln−1

qþ1Þ; ðA26Þ

where (A26) follows from equating the differential rela-
tions (A13) and (A14) and using the recursion relation
(A16), while the final line collects terms. Now, we make
one final application of Eq. (A16) to conclude that

rn=2eiðn−2ÞΦ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðqþ nÞ!=q!p �

ðn − 1Þ ∂
∂r − ðqþ nÞ þ nðn − 1Þ

r

�
Ln
q

¼ rn=2eiðn−2ÞΦ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðqþ nÞ!=q!p ðqþ nÞðqþ 1Þ

r
Ln−2
qþ1: ðA27Þ

APPENDIX B: BETATRON OSCILLATIONS OF
A KICKED BEAM INCLUDING DAMPING

AND DIFFUSION

In this Appendix we consider the evolution of a kicked
beam in the limit of no wakefields, χ → 0. Ultimately we
will be interested in the betatron oscillation of the beam, so
that we will need to differentiate between the physically
measurable betatron phase Ψ and its head-tail (chromatic)
counterpart Ψ ¼ Ψþ kξz. In particular, the initial distri-
bution of the kicked beam is

F1ðs ¼ 0Þ ¼ −Dð0Þ
ffiffiffiffiffiffiffiffi
1

2
J

r
f00ðJ ÞeiΨ e−r

2π

¼ −
ffiffiffiffiffiffiffiffi
1

2
J

r
f00ðJ ÞeiΨ

×Dð0Þ
X
l

i−lJlðkξσz
ffiffiffiffiffi
2r

p
ÞeilΦ e

−r

2π
: ðB1Þ

The first line of (B1) describes the transverse dependence in
terms of the head-tail shifted betatron phase, while the
second line contains the initial value of the longitudinal
distribution function. The sum over angular harmonics
shows that the initial mode content depends on the
chromaticity, because the linear modes are defined with
respect to the head-tail (chromatic) shifted betatron
frequency.
We calculate the mode coefficients by setting the second

line in (B1) equal to the perturbation ~g1:

~g1ðΦ; rÞ ¼
X
q;n

anq
rn=2Ln

qðrÞe−rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðqþ nÞ!=q!p einΦ

2π
ðB2Þ

¼ Dð0Þ
X
l

i−lJlðkξσz
ffiffiffiffiffi
2r

p
ÞeilΦ e

−r

2π
: ðB3Þ

We isolate the mode coefficients by multiplying both sides
by rm=2Lm

p ðrÞe−re−imΦ and integrating over Φ and r. Using
the Laguerre orthogonality relation (71) and our favorite
Laguerre-Bessel integral (61), we find that

amp ¼ Dð0Þ ðkξσz=
ffiffiffi
2

p Þ2pþm

im
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p!ðpþmÞ!p e−k

2
ξσ

2
z=2: ðB4Þ

The evolution of the kicked beam is therefore given by

F1 ¼ −
ffiffiffiffiffiffiffiffi
1

2
J

r
f00ðJ ÞeiΨe−iωβs=c

×
X
p;m

amp e−iΩs=c
rm=2Lm

p ðrÞe−rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðpþmÞ!=p!p eimΦ

2π
; ðB5Þ

with amp listed in Eq. (B4).
To find how the dipole moment associated with the

transverse betatron oscillation evolves, we multiply (B5) byffiffiffiffiffiffiffi
2J

p
e−iΨeiωβs=c and integrate over all phase space. Note

that here we use the physically measurable betatron phase
rather than its head-tail shifted counterpart. Applying a
similar calculation to that which led to (B4) gives us the
dipole moment
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DðsÞ ¼
Z

dZ
ffiffiffiffiffiffiffi
2J

p
e−iðΨ−kξzÞF1eiωβs=c

¼
X
p;m

amp e−iΩs=c
imðkξσz=

ffiffiffi
2

p Þ2pþmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p!ðpþmÞ!p e−k

2
ξσ

2
z=2 ðB6Þ

¼ Dð0Þ
X
p;m

e−iΩs=c
ðk2ξσ2z=2Þ2pþm

p!ðpþmÞ! e−k
2
ξσ

2
z : ðB7Þ

Now, we use the fact that the eigenvalueΩ is approximately
given by the diagonal contribution

Ω ≈mωs −
i
τx

−
i
τz
ð2pþmÞ; ðB8Þ

and take care regarding the summation limits to write

DðsÞ ¼ Dð0Þe−s=cτxe−k2ξσ2z

×
X∞
p¼0

X∞
m¼−p

e−imωss=c

p!ðpþmÞ!
�
k2ξσ

2
z

2
e−s=τzc

	2pþm

:

ðB9Þ

By changing the summation variable from m to n ¼ mþ p
we end up having the product of two separate sums
that have the form

P∞
n¼0 a

n=n! ¼ ea. Hence, the dipole
oscillation

DðsÞ ¼ Dð0Þe−s=cτx
× exp f−k2ξσ2z ½1 − e−s=cτz cosðωss=cÞ�g: ðB10Þ

In the limit of no synchrotron damping, τz → 0, the
formula (B10) equals e−s=cτx times the kicked beam

expression derived in Ref. [39]. In addition to the slow
transverse damping, the measured betatron oscillation
displays amplitude modulations at the synchrotron fre-
quency. This modulation arises because the accumulated
betatron phase depends on the longitudinal position
through the head-tail effect, while its depth scales with
the chromaticity.
When synchrotron damping is included, Eq. (B10)

shows that the time over which the synchrotron amplitude
modulations occur decreases with chromaticity, which in
turn effectively damps the coherent betatron motion. This
apparent damping arises from the fact that the mode content
of an initially kicked beam depends on ξx: the number of
higher-order modes increases with chromaticity, and
higher-order modes are more heavily damped. Note that
in a real machine it may be difficult to untangle the effect
described by Eq. (B10) from a similar damping-like
decoherence that is due to the nonlinear tune-shift with
amplitude [39]; the differences should appear at small
betatron oscillation amplitudes that may be difficult to
accurately prepare and measure. In simulation, however,
it is quite easy to detect the difference. We show an example
using APS-U parameters in Fig. 8.
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