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This paper presents an innovative compact permanent magnet quadrupole with a strong gradient for
potential use in future light source lattices. Its magnetic structure includes simple mechanical parts,
rectangular permanent magnet blocks and soft iron poles. It has a wide aperture in the horizontal plane to
accommodate an x-ray beam port, a common constraint in storage ring-based light sources. This specificity
introduces field quality deterioration because of the resulting truncation of the poles; a suitable field quality
can be restored with an optimized pole shape. A 82 T=mprototypewith a bore radius of 12mm and a 10mm
vertical gap between poles has been constructed and magnetically characterized. Gradient inhomogeneities
better than 10−3 in the good field region were obtained after the installation of special shims.
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I. INTRODUCTION

Storage ring-based light sources undergo constant
improvements in order to increase the brilliance and the
coherence of the x-ray beams. Recently several facilities
have launched upgrade projects based on multibend ach-
romat lattices [1]. The European Synchrotron Radiation
Facility–Extremely Brilliant Source (ESRF-EBS) upgrade
is based on a 7-bend achromat lattice that contributes to a
dramatic reduction of the horizontal emittance by a factor
of 30 [2]. This lattice design requires strong quadrupoles
with gradients ranging from 50 to 100 T=m. To reach such
strengths, the magnet apertures are significantly reduced:
from typically 70 mm down to 25 mm in the ESRF-EBS
case. The reduction of magnet apertures makes the perma-
nent magnet (PM) technology very attractive for some
magnets provided that they are fixed field or with limited
field tuning (�5). Indeed, introduction of PM structures
may lead to better performances for a more compact design.
Furthermore, with this technology running costs can be
very low.
PM multipoles were introduced by Halbach [3]. This

technology is extensively used for the construction of
insertion devices. However, introduction of PM multipole
devices in accelerator lattices has been very limited up to
now. Some exceptions can be mentioned such as the use of
low field PM magnets for the Fermilab recycler [4], and the
development of PM multipoles and hybrid magnets for the
final focusing of colliders [5–8]. It should be noted that a
significant number of dipoles will be PM based in the new
ESRF lattice [9–11]. In the case of quadrupoles, the PM
technology needs further development (field tuning, field

stability with temperature variation, manufacturing proc-
ess) before being installed in large scale facilities: this is the
subject of the present paper. Compared to previous PM
quadrupoles, this design combines high gradient and
especially an improved field quality.
After a brief introduction on multipolar analysis, the

design parameters for the magnets are presented and the
performance criteria for magnet designs are defined
(Secs. I and II).
The design and technological choices for a hybrid PM

quadrupole, including iron poles, are presented in detail.
A 3D fully parametrized model was built with RADIA, a
magnetostatic computer code developed at the ESRF [12].
This model has been used for optimizing the magnet
(Sec. III) and for analyzing its sensitivity to various errors
(Sec. IV).
A PM quadrupole prototype was built and characterized.

Section V presents the mechanical design of the magnet, its
construction, the magnetic measurements, and finally the
shimming method used for improving the field quality.

II. MAGNET DESIGN CONSIDERATIONS

A. Strength and homogeneity

The main magnetic specifications of a multipole magnet
are the strength of its multipole components, denoted Q
in the following, and the spatial homogeneity of this
component. In order to define these statements, let us
introduce the complex magnetic field generated in the
aperture of a multipolar structure:

BðzÞ ¼ BY þ iBX ¼
X∞
n¼1

Cn

�
z
R0

�n−1
; ð1Þ

where z ¼ xþ iy is the complex representation of any
point in the aperture. Cn ¼ bn þ ian are the complex
multipolar coefficients composed of normal coefficients
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bn and skew coefficients an. The unit of Cn is Tesla. R0 is
the reference radius. The strength of an ideal multipolar
structure of order N is defined as

QN ½T=mN−1� ¼ bN
R0

N−1 : ð2Þ

For a dipole (N ¼ 1), Q1 corresponds to the magnetic
induction B in the gap. For a quadrupole (N ≠ 2), Q2 is the
gradient G.
The field homogeneity is the field deviation from an

ideal multipolar field. The complex magnetic field, Eq. (1),
produced in a real multipolar structure can be rewritten as

BðzÞ ¼ CN

�
z
R0

�
N−1

þ
X∞
n¼N

Cn

�
z
R0

�
n−1

; ð3Þ

where CNð z
R0
ÞN−1 is the main multipole andP∞

n≠N Cnð z
R0
Þn−1 contains the multipole errors. The multi-

pole errors should be reduced to come closer to an ideal
structure. For a dipole, the relative field error is defined by
the following expression:

ΔB
B0

¼ BðzÞ − B0

B0

¼ 1

C1

X∞
n¼2

Cn

�
z
R0

�
n−1

; ð4Þ

where B0 is the on-axis magnetic induction. For a quadru-
pole, the relative gradient error is defined as

ΔG
G0

¼ 1

C2

X∞
n>2

ðn − 1ÞCn

�
z
R0

�
n−1

; ð5Þ

where G0 is the on-axis gradient. The homogeneity is
defined as the maximum relative error in the so-called good
field region (GFR).

B. Other design criteria

In many cases, additional criteria are added on top of
the above magnetic requirements. They can be dedicated
constraints put on the compactness or the cost, including
running cost. The compactness and the magnet mass have
direct consequences on the dimensioning of the magnet
support system. In some applications, this can be very
demanding when the available space is limited. The
manufacturing cost is linked to requirements of mechanical
tolerances and the complexity of the assembly. The
operation cost or running cost is presently a non-negligible
parameter including the electrical power consumption and
the cooling power as well.

III. HIGH GRADIENT PM QUADRUPOLE DESIGN

The ESRF-EBS high gradient quadrupole design is
based on conventional resistive technology [13,14,16,17].

However, this design leads to a less compact structure
compared to the PM technology. Table I gives the specifi-
cations of thePMquadrupole prototype. These specifications
are close to these of the high gradient quadrupoles of the
ESRF-EBS. An important aspect of these specifications is
thevertical gapused for the x-raybeamports. This constraint,
specific to accelerators wherever synchrotron radiation is
powerful, involves a severe truncation of the hyperbolic pole
shape. The resulting gradient inhomogeneities can reach 1%
ormore. The specified nonsquareGFR (elliptical) is linked to
requirements set by the beam dynamics: the electron beam
size is not the same in the horizontal and the vertical planes.

A. Magnet layout

Iron dominated, hybrid PM technology is suitable for
reaching the specifications given in Table I. The use of iron
poles reduces the sensitivity of the gradient homogeneity to
magnetic errors in the magnet blocks. Moreover, vertical
gaps for x-ray beam ports are easy to implement on hybrid
PM structures but not convenient for Halbach magnets. The
PM quadrupole design studied in this paper is shown in
Fig. 1. One can notice that this structure has similarities
with a wiggler configuration oriented perpendicularly to the
electron beam path. Simple cuboidal magnet blocks are
used. The iron circuit includes four poles with an optimized
shape and a return yoke. This structure is not four-way
symmetric due to the arrangement of the PM blocks: it
introduces octupolar terms in the multipole expansion. The
reduction of these harmonics is done through an optimi-
zation of the pole shape.

B. Analytical model

The dimensions of the PM blocks and iron parts should
be determined in order to reach the specified gradient.
Numerical simulations using a 3D magnet model are
necessary to accurately define these parameters.
However an analytic study based on a 2D model is found
to give initial values for these parameters. Generally
speaking, 2D analytical models based on the Ampere
law and flux conservation give low accuracy results due
to the iron saturation and the approximations made on the

TABLE I. High gradient quadrupole specifications for the PM
prototype described here and the EBS quadrupoles. The GFR is
elliptical.

PM prototype EBS quads

Gradient 85 90 T=m
Iron length 226 484 mm
Bore radius 12 12.5 mm
Horizontal GFR �7 �7 mm
Vertical GFR �5 �5 mm
Vertical gap 10 11 mm
ΔG=G0 ≤10−3 ≤10−3
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flux distribution and the fringe field. A non-negligible part
of the magnetic flux may not reach the inner aperture when
ferromagnetic material is close to saturation. In Ref. [15],
Tosin proposed a 2D model of a hybrid PM quadrupole
including the flux leakage in a bounded area. Our analytic
study is based on this model. Figure 2 presents a quarter of
the quadrupole. The different parameters used in the model
are shown.
According to [15], the gradient is

G ¼ BRha
R1

2

2
− x12ha

wa

h
1
2
þ x3

x1−x3 lnð
x3
x1
Þ
i ; ð6Þ

where BR is the remanent field of the magnet blocks. From
Eq. (6), one can derive the expression of the thickness ha
and the height wa of the PM blocks corresponding to the
minimum PM volume per unit length [16,17]:

ha ¼
GR1

2

BR
ð7Þ

wa ¼
Gx12

BR

�
2x3

x3 − x1
ln

�
x3
x1

�
− 1

�
: ð8Þ

From Eqs. (7) and (8), ha depends only on the radius R1

and wa is determined by x1 and x3. In our application, the
gradient G and the inner radius R1 are given (Table I). The
vertical gap between the iron poles and the radius R1

defines the length x1. The length x3 ¼ x2 þ ha is chosen in
order to avoid the saturation of the poles and to limit the
flux leakage. The optimal dimensions of the PM blocks are
given in Table II, assuming a 1.1 T remanent field in the
PM blocks. This value is relatively low compared to the
remanence of NdFeB materials, which can reach 1.42 T at
room temperature [18]. However, high remanence grades of
NdFeB materials are more sensitive to radiation damage
than low remanence grades. (The Sm2Co17 material has a
strong resistance to radiation damage and is particularly
suitable for PM accelerator magnets. The prototype was
built with NdFeB magnets recycled from an old undulator,
due to their availability in the lab.)
The 3D simulation of the quadrupole was performed

with RADIA (Fig. 3), a magnetostatic computer code
developed by the ESRF ID lab and based on a volume
integral method [19,20]. The quadrupole model is fully
parametrized and includes an accurate description of the
magnetic materials. The iron material is a low carbon steel
AISI 1006 with C < 0.06% and a high saturation mag-
netization. The on-axis gradient obtained with this model is

FIG. 1. H-type hybrid PM quadrupole design.

FIG. 2. Hybrid quadrupole geometrical dimensions. The con-
tour integral for Ampere’s theorem computation is shown. All
PM have the same dimension for simplicity. PM can be placed on
poles top to increase the gradient.

TABLE II. Optimal dimensions of the PM blocks, assuming
Table I specifications, BR ¼ 1.1 T, x1 ¼ 18 mm and
x3 ¼ 50 mm.

ha 11.1 mm
wa 54.9 mm
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Gsim ¼ 71.2 T=m;

which is 16% below the gradient computed analytically.
This discrepancy comes from the approximations of the 2D
model: simplified flux leakage model, iron in its linear
range, eightfold magnet symmetry, and perfectly rigid PM
material (i.e. the magnetic susceptibility is neglected).
From the initial geometry, the sizes of the PM blocks

have to be increased in order to reach the required gradient.
As shown in Fig. 3, the magnet blocks are moved vertically
away from the beam axis in view of reducing radiation-
induced demagnetization in the PM material [21]; it also
has a positive impact on the sensitivity to magnet block
errors (see Sec. IV). This modification introduces a gradient
reduction, which is found to decrease linearly with PM
displacement (Fig. 4) in spite of pole vertical length
optimization. The sensitivity of the gradient to the PM
vertical displacement is approximately 1 T=m per milli-
meter displacement, which leads to a 5 T=m decrease of the
gradient in the present design.
According to the above considerations, the size of the

PM blocks needs to be increased to reach the specified
gradient. The resulting values are

ha ¼ 18 mm

la ¼ 63 mm:

The integrated gradients in the horizontal and vertical
planes are plotted in Fig. 5. The on-axis integrated gradient
of the quadrupole reaches 18.6 T. Considering a magnetic
length Lm ≈ LIron þ 2=3R1 ≈ 234 mm, one obtains a nor-
malized integrated gradient

R
Gdl=Lm ≈ 79.5 T=m close to

the 85 T=m gradient specification.

C. Pole shape optimization

The truncation of the pole shape introduces a significant
contribution from systematic harmonics of odd order
(n ¼ 6; 10; 14;…) and the asymmetry of the structure also

FIG. 3. 3D view of the RADIA quadrupole model including the
mesh. The mesh is based on multiple polyhedrons. The model is
divided into ten longitudinal slices concentrated on the edge. The
pole tip has a higher mesh density because the field computation
accuracy mainly depends on this area. Several simulations with
different mesh refinements on the pole shape are done to check
the stability of the results.

FIG. 4. Gradient reduction with PM vertical displacement.

FIG. 5. Integrated gradient simulation, computed with RADIA.
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introduces systematic harmonics (n ¼ 4; 8; 12;…). The
first harmonics and the gradient inhomogeneities are given
in Tables III and IV.
The hyperbolic profile leads to inhomogeneities 10 times

higher than the ΔG=G0 ≤ 10−3 specification. A modifica-
tion of the pole shape is mandatory to reduce the higher
harmonics and to improve the homogeneity of the gradient.
We define an objective function for a minimization
algorithm:

ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX∞
n>2

bn2
s

: ð9Þ

The coordinates of the pole shape points are parame-
trized. An optimization algorithm is used to find
the optimal position of these points, which minimize the
objective function and satisfy the constraint of the mini-
mum vertical gap between poles. This problem is complex
because each point has an impact on the objective function
and this impact is nonlinear with the displacement of the
points. Many optimization methods can be used to solve
this problem, such as determinist methods (Gauss-Newton)
or random methods (Nelder-Mead simplex, genetic algo-
rithm) presented in [22]. In order to obtain a solution in a
limited number of iterations, a regularized Gauss-Newton
method is chosen. This method is fully described in [23].
However a brief description is presented in the following
paragraph. This minimization problem can be linearized
and expressed as a least squares problem:

min
X∈°n

‖AkXk − bk‖2; ð10Þ

where k is the iteration number, Ak ∈ °m×n is the Jacobi
matrix containing variations of the objective function

relative to the control vector Xk ∈ °n which contains pole
shape points coordinates and bk ∈ °m is the objective
function vector containing harmonics errors and a penalty
driven by the vertical gap between poles. The least square
solution to Eq. (10) is

Xkþ1 ¼ Xk − ðAk
TAkÞ−1Ak

Tbk: ð11Þ

Then, a new control vector Xkþ1 is computed at the next
iteration. The term ðAk

TAkÞ−1Ak
T is the pseudoinverse of

the Jacobi matrix, which is generally ill-conditioned lead-
ing to possible divergence. Improvement of this matrix
conditioning is achieved using singular value decomposi-
tion (SVD) tools. In order to reduce computation time of
the Jacobi matrix Ak, the control vector Xk is generated
by an orthogonal polynomial, the coefficients of which are
the new control variables of the pole shape. This algorithm
gives a solution in less than 5 iterations.
The initial and the optimized pole are presented Fig. 6.

The optimized pole shape is close to the initial hyperbola
shape, partly due to the SVD of the Jacobi matrix, which
limits the solution norm. The effect of this optimization
on the field quality is given in Tables III and IV. The
homogeneity specifications are satisfied in both planes. The
amplitudes of all harmonics are reduced.

IV. IMPACT OF MAGNETIC AND
MECHANICAL ERRORS

The dependence of the field quality on different types of
errors is an essential subject requiring a dedicated study.
Magnetic errors are imperfections of PM characteristics

TABLE III. First normalized systematic integrated harmonics
bN=b2, expressed at 7 mm, for hyperbolic and optimized pole
shapes (RADIA simulations).

N Hyperbolic Optimized

4 2 × 10−3 −5 × 10−5
6 −3 × 10−3 −9 × 10−5
8 3 × 10−4 −3 × 10−6
10 −2 × 10−4 8 × 10−7

TABLE IV. Gradient inhomogeneities for hyperbolic and opti-
mized pole shapes. The inhomogeneities are expressed at 7 mm in
the horizontal plane and 5 mm in the vertical plane (RADIA
simulations).

Hyperbolic Optimized

Horizontal 10−2 7 × 10−4
Vertical 7 × 10−3 5 × 10−5

FIG. 6. Hybrid quadrupole pole shape before and after
optimization.
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such as the fluctuations of remanent induction and mag-
netization direction from the ideal characteristics.
Mechanicals errors are linked to assembly imperfections
and also pole shape machining errors. It is assumed that
these errors are random, therefore favoring a statistical
study approach.
Errors with Gaussian distribution were introduced in the

3D model. The field errors have been estimated by
setting nonzero standard deviation for each type
of error, then computing the field harmonic distortion
σHarmonic

2 ¼ ðσa3 2 þ � � � þ σaN
2 þ σb3

2 þ � � � þ σbN
2Þ=b22 ≈

2ðσb3 2 þ � � � þ σbN
2Þ=b22 from 40 samples. This procedure

was iterated with different standard deviations and for all of
the errors considered. The results of these simulations are
shown in Figs. 7 and 8. The simulations of angular errors
in PM blocks are done without vertical translation of the
PMs and with 5 mm vertical translation (angular errors are
deviations from the specified direction of magnetization).
The assembly errors are assumed to be positioning errors of
the poles in the horizontal and vertical planes.
The simulations show that the mechanical errors have

a higher impact on the field quality than the magnetic
errors of the PM blocks. Assembly and pole shape errors
(deviation from the optimized shape, modeled by random
displacement of the profile points) have roughly the same
impact on field quality. Vertical translations of PMs away
from the midplane have the beneficial effect of reducing
sensitivity to PM magnetization direction error.
The magnet sensitivity to the different classes of error

can be expressed as

σharmonics

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkBR

σBR
Þ2þðkθσθÞ2þðkAssyσAssyÞ2þðkshapeσshapeÞ2

q
;

ð12Þ

where kBR
, kθ, kAssy, kshape are the sensitivity of the

harmonics to the corresponding errors and σBR
, σθ,

σAssy, σshape are associated standard deviations. The sensi-
tivities of the harmonics for each type of error are given in
Table V.
As shown in Table V, the field quality of the PM

quadrupole mainly depends on the mechanical errors.
The contribution of the magnetic errors is about 2 orders
of magnitude smaller than that of the mechanical errors if
one considers mechanical errors in the 10 μm range,
angular errors around 1° and magnetization errors around
1%. This result is interesting because one can relax the
magnetic tolerances on the PM blocks and reduce the
resulting procurement cost.
Assuming a Gaussian distribution for the harmonic

errors, 3σharmonics ≤ 10−3 (i.e. 0.1% of the magnets are
expected to be out of the tolerances) and identical con-
tributions from the assembly and shape errors, the standard
deviations for the mechanical errors should comply with

FIG. 7. PM sensitivity to magnetic errors. Errors are in percent
and angle errors are in degrees. Initial position: PM blocks
without vertical translation; translated: PM blocks with 5 mm
translation. Six blocks with independent magnetic errors are
installed in each slot.

FIG. 8. Simulations of magnet sensitivity to mechanical errors.

TABLE V. Harmonic sensitivity coefficients (PM blocks trans-
lated vertically), assuming 6 PM blocks in each slot.

Errors Coefficient Value Unit

BR kBR 2.7 × 10−6 1=%
Angle kθ 1 × 10−6 1=°
Assembly kAssy 3.1 × 10−5 1=μm
Poles shape kshape 2 × 10−5 1=μm
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σAssy ¼ σharmonics=kAssy ≤ 8 μm

σshape ¼ σharmonics=kShape ≤ 12 μm:

This gives the global tolerance for the pole shape:

tol ¼ �
ffiffiffi
3

p
σShape

≈�21 μm;

and for the assembly tolerance,

tol ¼ �
ffiffiffi
3

p
σAssy

≈�14 μm;

assuming a uniform distribution of the mechanical errors.
These tolerances are tight and are not trivial to obtain. In
particular, one can expect positioning errors larger than
indicated above. Loosening the magnetic tolerances to
2σharmonics ≤ 10−3 (5% of the magnets out of the tolerances)
would lead to a �35 μm global tolerance.

V. PROTOTYPE AND MEASUREMENT

A. Fabrication of the prototype

Compared to a conventional resistive structure realized
with fewer parts and limited degrees of freedom, this design
involves several parts, which leads to tolerance stack-up.
An aluminum yoke ensures the positioning of the poles
(Fig. 9). The yoke is composed of three parts, one of which
is located on the top of poles in order to set the vertical
position and the others located on the front and back of
the poles to ensure their transverse positions. The vertical
positions of the poles can be adjusted with spacers. The
force applied on each magnetic element (PM and poles)
was computed. These computations show that PM blocks
are pushed upward toward the top of the poles so they are

maintained in contact with the top yoke. Jigs parts have
been used to guide PM in their location during assembly.
The poles and iron yoke are magnetized by 36 NdFeB

PM blocks distributed in six slots. The magnetic moments
m of the PM blocks and their axes were measured with a
three axis sensor fluxgate placed at a large distance d from
the blocks such that the measured field is B ¼ μ0m=ð2πd3Þ,
with d ¼ 700 mm. Four measurements per block are
necessary to determine each field component and to
eliminate the ambient field. The remanence of the magnet
blocks was derived from the average magnetization,
assuming a magnetic permeability of 1.05 for the PM
material. Figure 10 shows the dispersion of remanence and
magnetization angle errors for the measured PM blocks.

FIG. 9. Hybrid PM prototype CAD model. Dimensions of the prototype are indicated (left). The upper mechanical parts of the
quadrupole are removed to show the PM arrangement in slots (right). The total mass of this prototype is 45 kg and the weight of PM
material is 12 kg.

FIG. 10. Characteristics of the 36 NdFeB PMs used in the
prototype. The average remanent field is BR ¼ 1.137 T. These
PM are recycled from an old undulator.
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The PM blocks have been sorted according to these
measurements before their installation in the six slots of
the prototype.

B. Magnetic measurement

The magnetic measurements of the quadrupole prototype
were performed with a stretched wire measurement bench
[24] (Fig. 11). The gradient of the prototype reaches
82 T=m, which is in agreement with the simulation results.
The higher order multipoles are given in Table VI. The
transverse and vertical homogeneities of the gradient have
been computed and compared to the ideal case (Fig. 12).
The homogeneity of the integrated gradient in the

vertical plane is far from expectation. Besides the displace-
ment of the poles in the vertical direction, additional
degrees of freedom would have been useful but difficult
to implement. For example, one can mention the position-
ing of the poles in the horizontal direction.
The integrated gradient homogeneity has been corrected

using magnetic shims. The shims have the same contours as
the poles (Fig. 13) and a varying thickness controlled with
six machined slots. The depth of each slot is determined in
order to correct the integrated gradient errors and restore a
larger transverse homogeneity. The approach is similar to

FIG. 12. Homogeneity of the integrated gradient along the
horizontal and vertical axes. Simulation and measurement results
are plotted. Results after correction shim implementation are
shown.

FIG. 11. Quadrupole prototype installed on a stretched wire
measurement bench.

TABLE VI. Higher order integrated multipoles of the quadru-
pole prototype, measured at 10 mm and expressed at 7 mm radius.
The other multipoles are below 10−5.

n bn=b2 (normal) an=b2 (skew)

3 −1.3 × 10−4 3.8 × 10−4
4 3 × 10−4 0.5 × 10−4
6 −8.4 × 10−4 1.9 × 10−4
10 −7 × 10−4 −0.7 × 10−4
12 −2.5 × 10−4 1.1 × 10−4

FIG. 13. Correction shim profile. The machined shape is
composed of six slots with different thickness. The shim material
is steel AISI 1006.
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the technique used for the shimming of undulators [25].
The computation method is based on a linear system solved
by a direct matrix inversion. This correction method leads
to good results as shown in Fig. 12.

VI. CONCLUSION

The magnets to be used in new storage ring-based light
sources are clearly evolving towards a much smaller bore
radius. This is the primary parameter enabling higher
performance for multipole magnets. As a consequence,
PM technology has good potential when the compactness
and running costs of such devices are important figures
of merit. A simple PM-based high gradient quadrupole
prototype has been built and magnetically characterized.
The proposed structure has a low sensitivity to the magnetic
errors in the magnet blocks due to the use of soft iron
material for the poles. The field quality of the device
depends mostly on mechanical errors. It can be improved
with a higher performing poles positioning than that used
for the prototype. The use of special iron-type shims leads
to a net improvement in field quality. A gradient homo-
geneity better than 10−3 was obtained after installation of
these shims.
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