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The transverse decoherence of injected bunches is an important phenomenon in synchrotrons and
storage rings. The initial stage of this process determines the transverse emittance blowup, which should be
taken into account for the design of feedback systems, for example. The interplay of different high-intensity
effects can strongly affect the initial decoherence stage. We present a model that explains decoherence and
emittance growth with chromaticity, space charge, and image charges within the first synchrotron period.
We compare the model for different combinations of parameters with self-consistent particle tracking
simulations and measurements in the SIS18 synchrotron at GSI Darmstadt. Generally, space charge slows
down the decoherence process and can cause the loss of decoherence. Chromaticity and image charges can
partly compensate this loss and restore the decoherence. We also analyze the single-particle excitation
driven by space charge during the decoherence process. Particles gain large amplitudes from the coherent
beam oscillation, which leads to halo buildup and losses.
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I. INTRODUCTION

After an initial transverse offset the amplitude of the beam
centroid oscillations decays due to the spread of individual
particle frequencies. This process is usually called
decoherence or phase-mixing. Transverse decoherence can
be used for diagnostic purposes (e.g., for chromaticity
measurements [1]), but it can also reduce the machine
performance. For example, after the bunch-to-bucket transfer
in synchrotrons decoherence results in a transverse emittance
blowup. In order to prevent beam quality degradation a
transverse feedback system (TFS) should be used with a
damping time shorter than the characteristic decoherence
time. In the presence of transverse nonlinearities and
chromaticity the time evolution of the bunch offset and of
the rms emittance were obtained analytically in Refs. [2,3].
Intensity effects significantly change the decoherence

because of additional incoherent and coherent tune shifts.
Attempts to understand the decoherence process and the
emittance growth with space charge and impedances were
presented in Refs. [4–10]. The role of space charge and its
interplay with other intensity effects, which is important for
the design of the SIS100 synchrotron as part of the FAIR
project [11], still needs to be clarified.
Recently, a different approach was applied to describe

the long-term behavior of decoherence and recoherence
following a small initial offset [12,13]. The initial kick
was represented as a combination of bunch head-tail

eigenmodes, which are prone to different Landau damping
rates. The approach predicts that after a transition time a
mixture of the remaining eigenmodes continues to oscillate,
exhibiting a characteristic time pattern. The initial stage of
the decoherence process in intense bunches affected by
space charge for arbitrary offsets is the subject of the
present work. We study the interplay of space charge,
chromaticity, and image charges during the decoherence
process.
In Sec. II a brief discussion of the decoherence and the

emittance growth in the absence of intensity effects is
presented. The effect of space charge on the decoherence
process is discussed in Sec. III. We develop an analytical
model to describe decoherence in coasting beams. The
model is verified by particle tracking simulations with the
PATRIC code [14]. The resonant excitation of particles
driven by the coherent beam oscillations is discussed in
Sec. III B. It is shown that those particles can contribute to
losses and halo buildup. In Sec. III C we apply the extended
model to the initial stage of decoherence in ion bunches.
In Sec. IV we discuss the contribution of image charges.
Comparisons with measurements performed in the SIS18
synchrotron [15] at GSI Darmstadt are presented in Sec. V.
For the intensities achieved in the experiments it is shown
that the decoherence is governed by chromaticity and space
charge. The work is concluded in Sec. VI.

II. DECOHERENCE WITHOUT SPACE CHARGE

The analytical calculation of the bunch offset evolution
in Refs. [2,3] assumes that at a certain time all particles
experience the same transverse kick independent of their
longitudinal position. For each time step the transverse
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bunch offset is calculated as the average of all particle
coordinates. We call this a fixed-time monitoring (ft) [16].
Considering the case of linear synchrotron motion, linear

chromaticity ξ ¼ ΔQ
Q0

= Δp
p0
, and a Gaussian momentum dis-

tribution, the amplitude of beam oscillations A after a
transverse kick is given by [2]

AðNÞ
A0

¼ exp

�
−2

δQ2
ξ

Q2
s
sin2ðπQsNÞ

�
: ð1Þ

Here, N is the time variable expressed in the number of
turns, A0 is the initial beam oscillation amplitude after the
kick, Qs is the synchrotron tune, and the chromaticity tune
spread,

δQξ ¼ jξjQ0

δp
p0

; ð2Þ

where δp=p0 is the normalized rms momentum spread and
Q0 is the bare betatron tune.
During the first half of the synchrotron period

Ns ¼ 1=Qs, the chromaticity tune spread leads to mixing
of particle betatron phases and we observe decoherence.
After the synchrotron period, the betatron phase spread is
compensated and the beam oscillation amplitude returns to
the initial value. This process is called recoherence.
The first and the second moments of the transverse

distribution as functions of time were calculated in
Refs. [3,17]. These can be used to calculate the time
evolution of the rms emittance ϵ. An approximate equation
for the emittance blowup is given by [3]

ΔϵðNÞ
ϵ0

¼ ϵðNÞ − ϵ0
ϵ0

≈
1

2

A2
0

σ20

�
1 −

A2ðNÞ
A2
0

�
; ð3Þ

which shows a simple dependence on the beam oscillation
amplitude. Here ϵ0 is the initial rms emittance of the beam,
σ0 is the initial rms beam size at the position of the kicker.
The maximum emittance growth is

Δϵmax ¼
ϵ0A2

0

2σ20
; ð4Þ

and it does not depend on the transverse distribution (see,
e.g., in Ref. [18]).
In a real situation the kicker applies a kick in time at the

fixed location. The initial betatron phase of the particle
oscillation depends on the particle’s longitudinal position.
After the kick we observe the signals in time using a beam
position monitor (BPM) at a fixed position in the ring. This
we call a fixed-position monitoring (fp) [16]. In this case,
the observed decoherence is different form the fixed-time
monitoring and Eq. (1) is not valid. Particles pass by the
BPM with different time delays ΔT=T0 ¼ ηΔp=p0 due to

different momenta. Additionally to the chromaticity tune
spread there is a contribution from the slip factor η,

δQeff ¼ jηþ ξjQ0

δp
p0

; ð5Þ

which we call the effective tune spread.
Both ways of monitoring the beam properties are

equivalent if we substitute δQξ in Eq. (1) by δQeff for
the fixed-position monitoring. We demonstrate this in
particle tracking simulations obtained by the PATRIC code
[14]. Without intensity effects, the code employs a simple
tracking in the constant-focusing lattice with the linear
synchrotron motion. A bunch with a round cross section
has Gaussian transverse and longitudinal profiles. The
transverse distribution is truncated at 3.5σ0, and the
momentum distribution is truncated at 3δp=p0. The oscil-
lation amplitude given by Eq. (1) where δQξ is substituted
by δQeff perfectly agrees with simulation results (Fig. 1).
In this paper we use a constant-focusing approximation

of betatron oscillations for analytic and simulation
studies. Below we present simulations with the fixed-
time monitoring while using the notation of the tune
spread given by Eq. (5) for direct comparisons with the
measurements.

III. DECOHERENCE WITH SPACE CHARGE

For the description of transverse space charge we use the
characteristic tune shift,

ΔQsc ¼
λ0rpC

8πγ3β2ϵ
: ð6Þ

FIG. 1. Time evolution of the beam offset after the transverse
kick from particle tracking simulations with the fixed-position
monitoring for Qs ¼ 0.01. Red lines are for δQξ ¼ 0.01 and
δQeff ¼ 0.015, blue lines are for δQξ ¼ 0.005 and δQeff ¼ 0.01
(ξ < 0 and η < 0). The solid lines are the bunch offsets and the
dashed lines are given by Eq. (1) with the effective tune spread
from Eq. (5).
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Here, λ0 is the peak line density, rp ¼ q2ion=ð4πε0mionc2Þ is
the classical particle radius, qion andmion are the charge and
the mass of the ions, and C is the machine circumference.
The parameter ΔQsc corresponds to the modulus of the
negative tune shift for the rms-equivalent beam with a
round cross section and a Kapchinskij-Vladimirskij (K-V)
transverse distribution. For nonuniform transverse and
longitudinal beam profiles, space charge also creates a
tune spread. For a Gaussian transverse distribution, ΔQsc
estimated by Eq. (6) is half of the maximum tune shift, and
it is close to the average tune shift of all particles [19]. The
additional tune shift and the tune spread change single
particle dynamics as well as coherent beam dynamics. Thus
decoherence with space charge is very different from the
low-intensity case [4–8,12,13].
The initial stage of decoherence—the first synchrotron

period—is decisive for the transverse emittance blowup. As
the first step, we consider the 2D case of a coasting beam.

A. 2D case “coasting beam”

Decoherence of a coasting beam can be described using
the pulse response function [19,20]. For the case of the
linear chromaticity and a Gaussian momentum spread, the
pulse response function is

g0ðNÞ ¼ hxi
A0

¼ exp f−2ðπδQeffNÞ2g cosð2πQ0NÞHðNÞ;

ð7Þ

where HðNÞ is the Heaviside step function. We define the
characteristic decoherence time

Ndec0 ¼ ð
ffiffiffi
2

p
πδQeffÞ−1; ð8Þ

which corresponds to the 1=e-decrease of the oscillation
amplitude. The Fourier transform of the pulse response
function Ffg0g is proportional to the beam transfer
function (BTF),

r0ðQÞ ¼
ffiffiffi
π

2

r
w

�
Q0 −Q

δQeff

ffiffiffi
2

p
�
; ð9Þ

where wðzÞ ¼ expð−z2Þ½1 − erfð−izÞ� is the complex error
function. The real and the imaginary part of BTF for the
considered case are related by the Hilbert transform [20].
The plot of the inverse BTF in the complex plane is
called stability diagram [21]. The modification of the BTF
due to space charge was discussed in Refs. [22–25] and for
a linear space-charge force it is defined using Eqs. (6) and
(9) as

1

rðQ;ΔQscÞ
¼ 1

r0ðQþ ΔQscÞ
− χ; ð10Þ

where χ is the ratio of the characteristic tune shift [Eq. (6)]
to the effective tune spread [Eq. (5)],

χ ¼ ΔQsc

δQeff
: ð11Þ

Using the BTF with space charge [Eq. (10)], we derive a
new expression for the pulse response function from the
inverse Fourier transform

gðN;ΔQscÞ ¼
HðNÞ
πδQeff

Z
∞

0

cosð2πQNÞRefrðQ;ΔQscÞgdQ:

ð12Þ

To verify this approach, we perform simulations using
the PATRIC code [14]. To produce the results for 2D beams
including space charge, the code employs a 2D self-
consistent space charge solver with open boundary con-
ditions and without longitudinal tracking. The number of
macroparticles is on the order 106 and the number of grid
points is 128 × 128 for the rectangular calculation domain
containing the particles.
A simulation example shows a slower decoherence for

stronger space charge (Fig. 2). From the beam offset we
extract the oscillation amplitude Abeam (dashed lines in
Fig. 2) which is used for further comparisons of the model
and simulations. Decoherence for different space charge is
presented in a parameter scan in Fig. 3, where the color and
the solid lines indicate the simulation results. The dashed
lines are given by Eq. (12).
First, we observe the loss of decoherence for χ > 3.

To explain this effect, we use the stability diagram
(1=r ¼ ΔQ=δQeff ) shown in Fig. 4. It is shifted by space
charge (the red line) along the real part of ΔQ [see
Eq. (10)]. When the stability diagram is moved away from
the coherent tune (in our case the coherent tune isΔQ ¼ 0),

FIG. 2. Transverse decoherence of the kicked beams with space
charge from the 2D simulations. The solid lines are the beam
offsets and the dashed lines are oscillation amplitudes.
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Landau damping is lost. In our simulations we see that it is
similar for the loss of decoherence.
Second, in the presented simulation scan the model and

simulations agree for χ < 2 or for N < Ndec0 (the vertical
line in Fig. 3). For stronger space charge decoherence is
faster than decoherence obtained from the model. We find
that this difference is related to the particle excitation by
coherent oscillations of the beam. In simulations we
observe that some particles gain large amplitudes. They
create a halo around the beam core and—depending on the
aperture size—can be lost. The number of lost particles
depends on the combination of space charge and the
kick strength (Fig. 5). There are no excited particles for
χ < 2 where decoherence is present. The number of lost
particles reaches maximum in the transition region before
decoherence is lost and then decreases for stronger space
charge. We also see that larger initial kicks lead to stronger

losses. All of these observations are in agreement with the
excitation in a resonance driven by the space-charge force.

B. Halo buildup due to space charge

We use a particle-core model to describe halo buildup,
similar to Wangler et al. [26]. The equation of motion of the
beam centroid x0 is

d2x0
dN2

þ ð2πQ0Þ2x0 ¼ 0: ð13Þ

We consider the case when decoherence is lost (χ > 3) and
the beam continuously oscillates after the initial offset A0.
The single-particle equation of motion can be modeled as

d2x
dN2

þ ð2πQ0Þ2ðx − Fsc − FξÞ ¼ 0; ð14Þ

where x is the transverse coordinate of a particle, Fsc is the
space-charge force given for a K-V transverse distribution
with a beam radius a,

Fsc ¼
8<
:

2ΔQsc
Q0

ðx − x0Þ; jx − x0j < a

2ΔQsc
Q0

a2
ðx−x0Þ ; jx − x0j ≥ a

ð15Þ

and the additional focusing force is due to chromaticity,

Fξ ¼
2ΔQξ

Q0

x: ð16Þ

The tune shift parameters ΔQsc and ΔQξ relate to the
single-particle tune Q ¼ Q0 − ΔQsc þ ΔQξ. The particle
can be excited if its tune is close to the coherent tune.

FIG. 3. Time evolution of the beam oscillation amplitude for
2D beams with different space charge, δQeff ¼ 0.01, and
A0 ¼ 0.1σ0. Colors and the solid lines (contour lines) are from
simulations. Dashed lines are given by Eq. (12). The vertical
white line represents Ndec0 ¼ 22.5 turns [Eq. (8)].

FIG. 4. Stability diagram with and without space charge from
Eq. (10).

FIG. 5. Beam losses in simulations for the transverse
decoherence in 2D beams with space charge. The particles with
the amplitude above 3.5σ0 þ A0 are counted as lost particles and
are removed from further calculations. The losses saturate after
250 turn. The simulation scan is performed for δQeff ¼ 0.01.

KARPOV, KORNILOV, and BOINE-FRANKENHEIM PHYS. REV. ACCEL. BEAMS 19, 124201 (2016)

124201-4



We solve numerically Eqs. (13) and (14) and present the
results using a stroboscopic phase space map of an array of
particle trajectories. The stroboscopic method accumulates
many snapshots of a phase space taken once per oscillation
period. In our case it is taken when the beam offset reaches
the maximum value.
The chromaticity alone, and space charge alone, cannot

lead to a particle excitation (Fig. 6). All particles with
different ΔQξ and ΔQsc ¼ 0 the amplitude of oscillations
does not increase, they just redistribute in phase space.
When only space charge is present, all particles remain in
the beam core.
The combination of both effects is shown in Fig. 7.

We see that some of the particles (4 out of 21) gain
amplitude and leave the core. This demonstrates the

resonant excitation by the space-charge force which we
observe in the simulations for coasting beams (Sec. III A).

C. Bunched beams

In this section we present an extension of the analytical
model [Eq. (12)] to bunched ion beams. We focus on the
initial stage of decoherence when the synchrotron motion
can be neglected. We consider a bunch as a superposition
of independent transverse 2D slices. To calculate the total
bunch offset, we sum the offsets of individual slices. Using
Eq. (12), we define the pulse response function for a bunch
with space charge taking into account the local density λðzÞ,

gscðN;ΔQscÞ ¼
R
zmax
zmin

g½N;ΔQscλðzÞ=λ0�λðzÞdzR
zmax
zmin

λðzÞdz ; ð17Þ

where z is the longitudinal coordinate. For the systematic
study of decoherence in bunches we introduce the space-
charge parameter and the effective parameter using Eqs. (5)
and (6)

qsc ¼
ΔQsc

Qs
and qeff ¼

δQeff

Qs
: ð18Þ

To obtain the applicability region of the extended model
[Eq. (17)], we perform simulations with the PATRIC code.
For space charge calculations in bunches, the “2.5D space
charge” approach is employed [14]. Every time step the
bunch is divided longitudinally into 2D slices, for each
slice, a 2D self-consistent space charge solver is used to
obtain the distribution of electric fields.
In the simulation example without space charge, the

beam oscillation amplitude corresponds to alternating
decoherence and recoherence processes (Fig. 8). With
space charge, decoherence is slower, recoherence is not
related to Qs, and after the transition time we have the

FIG. 6. Stroboscopic plot for 11 particles for two cases: the red
points are for zero space charge, and the black points are for zero
chromaticity. In the former case, the chromaticity tune shift ΔQξ

is in the range of ½−0.03; 0.03� and all particles have zero initial
amplitude with respect to the beam center, A0 ¼ a. The latter case
is for ΔQsc ¼ 0.05 and different initial offsets in the range ½0; a�.
The plot contains 100 betatron periods.

FIG. 7. Stroboscopic plot for 21 particles for the combination of
space charge and chromaticity: ΔQξ ∈ ½−0.03; 0.03�, ΔQsc ¼
0.05, Q0 ¼ 4.29, and A0 ¼ a. All particles have zero initial
amplitude with respect to the beam center. The plot contains 500
betatron periods.

FIG. 8. Time evolution of the oscillation amplitude from
simulations for bunches with Gaussian transverse and longi-
tudinal distributions. Simulation parameters: qeff ¼ 1, A0 ¼ σ0,
Qs ¼ 0.01.
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beating of the remaining head-tail modes [13].
Decoherence of bunches for different space charge is
presented in a parameter scan in Fig. 9, where the color
and the solid lines indicate the simulation results, and the
dashed lines are given by Eq. (17). The model agrees with
simulations for N < Ndec0 (the white vertical line) as it is
for coasting beams (Fig. 3). For N > Ndec0, decoherence in
simulations is faster than decoherence from the model. The
first reason is that the resonant excitation of the particles
leads to fast losses (Fig. 10). The number of lost particles
depends on the combination of different parameters (qsc,
qeff , A0, and the aperture radius) which is not studied here
in detail. The second reason for the faster decoherence in

simulations is the synchrotron motion. The synchrotron
motion produces an additional mixing of particles which is
not included in the model.
Without space charge, the emittance growth can be

predicted from the beam oscillation amplitude using
Eq. (3). To obtain evolution of emittance with space charge,
we use Eq. (3) in combination with Eq. (17). For the
simulation scan shown in Fig. 9, we plot the rms emittance
in Fig. 11. Without space charge, we observe emittance
growth for N < Ns=2 and then the emittance returns to the
initial value after the synchrotron period because of
compensation of the betatron phase spread. With space
charge, the emittance calculated from Eq. (3) and Eq. (17)
sufficiently reproduces the simulation results. The emit-
tance blowup is smaller for stronger space charge during
the first synchrotron period.
The pulse response function, by definition, does not

depend on the initial oscillation amplitude, but the maxi-
mum emittance blowup is directly defined by A0 [see
Eq. (4)]. We compare decoherence for different A0 in
Fig. 12. Simulations with qsc ¼ 4 for A0 ¼ 0.5σ0 and
A0 ¼ 1.0σ0 are almost identical and agree with the model
(the dashed line) for N < Ndec0 (the left-hand side plot in
Fig. 12). Decoherence is a bit faster due to stronger losses
for A0 ¼ 2σ0. The situation for the emittance is similar. The
analytical approach [Eq. (3) in combination with Eq. (17)]
reproduces the simulations for N < Ndec0 (the right-hand
side plot in Fig. 12).
We find in simulations that the characteristic

decoherence time Ndec in bunches depends on qsc and
qeff . A simulation scan for different combinations of these
parameters for A0 ¼ σ0 is shown in Fig. 13. Decoherence is
slower for stronger space charge and the decoherence time

FIG. 10. Loss rate for different space charge from the simu-
lation scan shown in Fig. 9. The aperture radius is 3.5σ0 þ A0.

FIG. 11. Time evolution of the emittance growth for
decoherence with space charge shown in Fig. 9. Colors and
solid lines are from simulations of bunches. Dashed lines are
calculated using Eq. (3) from the oscillation amplitude given by
Eq. (17). The vertical white line is Ndec0 ¼ 22.5 turns [Eq. (8)].

FIG. 9. Decoherence in bunches with space charge. Colors
and solid lines are from simulations for bunches. Dashed
contour lines are given by Eq. (17). The vertical white line
is Ndec0 ¼ 22.5 turns [Eq. (8)]. Simulation parameters: qeff ¼ 1,
A0 ¼ σ0, Qs ¼ 0.01.
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can exceed the synchrotron period (the dark-red region).
For larger effective spread we have a faster decoherence.
In this discussion the decoherence and the emittance

growth are governed by the interplay of chromaticity and
space charge which slows down these processes. However,
the initial stage of decoherence in bunched beams can be
also modified by impedances.

IV. INFLUENCE OF IMAGE CHARGES

We consider the effect of imaginary impedances which
produce coherent tune shifts. For the case of a circular pipe
with radius b and a round beam with radius a ¼ 2σ0, the
coherent tune shift due to image charges is

ΔQcoh ¼ ΔQsc
a2

b2
: ð19Þ

The role of image charges in the decoherence process of
coasting beams can be understood using the stability
diagram. The coherent tune shift moves the origin in
Fig. 4 towards the stability diagram shifted by space
charge. Hence, image charges partly compensate the effect
of space charge and can restore Landau damping.
To illustrate the role of image charges in ion bunches,

we consider the situation with qsc ≫ qeff and qsc ≫ qcoh,
where the image-charge parameter is

qcoh ¼
ΔQcoh

Qs
: ð20Þ

In this case decoherence is lost for the majority of
longitudinal slices in the bunch. Image charges produce
a local coherent tune shift which is different for each slice.
Thus decoherence is present because of the coherent tune
spread which mixes betatron phases of different slices. To
describe the initial stage of decoherence in the presence of
image charges, we neglect the synchrotron motion and
consider a bunch as a superposition of longitudinal slices
with different coherent tune shifts. We obtain the pulse
response function as

gicðN;ΔQcohÞ ¼
R
zmax
zmin

cos ½2πNQðzÞ�λðzÞdzR
zmax
zmin

λðzÞdz ; ð21Þ

where QðzÞ ¼ Q0 − ΔQcohλðzÞ=λ0 is the local coher-
ent tune.
To verify this approach, we perform simulations using

the PATRIC code. Additionally to the simulation model
discussed in Sec. III C, we include the coherent tune shift
caused by image charges in the round pipe via impedance
kicks [14]. Decoherence for different space charge and
image charges is presented in a parameter scan in Fig. 14,

FIG. 12. Decoherence for different initial kick strength. The left-hand side plot is the time evolution of the beam oscillation amplitude.
The dashed line is given by Eq. (17). The right-hand side plot is the time evolution of the emittance growth. The dashed line is calculated
using Eq. (3) from the oscillation amplitude given by Eq. (17). The vertical black line is Ndec0 ¼ 22.5 turns [Eq. (8)]. Simulation
parameters: qeff ¼ 1, Qs ¼ 0.01.

FIG. 13. The decoherence time Ndec for difference space
charge and the effective tune spread. Simulation parameters:
A0 ¼ σ0, Qs ¼ 0.01.
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where colors and the solid lines indicate the simulation
results, and the dashed lines are given by Eq. (21). For
qcoh < 0.5, the coherent tune spread is small and
decoherence is dominated by interplay of chromaticity
and space charge. For qcoh > 1, the process is governed by
image charges and can be sufficiently reproduced by the
model [Eq. (21)].
In general, it is necessary to compare the space charge

tune shift, the coherent tune shift, and the effective tune
spread, in order to understand which effect dominates the
initial stage of the decoherence process. For qcoh < 0.5,
image charges play no role. For the case where qcoh ≈ 1,
decoherence is governed by interplay of chromaticity,
space charge and image charges. When the conditions
qsc ≫ qeff and qcoh > 1 are fulfilled, decoherence is domi-
nated by image charges.

V. MEASUREMENTS AND COMPARISONS

We performed the decoherence measurements for intense
ion beams in the SIS18 synchrotron [15] at GSI Darmstadt.
Bunches of Ni26þ58 ions were stored at the kinetic energy
of 100 MeV=u and kicked transversally with the kick
duration of one turn. The bunch offset signals were
recorded using BPMs. SIS18 general parameters and
settings in our experiments were C ¼ 216.72 m,
η ¼ −0.79, Q0;x ¼ 4.29, Q0;y ¼ 3.27, ξx ¼ −1.3,
ξy ¼ −2.1, Qs ¼ 4.1 × 10−3, and the harmonic h ¼ 4.
The number of particles per beam was between Np ¼
1.6 × 109 and Np ¼ 4 × 109. An example of the bunched
beam decoherence in the horizontal plane is shown in
Fig. 15. We see that decoherence with space charge is
slower than the synchrotron period and the later stage is the
beating of the residual head-tail modes.

The possible contribution of the transverse nonlinearities
was checked by the comparisons of decoherence for
the optimized and for the distorted closed orbit. In our
measurements in the SIS18 synchrotron, the initial stage
does not differ and the residual oscillations have similar
amplitudes.
As we discussed in the previous section, image charges

can change the initial stage of the decoherence process. We
estimate the maximum value of the parameter qcoh taking
average radii of the SIS18 beam pipe for the horizontal
and the vertical planes: bx ¼ 100 mm gives qcoh;x ¼ 0.05,
and by ¼ 70 mm gives qcoh;y ¼ 0.15. Image charges can be
neglected for our measurements according to the simulation
study in Sec. IV.
Decoherence can also be modified by rf nonlinearities,

which are especially important for the later stage of
decoherence and recoherence processes [13]. Simulations
with realistic rf voltage showed that rf nonlinearities can be
neglected for the initial stage of decoherence.
We show that in our measurements the decoherence

was governed by chromaticity and space charge. We see a
slower decoherence for stronger space charge from the
measured signals for the same machine settings and differ-
ent intensities (Fig. 16). To estimate the space-charge
parameter, we fit the decoherence signals from the simu-
lations with the input parameters qeff , and Qs taken from
the measurements. For the fitting process, we use the
signals during the first synchrotron period. The space-
charge parameter can be also estimated from the measured
emittance. We take into account the elliptical cross section
by substituting ϵ in Eq. (6) by ðϵx þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵxϵyQ0;x=Q0;y

p Þ=2.
For the case of higher intensity (the red line) the emittances
are ϵx ¼ 10 mmmrad and ϵy ¼ 2.5 mmmrad. The esti-
mated parameter qsc ≈ 5 is almost 2 times smaller than the
fitted value from the simulation. The difference is due to the
uncertainty in the transverse beam size measurements at
SIS18 which was also the case in previous works [13,25].

FIG. 14. Decoherence in bunches with space charge and image
charges. Colors and solid lines are from simulations. Dashed lines
are given by Eq. (21). Simulation parameters: a=b ¼ 1=5,
qeff ¼ 1, A0 ¼ σ0, Qs ¼ 0.01.

FIG. 15. Time evolution of the bunch offset in the horizontal
plane from BPM measurements in SIS18 after a transverse kick.
One turn corresponds to 1.682 μs, A0 ≈ 4 mm.
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In simulations we set A0 ¼ σ0 which corresponds to the
case when the decoherence does not depend on the initial
kick (see Fig. 12). This agrees with measurements where
we also observe a weak dependence of decoherence on the
kick strength (Fig. 17). Only for the strongest kick (the
black line) decoherence is a bit faster.
The role of chromaticity is shown in Fig. 18 where for

the same beam settings we compare the signals for the
natural (ξx ¼ −1.3, qeff ¼ 1.3) and the compensated chro-
maticity (ξx ≈ 0, qeff ¼ 0.5). As for the case without space
charge, decoherence is slower for a smaller effective
parameter qeff. For qsc ≫ qeff, the oscillation amplitude
practically does not decrease during the first synchrotron
period due to the loss of decoherence.
Finally, the summary of the measurements is shown in

Fig. 19. The points are the characteristic decoherence time
Ndec from the measured signals. Solid lines are from the
simulation scan for A0 ¼ σ0 which was similar with the
estimated kick strength in measurements. Decoherence for

larger space-change parameter is slower. For higher effec-
tive parameter qeff we observe a faster decoherence.

VI. CONCLUSIONS

The initial stage of decoherence determines the trans-
verse emittance blowup of injected (or kicked) bunches in
synchrotrons. A detailed understanding of the transverse
decoherence for intense beams is necessary to determine
the feedback system requirements in synchrotrons with the
goal to preserve the beam quality.
In the present work decoherence is studied with a focus

on interplay of chromaticity, space charge, and image
charges for bunched beams. Without intensity effects the
relation of the transverse emittance and the oscillation
amplitude following an arbitrary initial offset is given by
Eq. (3). We find that the same expression can be used for

FIG. 18. Decoherence with space charge from measurements in
SIS18: the solid blue line for the natural chromaticity (ξx ¼ −1.3,
qeff ¼ 1.3), the solid red line for the compensated chromaticity
(ξx ≈ 0, qeff ¼ 0.5). The dashed lines are from simulations with
the fitted qsc.

FIG. 19. Summary of the decoherence measurements in SIS18.
The points correspond to the decoherence time obtained from the
measured signals for different machine and beam parameters.
Lines are the characteristic decoherence time from simulations.

FIG. 16. Decoherence with space charge from the measure-
ments: the solid red line is for Np ¼ 4 × 109, the blue solid line is
for Np ¼ 1.6 × 109. The dashed lines are from simulations with
the fitted qsc.

FIG. 17. Decoherence with space charge from measurements in
SIS18 for different kick strength.
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intense ion bunches with a modified beam oscillation
amplitude [Eqs. (17) and (21)] during the initial stage of
the decoherence process.
For a coasting beam we showed in particle tracking

simulations (Fig. 3) and in our analytical model [Eq. (12)]
that the addition of space charge in the pulse response
function leads to the loss of decoherence in cases of strong
space charge (ΔQsc > 3δQeff ). Especially in the initial
stage of decoherence the analytical model agrees very well
with the particle tracking simulations and later deviations
can be explained by beam losses and beam halo buildup
due to resonant excitation of particles. The latter was
illustrated in particle tracking simulations (Fig. 5) and in
a particle-core approach (Sec. III B), where we observed
the excitation driven by the coherent oscillations of the
beam. The particles are in resonance when the incoherent
tune is close to the coherent tune (Q ≈Q0 − ΔQcoh).
We extended our 2D approach to bunched ion beams as

a longitudinally sliced model, with different analytical
expressions [Eqs. (17) and (21)] depending on the chro-
maticity tune spread, space charge, and image charges.
These descriptions agree well in all regimes in the initial
stage of decoherence with self-consistent particle tracking
simulations (Figs. 9 and 14). In general, there is a slower
decoherence for stronger space charge. Similar to the 2D
beam decoherence can be lost in longitudinal slices of the
bunched beam for large space-charge parameters
qsc ≫ qeff . However, decoherence can still be restored
by image charges in the beam pipe due to the coherent
tune spread.
Finally, we showed results of the measurements in the

SIS18 synchrotron at GSI Darmstadt in comparison with
our particle tracking simulations. The systematic behavior
of the decoherence process shows that the agreement
between the measurements and the particle tracking sim-
ulations is good with the space charge parameter as a free
fitting parameter. The observed difference is due to
uncertainty in the transverse beam size measurements
which was also the case in previous works. The main
contributors to the initial stage of decoherence process can
be identified as chromaticity and space charge in the case of
our measurements in SIS18; nonlinearities and image
charges play a minor role.
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