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A small vacuum chamber aperture is a present trend in the design of future synchrotron light sources.
This leads to a large resistive-wall impedance that can drive coupled-bunch instabilities. Another trend is
the use of passively driven cavities at a harmonic of the main radio frequency to lengthen the electron
bunches in order to increase the Touschek lifetime and reduce emittance blowup due to intrabeam
scattering. In some cases, the harmonic cavities may be tuned to fulfill the flat potential condition. With this
condition met, it has been predicted in simulation that the threshold current for coupled-bunch resistive-
wall instabilities is much higher than with no bunch lengthening at all. In this paper, the features of a bunch
in the flat potential that would contribute toward this stabilization are identified and discussed. The
threshold currents for these instabilities are estimated for the MAX IV 3 GeV storage ring at different
values of chromaticity using macroparticle simulations in the time domain and, within the limits of the
existing theory, frequency domain calculations. By comparing the results from these two methods and
analyzing the spectra of the dominant head-tail modes, the impact of each of the distinguishing features of a
bunch in the flat potential can be explained and quantified in terms of the change in threshold current. It is
found that, above a certain chromaticity, the threshold current is determined by the radial structure of the
zeroth-order head-tail mode. This happens at a lower chromaticity if the bunch length is longer.

DOI: 10.1103/PhysRevAccelBeams.19.124401

I. INTRODUCTION

MAX IV is a synchrotron light source currently under
commissioning in Lund, Sweden [1]. It consists of two
storage rings and a linac-driven short-pulse facility. The
larger storage ring is for a beam of 3 GeV electrons at
ultralow emittance. Its main machine parameters are listed
in Table I. With the aim of achieving low emittance, the
storage ring lattice includes strongly focusing quadrupoles,
which are grouped with other types of magnets in combined
function magnet blocks. For these quadrupoles to reach
high enough gradients, their poles must be close to the
beam. For this reason, the radius of the copper beam pipe is
very small; its nominal value is 11 mm in both transverse
directions [2]. A reduction in the vacuum chamber aperture,
a trend for modern light sources, leads to an increase in the
resistive-wall impedance, whose transverse dipolar com-
ponent scales as the inverse aperture cubed [3]. This, in
turn, leads to coupled-bunch instabilities that must be
damped if a high design beam current, 500 mA in the
case of the MAX IV 3 GeV ring, is to be achieved.

The MAX IV 3 GeV ring will employ passively driven
cavities at the third harmonic of the main radio frequency
(rf) to lengthen the electron bunches. The harmonic cavities
do this by altering the rf potential away from the approx-
imately harmonic potential in a single rf system. Above
135 mA, the harmonic cavities of MAX IV may be tuned to
the flat potential condition [4]. In this case, the first and
second derivatives of the rf potential are zero at the
synchronous phase and the bunches are as long as possible
without being double-peaked or asymmetric in longitudinal
profile. For small synchrotron oscillation amplitudes, the
synchrotron tune is no longer approximately the same for
all particles but is proportional to their oscillation ampli-
tude. The energy spread in a single bunch is unaffected and
the distribution in energy is still close to Gaussian.
Conversely, the distribution in longitudinal time offset,
although still a natural exponential function, is no longer
Gaussian; the exponent is raised to the fourth power instead
of the second [5].
The use of harmonic cavities in this way provides many

advantages. The lengthening of the bunches means a lower
peak bunch current for the same bunch charge and so it
increases the Touschek lifetime and reduces emittance
dilution due to intrabeam scattering [6]. The synchrotron
tune spread introduces Landau damping that has been
observed to combat longitudinal instabilities [7–10].
Furthermore, in simulation, harmonic cavities have been
shown to increase the threshold current of transverse
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instabilities [11]. However, although it may seem intuitive
that longer bunches and a spread in synchrotron tune
stabilize the beam transversely, the relative importance
of each of these factors and any others, is unknown. In this
paper, using Laclare’s eigenvalue method in the frequency
domain and macroparticle simulations in the time domain,
the aspects of a harmonic-cavity-lengthened bunch that
affect the transverse stability are identified and the con-
tribution of each is quantified. Laclare’s eigenvalue method
assumes simple harmonic single-particle motion in syn-
chrotron phase space and no synchrotron tune spread. This
is approximately true for single-rf systems where the rf
potential is close to harmonic but is not true for a system
with harmonic cavities tuned to the flat potential condition,
where the rf potential is significantly anharmonic. Other
frequency domain methods, such as those described in
[12,13], are able to include a synchrotron tune spread but
only if it is small enough to be treated as a perturbation and
so these methods cannot be directly applied to the flat
potential condition. The approaches taken in [14,15] do
apply directly to a double-rf system but only treat longi-
tudinal instabilities. The time-domain simulations have no
such limitations; at the turn-by-turn level, the longitudinal
motion of particles in the flat potential condition is
faithfully reproduced [16].
Sections I A and I B give brief introductions to, respec-

tively, transverse coupled-bunch instabilities and Laclare’s
eigenvalue method for calculating their threshold currents.
Then, in Sec. II, the results of simulations in the time
domain are presented in comparison with frequency
domain calculations. These are analyzed in Sec. II A to
determine the form of the head-tail modes present. To
further investigate the findings, simulations are also per-
formed for an intermediate bunch length of 100 ps, the

results of which are presented in Sec. III A. Finally, the
effect of adding a broadband resonator to the impedance
model is investigated in Sec. III B and overall conclusions
that can be drawn are discussed in Sec. IV.

A. Coupled-bunch instabilities

A realistic storage ring has some transverse impedance
due to discontinuities in the vacuum chamber and the finite
conductivity of the chamber walls. The lowest order
transverse impedance is dipolar and is usually normalized
by the offset of the exciting particle. Through interaction
with the transverse impedance, each particle within a bunch
can obtain a betatron phase offset equal to an integer
multiple m of its initial azimuthal angle in synchrotron
phase space. Such coherent motion is known as an
azimuthal head-tail mode and is denoted by its order m,
equivalent to the aforementioned integer multiple.
If an ideal beam position monitor (BPM) pick-up with

infinite bandwidth and whose output signal is proportional
to transverse offset and charge were installed in a storage
ring, it would measure the product of the average position
offset along the length of a bunch hyiðτÞ and the bunch
charge distribution in time g0ðτÞ. Here, τ is the time offset
from the synchronous particle at the center of the bunch.
The Fourier transform of this product F ðhyiðτÞg0ðτÞÞ is
referred to as the bunch spectrum σm. If the motion of all
the particles in the bunch is synchronized (m ¼ 0), the
bunch spectrum is simply proportional to the Fourier
transform of the longitudinal bunch charge distribution
F ðg0ðτÞÞ and is single peaked in most cases. For higher
order head-tail modes (jmj > 0), the bunch spectrum is
double peaked and the two peaks are further apart in
frequency the higher the mode order. The amplitude of
betatron oscillation may also become dependent on a
particle’s synchrotron amplitude, leading to some radial
structure in synchrotron phase space. In the frequency
domain, this gives the head-tail mode the appearance of a
higher-order mode.
If the pick-up described above were to measure multiple

bunches, uniformly distributed around the ring over many
revolutions, a Fourier transform of its output signal could
be written as

Smðω; θÞ ¼ j−mπI
X
p

e−jpθσmðωmpÞδKðω − ωmp − ΔωmÞ

ð1Þ

where δK is the Kronecker delta function, I is the beam
current, ω is the angular frequency and θ is the azimuthal
angle designating the position in the storage ring where the
BPM is installed [17]. It is assumed that only one azimuthal
head-tail mode m is present. The spectrum described by
Eq. (1) is made up of delta peaks at discrete frequencies
given by

TABLE I. The main parameters of the MAX IV 3 GeV storage
ring in the MAX IV facility as used in this paper. The values
correspond to the bare machine with no insertion devices.

Parameter 3 GeV ring

Length Lc (m) 528.0
Design beam current (mA) 500
Radio frequency (MHz) 99.931
rf voltage (MV) 1.02
Passive cavity harmonic 3
Horizontal emittance (nm rad) 0.3
Average vertical beta β (m) 6.95
Vertical betatron tune 16.28
Harmonic number h 176
Momentum compacion αc 3.07 × 10−4

Natural bunch length στ (ps) 40.0
Lengthened bunch στ (ps) 195
Energy spread σδ 7.69 × 10−4

Energy loss per turn (keV) 363.8
Vertical chamber aperture 2a (mm) 22.0
Chamber resistivity ρ (Ωm) 1.7 × 10−8
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ωmp þ Δωm ¼ ðMpþ μÞω0 þ ωβ þmωs þ Δωm ð2Þ

where M is the number of bunches, p is an integer and ω0,
ωβ, and ωs are the angular revolution frequency, betatron
frequency, and synchrotron frequency, respectively. Δωm is
a coherent frequency shift defined below. With no fre-
quency shift, for the m ¼ 0 mode, the peaks are at betatron
sidebands to every Mth revolution harmonic. For higher
order modes (jmj > 0), the peaks are at themth synchrotron
sidebands of these betatron lines. Any radial structure does
not alter the position of the peaks. A procession of the
betatron phase along the train of bunches is known as a
coupled-bunch mode and is specified by the integer number
of betatron periods μ, also called the coupled-bunch mode
number. As with the azimuthal head-tail mode, Eq. (1)
assumes that only one coupled-bunch mode is present.
A nonzero chromaticity introduces an additional advance

of a particle’s betatron phase that is proportional to its
longitudinal offset τ. In the frequency domain, this is
equivalent to a shift of the bunch spectrum by the chromatic
frequency ωξ given by

ωξ ¼
ξω0

αc
ð3Þ

where ξ is the chromaticity and αc is the momentum
compaction factor of the storage ring.
As a simplification, the whole machine impedance can

be modeled as a single dipole impedance at the location of
the BPM pick-up. The beam interacts with the storage ring
impedance at frequencies ωmp and the strength of the
interaction is governed by the bunch spectrum as deter-
mined by the particle distribution, the head-tail mode and
the chromaticity. The result of the interaction is a complex
shift Δωm in the coherent betatron frequency of head-tail
mode m such that the mode’s total coherent frequency Ωm
is given by Ωm ¼ ωβ þmωs þ Δωm where Ωm and Δωm

are complex numbers. A positive imaginary part of
Δωm leads to an exponential growth in the coherent
betatron motion. If the growth time is shorter than the
transverse radiation damping time, the beam becomes
unstable. In cases where the growth time decreases with
the beam current, the current at which the growth time is
equal to the transverse radiation damping time is known as
the threshold current [17].
For reasons of causality, the real part of the machine

transverse impedance is an odd function and is positive at
positive frequency. In general, it can be said of the real part
of the transverse impedance, that where it is positive, it
stabilizes the beam and where it is negative, it leads to faster
emittance growth. The resistive-wall impedance is large in
magnitude at low frequency and so a positive chromatic
frequency is generally considered to stabilize the m ¼ 0
mode, a mechanism known as head-tail damping. However,
this also causes the higher order head-tail modes, which

have double-peaked spectra, to become sequentially less
stable as their lower peak is moved to a region of larger
negative impedance [18].
The features of a bunch in a harmonic-cavity-flattened

potential and their influence on transverse coupled-bunch
instabilities can now be discussed. First, the lengthening of
the bunch corresponds to a narrowing of the bunch
spectrum in the frequency domain so that it interacts with
a narrower band of the machine impedance. This means
that a nonzero chromaticity will be more effective at
moving the bunch spectra out of negative frequency and
the harmful negative real impedance. Second, the synchro-
tron tune spread means that the head-tail modes of order
jmj > 0 are destroyed by decoherence with a mean decay
time approximately equal to the inverse of the RMS
synchrotron frequency spread. For the MAX IV 3 GeV
ring, this is less than a ninth of the radiation damping time
so it should naively raise the threshold currents for these
modes by about this factor [19]. Third, since the bunch
distribution in time in a flat potential is not Gaussian, its
spectrum, given by the Fourier transform, will not be single
peaked but will have ripples around the central peak that
may also interact with the impedance. Finally, the bunch
distribution in synchrotron phase space is not radial, i.e., its
form in energy is different to its form in time offset so it
cannot be expressed as a function of synchrotron amplitude
only. This will also have an effect on the bunch spectrum
and how it interacts with the impedance.

B. Laclare’s eigenvalue method

For small synchrotron oscillation amplitudes in a single-
rf potential, it is approximately true that each single particle
in a bunch performs simple harmonic motion in synchro-
tron phase space about the position of the synchronous
particle and with the same synchrotron frequency. This is a
consequence of the rf potential being approximately
harmonic and under this approximation, the complex
impedance-driven tune shift for one head-tail mode Δωm
can be calculated using Laclare’s eigenvalue method as
outlined in this section. This method can be derived
either from an equation of transverse motion of a single
particle [20] or as a solution to the linearized Vlasov
equation [17]. In both cases, the resulting matrix equation
can be written as

ΔωmσmðωmqÞ ¼
βI

2T0E=e

X
p

jZ⊥ðωmpÞAm
pqσmðωmpÞ ð4Þ

where T0 is the revolution time, e is the unit charge, Z⊥ is
the transverse impedance, E is the beam energy, I is its
current and β is the average transverse beta function. The
complex betatron frequency shift Δωm for mode m is the
eigenvalue with the largest positive imaginary component
while the corresponding eigenvector σm is the bunch
spectrum defined in Sec. I A. Under the approximation
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of simple harmonic single-particle motion, the bunch
spectrum can also be calculated as

σmðωmpÞ ¼ 2π

Z
∞

0

Jm½ðωmp − ωξÞr�g0ðrÞYðrÞrdr ð5Þ

where Jm is the Bessel function of order m and r is the
synchrotron amplitude in units of time, given by

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 þ

�
αc
ωs

δ

�
2

s
ð6Þ

where τ is the longitudinal time offset relative to the
synchronous particle and δ is the normalized energy
deviation. YðrÞ is the amplitude of betatron oscillation
as a function of the synchrotron amplitude and describes
the radial structure of the head-tail mode. g0ðrÞ is the
charge distribution of the bunch in synchrotron amplitude.
It is assumed that the different azimuthal head-tail modes
do not interact with each other. Am

pq is a matrix whose
elements are given by the function fmðωmp;ωmqÞ where

fmðx; yÞ ¼ 2π

Z
∞

0

Jm½ðx − ωξÞr�Jm½ðy − ωξÞr�g0ðrÞrdr

ð7Þ

For a radial Gaussian distribution of length στ in time,

g0ðrÞ ¼
1

2πσ2τ
exp

�
−

r2

2σ2τ

�
ð8Þ

and the integral in Eq. (7) evaluates to

fmðx; yÞ ¼ Im½ðx − ωξÞðy − ωξÞσ2τ �

× exp

�
−
ðx − ωξÞ2σ2τ þ ðy − ωξÞ2σ2τ

2

�
ð9Þ

where Im is the modified Bessel function of order m [17].
As a consequence of the assumed simple harmonic

single-particle motion, the bunch charge distribution
g0ðrÞ can only be a function of the synchrotron amplitude
r. Formulated in this way, Laclare’s eigenvalue method
only applies to radial bunch distributions, which have the
same form in both energy and time offset. This is not the
case in the flat potential condition where the rf potential is
anharmonic so that the bunch distribution is close to
Gaussian in energy but non-Gaussian in time offset.
Laclare’s eigenvalue method can therefore not be applied
directly to this case. However, it can still be useful for
probing the differences between a radial Gaussian bunch
and other radial distributions that may have similar longi-
tudinal profiles to a bunch in the flat potential condition.
The modes jmj > 0 can be ignored because in the flat

potential condition, they are destroyed by decoherence and
so are not useful to the comparison.
With m ¼ 0, Eq. (7) can be evaluated analytically for

radial polynomial distributions with even powers using
recursion formulas [21]. The general expression for one
such radial distribution is

g0ðrÞ ¼
8<
:N

�
aþ b r2

r̂2 þ c r4

r̂4

�
if 0 ≤ r < r̂

0 if r ≥ r̂
ð10Þ

where a, b, and c are coefficients and N is a normalization
constant given by

1

N
¼ 2π

Z
r̂

0

�
aþ b

r2

r̂2
þ c

r4

r̂4

�
rdr: ð11Þ

Three different distributions in synchrotron amplitude have
been selected and these are listed in Table II along with
their parameters. The profiles for these distributions, that is,
their projections onto the temporal axis τ, can be found by
integrating Eq. (10) along the energy coordinate between
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2 − τ2

p
. These are shown in Fig. 1. Distribution 1 is a

uniform radial distribution, which appears semielliptical in
profile. Distribution 2 has a flattened profile that is most
similar to the profile seen in the flat potential condition and

TABLE II. Polynomial distributions inserted into Eq. (7).

Number Name ða; b; cÞ N r̂

1 Semielliptical (1, 0, 0) 1
4πσ2τ

2στ
2 Flattened (1, 2, −3) 5

24πσ2τ

ffiffiffiffi
24
5

q
στ

3 Double-peaked (0, 1, −1) 3
2πσ2τ

2στ

FIG. 1. Bunch profiles for the three non-Gaussian distributions
listed in Table II compared to a Gaussian distribution and the
distribution expected for the flat potential condition.
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the profile of distribution 3 is double-peaked. The three
distributions 1, 2, and 3 are therefore referred to as
“semielliptical,” “flattened,” and “double-peaked,” respec-
tively. The double-peaked bunch profile may be similar to
that of an overlengthened bunch where the harmonic cavity
has been tuned beyond the flat potential condition to a
regime where there are two minima in the rf potential.
The most common method for calculating the tune shift,

besides Laclare’s eigenvalue method, is the Sacherer
approximation where, instead of an eigenvalue problem
which returns both the tune shift and the bunch spectrum,
the bunch spectrum is assumed and is then used to calculate
the tune shift [22]. The spectra assumed may take the form
given by σmðωmpÞ ¼ fmðωmp; ω̂Þ, where ω̂ is the value of x
for which, with zero chromatic frequency, fmðx; xÞ is at a
maximum, i.e., the frequency at which mode m is expected
to be excited most strongly. These are therefore the spectra
expected for an excitation by an impedance that is uniform
over all frequencies and for most cases, they work for
resistive-wall and broadband resonator impedances as well.
A head-tail mode excited by a narrowband impedance at
frequency ωr has the form σmðωmpÞ ¼ fmðωmp;ωrÞ and is
known as a shaker mode. Shaker modes with the same
azimuthal index m excited at different resonant frequencies
differ in their radial structure [20,23].
When solving both Laclare’s eigenvalue method and the

Sacherer approximation, the summation over frequency
(index p in Eq. (4) can be truncated since at high frequency,
the magnitude of the bunch spectrum tends to zero for all
head-tail modes. Furthermore, this happens at lower fre-
quency for the most dominant low-order head-tail modes.
Laclare’s method is computationally more expensive than
the Sacherer approximation because it is a matrix eigen-
value problem rather than a formula with a couple of
summations. However, it has the advantage that the bunch
spectrum is not fixed and so it is applicable to cases where
the spectrum is significantly distorted because of the radial
structure of the head-tail mode.

II. SIMULATIONS

In order to separate the four possible contributions of a
harmonic cavity to the beam stability, which are described
in Sec. I A, macroparticle simulations of the MAX IV
3 GeV bare ring with all rf buckets filled were run for three
different cases: 1. Effects of the harmonic cavities not
included and otherwise nominal parameters so that the
RMS bunch length is 40 ps. 2. Bunch length increased to
the nominal lengthened value of 195 ps by ignoring the
energy loss due to synchrotron radiation (stationary beam)
and by lowering the rf voltage to 0.04 MV. By lengthening
in this way without increasing the momentum compaction
factor (affecting the chromatic frequency) or the energy
spread, the bunch maintains its radial Gaussian distribution
and does not acquire a significant synchrotron tune spread.
3. All the nominal machine parameters and an active

harmonic cavity providing the flat potential condition for
all bunches. The bunch length is therefore also 195 ps but in
addition, the effects of the synchrotron tune spread and
modified beam distribution are present.1 The results of the
simulations were compared with calculations performed in
the frequency domain. For the short bunch case (1) and the
lengthened Gaussian bunch case (2), the frequency domain
calculations assume a Gaussian distribution. For the flat
potential case (3), the jmj > 0modes are ignored since they
are expected to be destroyed by the decoherence due to the
synchrotron tune spread and the frequency domain calcu-
lations are performed for the bunch distributions in Table II.
As previously stated, the nonradial bunch distribution in
synchrotron phase space and single-particle motion that is
not simple harmonic are not accounted for by the frequency
domain calculations. All the simulations were performed
for the vertical plane and with the resistive-wall impedance
only, which is given by

Z⊥ðωÞ ¼
μ0Lcc
a3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ

2πμ0jωj
r �

ω

jωj þ j

�
ð12Þ

where μ0 is the permeability of free space, c is the speed of
light and the other symbols are defined in Table I. Without
insertion devices, the horizontal plane is not expected to be
very different besides the radiation damping time being
lower due to the dispersion.
The macroparticle tracking code used for the time

domain simulations was MBTRACK [16], which is able to
treat both the long and short-range effects of the resistive-
wall impedance for multiple bunches and applies the effects
of the impedance once per turn. For the short-range
wakefield, the macroparticles are binned according to their
longitudinal position within the bunch and their transverse
position offsets are summed to obtain the dipole moment of
each bin. A discrete convolution of this with the wake
function is then performed to calculate the kicks that should
be applied to the macroparticles in each bin, thus taking the
finite bunch length into account. For the long-range wake-
field, the dipole moments of each bunch are stored over a
number of turns and the contributions of each are summed
to calculate the kick to apply to all the macroparticles in
each bunch. The effect of the finite bunch length on the
long-range wake is neglected because the narrowband
component of the resistive-wall impedance is centered at
zero frequency and so it is the dipolar bunch motion that is
important. The code was run with no radiation damping or
quantum excitation; instead, the longitudinal bunch dis-
tribution was imposed from the beginning. MBTRACK

calculates the Courant-Snyder invariant of each individual
macroparticle as

1An active harmonic cavity was used to minimize the simu-
lation time. It has been shown using macroparticle tracking [24]
and numerical calculations [4] that the same flat potential
condition can be achieved using passive cavities as long as their
shunt impedance is sufficient for the beam current.
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ϵyðy; y0Þ ¼ γy2 þ 2αyy0 þ βy02 ð13Þ

where γ, α, and β are the Twiss parameters (α ¼ 0, γ ¼ 1=β
in these simulations) and y and y0 are the macroparticle’s
position offset and normalized transverse momentum,
respectively. The average over all the particles hϵyi is then
taken as the emittance of the bunch. This was calculated
between every 5 to 25 thousand turns, depending on the
simulation length, and the growth rate was determined
using a linear fit to the natural logarithm of the square root
of the last five values, the emittance being proportional to
the square of the betatron amplitude. Assuming a growth
rate directly proportional to the beam current [as in Eq. (4)],
with constant of proportionality kI, the threshold current for
the instability Ith could be calculated as

Ith ¼
1

kIτy
ð14Þ

where τy is the radiation damping time in the vertical plane.
10,000 macroparticles per bunch were used in the simu-
lations and a dipole-moment history length of 300 turns
was used to calculate the kicks from the long-range
resistive-wall wakefield. The number of turns tracked
was dependent on how quickly the instability developed
so that the growth rate could be measured. The shortest
simulations run were of 200,000 turns while the longest
were of several million. All the simulations were performed
with a beam current of 100 mA in order to keep the
perturbation small and to avoid any interaction between the
different head-tail modes.
The code used for the frequency domain calculations was

RWMBI [25]. It solves Eq. (4) for the eigenvalues and was
extended to include the distributions listed in Table II in
addition to the Gaussian distribution it assumes by default.
The calculation was performed for all 176 coupled-bunch
modes in the MAX IV 3 GeV ring and for head-tail modes
m < 3, whichwere found to limit the threshold current in the
chromaticity ranges considered. Each data point in the
frequency domain results shown in the figures in this section
represents the threshold current of the coupled-bunch mode
with the highest growth rate. As expected from the resistive-
wall impedance, it is the coupled-bunch mode of lowest
negative frequency (−1) that is almost always the least stable.
The only exceptions were with the jmj > 0 modes at zero
chromaticity and them ¼ 0mode in the short bunch case in
the ranges of chromaticity where its threshold current was
above 500 mA.
Figure 2 shows the results for the first case of the short

bunch in the single rf system. The time domain simulation
always returns the minimum threshold current seen in the
frequency domain calculations and there is excellent agree-
ment between the two. The threshold current behaves as
expected, with the m ¼ 0 mode being stabilized then the
higher-order modes sequentially becoming more unstable

as the chromaticity is increased. This behavior is also seen
when the Sacherer approximation is applied and follows the
general explanation of the different head-tail modes being
sequentially stabilized as their peaks are moved away from
small negative frequencies where the real part of the
impedance is large and negative. A comparison between
Laclare’s eigenvalue method and the Sacherer approxima-
tion, both evaluated using RWMBI, is shown in Fig. 3. Since
the main rf at MAX IV (99.931 MHz) is low compared to
other storage rings, the bunch length is already sufficiently
long that for high chromaticities, the two methods diverge
considerably. This is because there is sufficient distortion of
the head-tail modes that the Sacherer approximation, which

FIG. 2. Threshold current for the coupled-bunch resistive-wall
instability for the case with a short bunch in a single rf system.
Results of macroparticle simulations in the time domain (dashed
line) are compared with those obtained using a frequency domain
computation (solid lines).

FIG. 3. Comparison of the Laclare eigenvalue method with the
Sacherer approximation when both are applied to the case of the
short bunch in a single RF system.
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assumes one head-tail mode spectrum for each mode at all
chromaticities, fails to follow. The difference ismost extreme
for the m ¼ 0 mode above a chromaticity of 1.8. The
Sacherer approximation predicts an indefinite stabilization
of this modewhile Laclare’s eigenvalue method predicts that
for chromaticities above 1.8, the mode is destabilized as the
chromaticity is increased further.
Figure 4 shows the results for the lengthened Gaussian

bunch. As anticipated, the m ¼ 0 mode is stabilized at a
lower chromaticity than with the shorter bunch. However, it
is also destabilized at lower chromaticity. Above a chro-
maticity of 1, all three head-tail modes appear to have very
similar threshold currents that increase linearly with chro-
maticity. Once again, this would not be seen with the
Sacherer approximation, where all modes would limit the
threshold current sequentially, as in the case of the short
bunch. It is clear that for this bunch length, the dynamics is
in a regime well beyond the reach of the Sacherer
approximation. It is, in fact, only between a chromaticity
of 0.45 and 1 that a head-tail mode of higher than zeroth
order (m ¼ 1) limits the threshold current. Therefore, if the
m ¼ 1 mode were removed without changing the bunch
distribution, by introducing a large spread in the synchro-
tron tune, for example, it would only affect the threshold
current in this range of chromaticities.
The results for the flat potential condition are shown in

Fig. 5. The frequency domain results that have been
included are the beam distributions for the m ¼ 0 mode
listed in Table II. With the Gaussian distribution, a smooth
trend in the threshold current can be seen across the range
of coupled-bunch modes. However, with the alternative
distributions, a few of the 176 coupled-bunch modes
showed anomalously low threshold currents, probably

due to some numerical error. For these cases, the eigen-
vectors extracted from the calculation were also very
different from the bunch spectra expected, i.e., those
described in Sec. I A. These anomalous results were
therefore filtered out. All modes jmj > 0 should be
destroyed by decoherence because of the spread in the
synchrotron tune and so these were neglected. The agree-
ment between the results from the time domain and those
from the frequency domain is not as good as in the other
two cases because Laclare’s eigenvalue method is unable to
treat the nonradial bunch distribution seen with the flat
potential condition. However, the results from the two
methods do share some common features, in particular, the
large peak at a chromaticity of 0.5. This suggests that,
unlike in the lengthened Gaussian case, the m ¼ 1 mode
does not limit the threshold current in this region. As the
chromaticity is increased further, in the time domain
results, a slight peak is visible at ξ ¼ 1.3 and then the
threshold current increases linearly as in the lengthened
Gaussian case. The frequency domain results replicate this
peak and show more peaks at higher chromaticities. This
behavior can be understood by looking at the Fourier
transform of the bunch profiles in each case, shown in
Fig. 6. Unlike the Gaussian distribution, which is also
Gaussian in the frequency domain, the Fourier transforms
of the non-Gaussian distributions do not simply have a
single peak at zero frequency but also ripples at higher
frequencies that get smaller as the frequency is increased.
For the distributions used in the frequency domain calcu-
lations, these ripples are much larger than those of the flat
potential distribution. In the time domain, these ripples
correspond to the tails of the bunch profile. They are larger

FIG. 4. Threshold current for the coupled-bunch resistive-wall
instability for the case with a stationary, lengthened Gaussian
bunch. Results of macroparticle simulations in the time domain
(dashed line) are compared with those obtained using a frequency
domain computation (solid lines).

FIG. 5. Threshold current for the coupled-bunch resistive-wall
instability for the case with a harmonic cavity flat potential.
Results of macroparticle simulations (dashed line) in the time
domain are compared with those obtained using a frequency
domain computation of the m ¼ 0 head-tail mode for three non-
Gaussian distributions (solid lines).
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for the three approximate distributions because these
distributions all have discontinuities where the charge
reaches zero whereas the bunch distribution in the flat
potential approaches zero asymptotically with time offset.
It is the ripples that cause the peaks in the threshold currents
above a chromaticity of 1, as explained further in Sec. II A.
The frequency domain and time domain results dis-

played in Fig. 5 differ significantly in the absolute values
for the threshold current. The semielliptical and flattened
bunch profiles predict threshold currents that are only
slightly above those for the lengthened Gaussian case
whereas the time domain results show threshold currents
that are, at high chromaticity, more than 50% above these
thresholds. It is concluded that it is the nonradial distribu-
tion in synchrotron phase space, which is not accounted for
in the frequency domain calculations, that explains this
difference. The difference between the semielliptical and
flattened profiles suggests that the form of the bunch profile
does not affect the threshold currents to the same extent.
The double-peaked distribution gives threshold currents
that are higher but, at large values of chromaticity, still not
as high as the time domain results and the peaks seen are a
lot bigger than in the time domain.

A. Modal analysis

In order to further interpret the results, the form of the
bunch spectra in each region of the chromaticity scan was
investigated. This can be done in both the frequency
domain and the time domain. In the frequency domain,
they are simply given by the eigenvectors σm. In the time
domain, the macroparticle distribution of a single bunch is
saved at the end of the simulation of the instability. This is
then tracked around the ring for 10,000 turns with no
impedance effects. The product of the position offset hyiðτÞ

and the longitudinal bunch distribution g0ðτÞ, as would be
measured by the infinite bandwidth BPM pick-up described
in Sec. I A, can then be saved every turn. In practice, this is
done using the binning system of MBTRACK, which bins the
particles according to their longitudinal time offset τ and
then sums their offsets to arrive at this product. The beam
signal in the frequency domain can then be calculated by
taking a discrete Fourier transform, accounting for the
many zeros between turns:

SðωÞ ¼
XL−1
l¼0

�XK−1
k¼0

Nlkhyilke−jωΔtsðkþl
ω0Δts
2π ÞΔts

�
ð15Þ

where L is the number of turns tracked, K is the number of
bins, Δts is the bin width in time, and Nlk and hyilk are the
number of particles in bin k at turn l and their average
transverse offset, respectively. From Eq. (1), the bunch
spectrum σmðωmpÞ is proportional to SðωmpÞ. The form of
the bunch spectrum can therefore be obtained by solving
Eq. (15) at the discrete frequencies ωmp. For this to be
strictly true, the values for ω0, ωβ, and ωs used in the
simulation must all be exact multiples of 2π=Δts [20].
Figure 7 shows the spectra of the beam signals from the

time domain simulations around the first betatron tune line
for a chromaticity of 2.4. For the short Gaussian bunch,
peaks can clearly be seen at the upper and lower synchro-
tron sidebands suggesting the presence of the �1 head-tail
modes.2 The peak at the betatron tune (m ¼ 0) is much

FIG. 6. Fourier transform of the three non-Gaussian distribu-
tions listed in Table II compared to a Gaussian distribution and
the distribution expected for the flat potential condition.

FIG. 7. Fourier transform of the beam signal around the first
betatron tune line from tracking of beam distributions produced
in time domain simulations of coupled-bunch instabilities at a
chromaticity of 2.4. The frequency axis is given in terms of the
revolution frequency f0.

2Either the positive or negative head-tail mode (usually the
negative) will be slightly more unstable but the difference
between them in the frequency domain results was found to
be negligible.
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smaller in comparison. For the lengthened bunch case,
many modes appear to be present but the dominant one is
m ¼ 0. The other modes are also closer to the central peak
because of the lower synchrotron tune. Finally, for the flat
potential condition, there is only a single peak at the
fractional betatron tune. This confirms that the decoherence
of the higher than zeroth order modes is strong.
At low chromaticity, for all three cases, the head-tail

modes have the form expected and that would be used for
the Sacherer approximation, that is a single peaked Fourier
transform of the longitudinal bunch charge distribution for
m ¼ 0 and a double peaked spectrum for the other head-tail
modes. Figure 8 shows the bunch spectra of three different
head-tail modes for the short bunch case, each at a
chromaticity where the mode shown limits the threshold
current. The spectra of the three different modes have the
expected form.
For the lengthened Gaussian bunch, for three different

chromaticities in regions of interest, the spectra of the
threshold-current-defining head-tail modes are shown in
Fig. 9. At low chromaticity, the bunch spectrum of the
m ¼ 0 mode is single peaked. As the chromaticity is
increased, this peak is shifted to positive chromaticity,
leading to some stabilization. At this point, the m ¼ −1
head-tail mode, which has a spectrum similar to the
spectrum of the same mode in the short bunch, begins
to define the threshold current. Then, at the peak in the
threshold current of them ¼ 0mode, its spectrum becomes
double peaked. It is this transition in the m ¼ 0 spectrum
that causes its threshold current to not increase indefinitely
as the chromaticity is increased but to begin to decrease and
then limit the overall threshold current at high chromaticity.
At one point in the regime where the threshold current is

increasing linearly with chromaticity, the spectra of three
different modes are shown in Fig. 10. It can be seen here

that the spectra of all three head-tail modes are double
peaked and the separation between the peaks is the same,
twice the chromatic frequency. This means that the lower
peak is nearly always centered at zero frequency, where the
resistive-wall impedance is largest. As the chromaticity is
increased, the separation between the two peaks increases
and their height decreases so that the overall effect is the
linear increase in the threshold current. From inspection of
the distribution of particle offsets in synchrotron phase
space at the end of the instability simulation, shown in
Fig. 11, it is clear that there is some radial structure to the
head-tail modes that gives the double-peaked spectra in the
frequency domain. It is in the radial structure that the mode
spectra returned by Laclare’s eigenvalue method differ from
those assumed in the Sacherer approximation, in which, the

FIG. 8. Transverse bunch spectra for the short bunch case for
the dominant mode at three different chromaticities. Time domain
and frequency domain results are compared.

FIG. 9. Transverse bunch spectra for the lengthened Gaussian
bunch case for the dominant mode at three different chromatic-
ities. Time domain and frequency domain results are compared.

FIG. 10. Transverse bunch spectra for the lengthened
Gaussian bunch case for the dominant mode at three different
chromaticities.
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radial and azimuthal geometry of the mode is fixed and
only the phase offset due to the chromaticity changes.
Laclare’s eigenvalue method covers every possible radial
structure for each azimuthal mode number. The radial
structure seen is the one that is the least stable against
the impedance and when this differs considerably from
what is most commonly expected for that azimuthal mode
number, the predictions obtained using the two methods
differ greatly. This happens at lower chromaticity for longer
bunch lengths since the commonly expected bunch spectra
are narrower and so, for moderate chromaticities, do not
cover the frequencies where the impedance is large, around
zero frequency in the case of the resistive-wall impedance.
The results for the flat potential condition are shown in

Fig. 12 along with frequency domain calculations using the
flattened bunch profile. As the chromaticity is increased
from zero, the spectrum of the m ¼ 0 mode shows similar
behavior to that seen in the lengthened Gaussian case. The
m ¼ 1mode, on the other hand, does not limit the threshold
current at any point since all the jmj > 0 modes are
destroyed by the decoherence. The peak in the threshold
current of the m ¼ 0 mode when its spectrum becomes
double peaked is therefore visible, even in the results of the
time domain simulations. In the high chromaticity regime,
the bunch spectrum continues to behave similarly to the
lengthened Gaussian case. However, because the Fourier
transform of the bunch profile has ripples around the main
peak, the two peaks in the bunch spectrum have some
oscillatory structure between them. As the chromaticity is
increased, not only do the two main peaks get smaller but
the number of oscillations between them increases. It is the
addition of these oscillations that causes the threshold
current to peak at certain chromaticities above that of the

first peak. The smaller the ripples in the frequency domain
profile, the smaller the peaks in the threshold current. As
with the lengthened Gaussian bunch case, there is a visible
radial component to the coherent motion within the bunch,
see Fig. 13.
The form of the bunch spectra for both cases with

lengthened bunches is similar to shaker modes being
excited by a narrowband impedance at zero frequency.
Figure 14 shows a comparison between the eigenmodes
from the frequency domain computation and these shaker
modes excited at zero frequency at a chromaticity of 2.4.
This shows that the beam is behaving as would be expected
with a strong excitation at zero frequency, as is the case

FIG. 11. Scatter plot of populated bins in synchrotron phase
space for the lengthened Gaussian bunch at the end of a
macroparticle simulation of a coupled-bunch instability at a
chromaticity of 2.4. The color of each point represents the mean
offset of particles within that bin.

FIG. 12. Transverse bunch spectra in the flat potential condition
for the m ¼ 0 mode at three different chromaticities. The
frequency domain spectra are for the flattened bunch profile.

FIG. 13. Scatter plot of populated bins in synchrotron phase
space for the flat potential condition at the end of a macroparticle
simulation of a coupled-bunch instability at a chromaticity of 2.4.
The color of each point represents the mean offset of particles
within that bin.
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with the resistive-wall impedance. This explains why the
separation between the two peaks in the spectra of
the lengthened bunches is twice the chromatic frequency.
The eigenmodes resemble the shaker modes less at some
chromaticities than at others and even small differences can
cause a large change in the threshold current when they are
at frequencies where the impedance is large. Interpreting
the problem only as a narrowband excitation at zero
frequency, by inserting these shaker modes into the
Sacherer approximation for example, would therefore lead
to errors.

III. OTHER CASES

In order to further understand the results in Sec. II,
similar investigations were performed for an intermediate
bunch length of 100 ps. The study was then extended to
briefly look into the effects of a broadband resonator
impedance.

A. Intermediate bunch length

A Gaussian bunch of an intermediate length of 100 ps
was generated by lowering the rf voltage to 0.15 MV with
the stationary beam. The same bunch length was also
achieved with the flat potential condition by introducing an
active harmonic cavity at the 11th harmonic of the main rf.
Figure 15 shows the frequency and time domain results for
this intermediate length case with the Gaussian bunch. As
the chromaticity is increased from zero, the peak seen in the
threshold current of the m ¼ 0 mode when its spectrum
becomes double peaked, is higher than in the case of the
full-length Gaussian bunch (see Fig. 4). Then, as the
chromaticity is increased further, the m ¼ 1 mode is also
slightly stabilized and destabilized again. Apart from these
details, it becomes clear that the result of the change in

bunch length is mostly a linear scaling along the horizontal
axis. The details are caused by the fact that the shorter the
bunch length, the wider the bunch spectrum and so the
greater the number of frequency lines in Eq. (2) that
become important in the interaction of the beam with
the impedance.
The threshold curve for the flat potential case with the

medium length bunch is shown in comparison with the
frequency domain results in Fig. 16. As with the full-length
bunch in the flat potential, for which the equivalent plot is

FIG. 14. Comparison of the transverse bunch spectra σm for
three different beam types at a chromaticity of 2.4 with their
corresponding shaker modes excited at zero frequency fðωmp; 0Þ.

FIG. 15. Threshold current for the coupled-bunch resistive-wall
instability for the case with a Gaussian bunch at an intermediate
length of 100 ps. Results of macroparticle simulations in the time
domain (dashed line) are compared with those obtained using a
frequency domain computation (solid lines).

FIG. 16. Threshold current for the coupled-bunch resistive-wall
instability for the case with a potential flattened with a harmonic
cavity at the 11th harmonic of the main rf. Results of macro-
particle simulations in the time domain (dashed line) are
compared with those obtained using a frequency domain com-
putation (solid line).
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shown in Fig. 5, there are peaks in the threshold current but
they are found to be more pronounced. Ultimately, this
means that at certain chromaticities, the intermediate length
bunch is predicted to be more stable than the full-length
bunch in the flat potential. Again, the inverse scaling with
bunch length is clear across the full range of chromaticity.
Figure 17 shows the bunch spectra for the flattened

bunch profile, calculated in the frequency domain, in
comparison with the corresponding shaker modes at a
chromaticity of 2.4. At this chromaticity, there is a peak in
the threshold current for the intermediate bunch length. As
with the peaks seen with the fully-lengthened case, it occurs
as oscillations appear between the two main peaks in the
bunch spectrum. It can be seen in the figure that, for the
intermediate bunch length, the increase in chromaticity has
moved the lower peak in the bunch spectrum to a slightly
positive frequency and to a higher frequency than the peak
in the shaker mode. This leads to some stabilization and the
peak seen in the threshold current. As the chromaticity is
increased above 2.4, another oscillation appears between
the main peaks and their separation in frequency increases.
This moves the lower peak back toward negative frequency
and causes some destabilization. This process occurs with
the fully lengthened bunch as well but to a lesser extent so
that it is less easy to see in the bunch spectra and
the resulting peak in the threshold current is smaller. The
reason for the difference in the size of the effect is the greater
number of frequency lines covered by the wider bunch
spectrum of the shorter, intermediate-length bunch.

B. Broadband resonator

A broadband resonator (BBR) at 6.38 GHz and with a
shunt impedance of 0.065 MΩm−1 and a quality factor of

unity was introduced into the simulations. This is one of the
strongest BBRs in the impedance model of the MAX IV
3 GeV ring [11]. MBTRACK has not yet been extended to
treat the long-range effects of resonant transverse wake-
fields but since the quality factor is so low, these should be
negligible.
With the BBR, the results for the short bunch are shown

in Fig. 18. The time domain simulations predict a couple of
dips in the threshold current between chromaticities of 1
and 2 that do not appear in the frequency domain results but
the overall agreement between the two is still good. The
effect of the BBR is to stabilize them ¼ 0 andm ¼ 1 head-
tail modes so that the threshold current is higher up to a
chromaticity of about 3. Above this chromaticity, all the
modes are destabilized leading to a threshold current that is
lower than without the BBR. When the Gaussian bunch is
lengthened, as is the case in Fig. 19, the BBR also stabilizes
the m ¼ 2 mode because the lengthening brings this mode
below the frequency of the BBR. The peak in the threshold
current for the m ¼ 0 mode at a chromaticity of around 0.5
is a lot higher than in the case without the BBR and, similar
to with the intermediate bunch length, the m ¼ 1 mode is
also stabilized and then destabilized as the chromaticity is
increased. The BBR is responsible for an additional peak in
the threshold currents of all head-tail modes at a chroma-
ticity of around 1.5. Above this, all the modes are
destabilized and their threshold currents are the same.
Above a chromaticity of 2.5, their thresholds all increase
linearly with chromaticity but with a lower gradient than in
the case with no BBR.
With the flat potential condition, the behavior is as

shown in Fig. 20 where again, only the m ¼ 0 mode is

FIG. 17. Comparison of the transverse bunch spectra σm for the
flat potential condition, a chromaticity of 2.4 and two different
bunch lengths with the corresponding shaker modes excited at
zero frequency fðωmp; 0Þ.

FIG. 18. Threshold current for the coupled-bunch resistive-wall
instability in the 3 GeV ring with a BBR included for the case
with a short bunch in a single rf system. Results of macroparticle
simulations in the time domain (dashed line) are compared
with those obtained using a frequency domain computation
(solid lines).
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considered. Once again, the peak around a chromaticity of
0.5 is much larger than in the case without the BBR. In fact,
for the time domain simulation, one threshold current could
not be calculated because the instability was not seen after
six million turns of tracking. This may mean that them ¼ 0
mode is actually being damped at this chromaticity. The
peaks at higher chromaticity are also larger and appear in
both the frequency and time domain. Since the bunch
length is the same as for the lengthened Gaussian case, it is
expected that a peak caused directly by the BBR would be

in the same place. However, the periodicity caused by the
oscillations between the main peaks in the bunch spectra
appears to dominate. The effect that the BBR has here is
that the peaks that are above a chromaticity of 1.5 (where
the peak appears in the lengthened Gaussian bunch case)
are shifted to a lower chromaticity. Once again, the overall
linear increase in threshold current above a certain chro-
maticity, in this case 2, is present but with a lower gradient
than in the case with no BBR. Overall, this leads to a lower
threshold current above a chromaticity of 3.
The ratio between the threshold currents predicted by the

time domain simulations of the flat potential condition and
the frequency domain calculations based on the flattened
bunch profile is shown for both bunch lengths simulated
and with and without the BBR in Fig. 21. It can be seen
that, at high chromaticity especially, this ratio is almost
constant, around 1.6. At low chromaticity, this value is
reached from below at a point that coincides with the first
peak in the threshold current. This ratio was found to be
independent of the rf harmonic chosen for the operation of
the harmonic cavities and for another machine simulated. It
suggests that, at high chromaticity, the influence of the
nonradial distribution in synchrotron phase space is simply
a constant factor, by which the right-hand side of Eq. (4)
could be multiplied.

IV. CONCLUSION

In a storage ring, a flattened longitudinal potential, as can
be obtained using harmonic cavities, can increase the
threshold current of transverse coupled-bunch instabilities.
There are four features of a beam in a flat potential that
contribute to this: the lengthened bunch, the synchrotron
tune spread and two concerning the bunch’s synchrotron-
phase-space distribution: first, that it is non-Gaussian and

FIG. 19. Threshold current for the coupled-bunch resistive-wall
instability in the 3 GeV ring with a BBR included for the case
with a lengthened Gaussian bunch. Results of macroparticle
simulations in the time domain (dashed line) are compared
with those obtained using a frequency domain computation
(solid lines).

FIG. 20. Threshold current for the coupled-bunch resistive-wall
instability in the 3 GeV ring with a BBR included for the case
with a harmonic cavity flat potential. Results of macroparticle
simulations in the time domain are compared with those obtained
using a frequency domain computation of the m ¼ 0 head-tail
mode for three non-Gaussian distributions.

FIG. 21. Ratio of threshold currents predicted by time domain
simulations of the flattened potential to those predicted by
frequency domain calculations for a flattened bunch distribution
with the same bunch length.
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second, that it is not radial. The contribution of each of
these four features to the instability threshold current has
been studied using a model of the resistive wall impedance
and its interaction with bunches uniformly distributed
around the MAX IV 3 GeV ring.
The effect of the increase in bunch length has been

investigated by comparing simulations of a short bunch in
a single rf system and a bunch lengthened in such a way
that no significant synchrotron tune spread is introduced.
The longer bunch means that the lowest order single bunch
head-tail modes are stabilized at a lower chromaticity.
However, as the chromaticity is increased further, a regime
is reached where the spectra of all these modes become
double peaked due to their radial structure and are
destabilized. One of the two peaks is centered close to
zero frequency as this is where the resistive-wall imped-
ance is strongest while the other is at around twice the
chromatic frequency. If a resonant impedance, like a
dipolar higher order mode in a rf cavity, was driving
the instability, it is expected that one peak would instead be
centered at the resonant frequency of this mode. The radial
structure to the head-tail mode changes to the extent that
the Sacherer approximation and the physical interpretation
attached completely break down. All head-tail modes have
the same threshold current that increases linearly with
chromaticity.
The synchrotron tune spread means that modes with

index jmj > 0 are destroyed by decoherence, as quickly as
in a ninth of the radiation damping time in the case of the
MAX IV 3 GeV ring [19]. This means that the peak in the
threshold current of the m ¼ 0 mode at the chromaticity at
which its spectrum becomes double-peaked appears in the
overall threshold current, since there are no higher order
modes to limit the threshold current in this region. This is
seen in the time domain results and in the frequency
domain and justifies ignoring the jmj > 0modes altogether.
The non-Gaussian beam distribution means that the

frequency spectrum of the m ¼ 0 head-tail mode is not
simply single or double peaked but has ripples in the tails.
These ripples interact with the impedance, adding some
periodic structure to the threshold current curve as oscil-
lations appear between the main peaks in the spectrum.
This behavior is more dominant with shorter bunch lengths.
This has been seen in frequency domain calculations
applying Laclare’s eigenvalue method to non-Gaussian
distributions and in the analysis of time domain simulations
of instabilities in the flat potential condition.
The fourth and final difference made by the flat potential

is the nonradial bunch distribution and this cannot be
treated using Laclare’s eigenvalue method. The bunch in
the flat potential has a Gaussian distribution in energy but
goes as e−aτ

4

in time offset τ (where a is a constant).
Accordingly, the synchrotron motion contains significant
components at odd harmonics of the synchrotron fre-
quency. By elimination, it must be concluded that it is

this fourth feature that accounts for the remaining differ-
ence seen between the time domain simulations of the flat
potential condition and the frequency domain calculations
of similar bunch profiles. Slight differences in bunch
profile, between flattened and semielliptical for example,
do not have a sufficient impact to explain the difference
seen in threshold current and the time domain and fre-
quency domain results otherwise agree very well. Above a
certain chromaticity, the frequency domain calculations
that assume radial distributions appear to underestimate the
threshold current by a constant factor of around 1.6
compared to the more accurate time domain simulations.
Below this chromaticity, the factor approaches 1.6 from
below as the chromaticity is increased. This factor quan-
tifies the contribution of the nonradial distribution.
An intermediate bunch length was also investigated in

order to gain a deeper insight into the role that the bunch
length plays. With and without harmonic cavities, increas-
ing the bunch length results in an inverse scaling along the
horizontal axis of the curves of threshold current against
chromaticity. There are differences beyond this scaling
because the narrower spectra of the longer bunches cover
fewer of the frequencies given by Eq. (2). These differences
include the size of the peaks in the threshold current due to
the oscillations seen between the main peaks in the bunch
spectra with the flat potential condition.
The results in this paper suggest that the nominal

chromaticity for the MAX IV 3 GeV ring of þ1 may
not be the ideal value in terms of beam stability against the
resistive-wall impedance. A lower chromaticity may
coincide with a large peak in the threshold current as well
as providing the additional benefits in terms of the trans-
verse dynamic aperture and beam lifetime. However, since
the main goal of this paper was to illustrate the physical
mechanism behind the stabilization by the harmonic
cavities at MAX IV, only the resistive wall and, in one
case, a single BBR have been included in the impedance
models. It was seen that the effect of the BBR was to
stabilize the beam below a certain chromaticity that is
dependent on the bunch length and then to destabilize the
beam above this chromaticity. The full ring impedance
model of the bare machine contains 12 BBRs in the vertical
plane [11] that are likely to have a large effect on the
threshold currents. Using MBTRACK, which can treat both
longitudinal and transverse wakefields simultaneously, the
full MAX IV impedance model including the longitudinal
resistive wall and geometric impedance could be included.
The predicted microwave threshold for the MAX IV 3 GeV
ring is 12 mA per bunch with harmonic cavities and 10 mA
without [16] (corresponding to 2112 mA and 1760 mA
total current respectively). This is significantly larger than
the vast majority of threshold currents presented in this
paper so the turbulent regime need not be considered.
However, bunch lengthening due to longitudinal imped-
ance could be an important factor. This could be checked
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using RWMBI by simply adjusting the input bunch length
accordingly. Finally, the threshold current presented here is
calculated by equating the inverse growth rate of the
transverse coupled-bunch instability to the radiation damp-
ing time. Adding a basic model of the radiation damping to
the time domain simulations can lead to significantly higher
threshold currents [26]. The growth rate was also assumed
to be proportional to current when it is known that, as the
current is increased, the proportionality is broken due to the
change in the coherent betatron frequency and the inter-
action of the different head-tail modes.
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