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Microbunching instability (MBI) has been one of the most challenging issues in designs of magnetic
chicanes for short-wavelength free-electron lasers or linear colliders, as well as those of transport lines for
recirculating or energy-recovery-linac machines. To quantify MBI for a recirculating machine and for more
systematic analyses, we have recently developed a linear Vlasov solver and incorporated relevant collective
effects into the code, including the longitudinal space charge, coherent synchrotron radiation, and linac
geometric impedances, with extension of the existing formulation to include beam acceleration. In our
code, we semianalytically solve the linearized Vlasov equation for microbunching amplification factor
for an arbitrary linear lattice. In this study we apply our code to beam line lattices of two comparative
isochronous recirculation arcs and one arc lattice preceded by a linac section. The resultant microbunching
gain functions and spectral responses are presented, with some results compared to particle tracking
simulation by ELEGANT (M. Borland, APS Light Source Note No. LS-287, 2002). These results
demonstrate clearly the impact of arc lattice design on the microbunching development. The underlying
physics with inclusion of those collective effects is elucidated and the limitation of the existing formulation
is also discussed.
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I. INTRODUCTION

The beam quality preservation is of general concern in
delivering a high-brightness electron beam through a
transport line or recirculation arc in the design of modern
accelerators. In the high-brightness beam transport, the
initial small density modulations can be converted into
energy modulations due to short-ranged wakefields or
high-frequency impedances. Then, the energy modulations
would be transformed back to density counterparts down-
stream a dispersive region. The density-energy conversion,
if forming a positive feedback, can result in the enhance-
ment of modulation amplitudes. This has been known as
the microbunching instability (MBI). MBI has been one of
the most challenging issues associated with such beam line
designs as magnetic bunch compressor chicanes for free-
electron lasers or linear colliders. Moreover, it also poses
difficulties in the design of transport lines for recirculation
or energy-recovery-linac (ERL) machines. Any driving
source of beam performance limitations in such a high-
brightness electron beam transport system must be care-
fully examined in order to preserve the beam phase-space
quality. Among those, we have already known the longi-
tudinal space charge force (LSC) and coherent synchrotron

radiation (CSR) can particularly drive MBI. The LSC effect
stems from upstream ripples on top of the longitudinal
charge density and can accumulate an amount of energy
modulation when the beam traverses a long section of a
beam line. When the beam encounters bending, CSR due to
electron coherent radiation emission inside a bend can have
a significant effect on further amplifying the induced
density modulations. A typical transport line in a recircu-
lation machine can have a long linac or straight section and
a large number of bending dipoles and thus can potentially
incubate such density-energy conversion along the beam
line. The successive accumulation and conversion mecha-
nism between density and energy modulations can result in
serious microbunching amplification, or MBI.
Numerical treatments of MBI can be divided into two

categories: time-domain and frequency-domain methods.
One of the time-domain treatments, or the most common
one, is based on particle tracking. Particle tracking simu-
lation (see, for example, [1,2]) with inclusion of relevant
collective effects can be valuable for beam dynamics
studies. It allows general beam line lattice, yet requires
careful treatment of various numerical parameters to ensure
numerical convergence before the reliable results are
obtained [3,4]. Another dedicated time-domain treatment
is based on the Monte-Carlo particle method, as imple-
mented in Ref. [5]. The time-domain treatment turns out to
be considerably challenging when MBI becomes severe.
To compare with the linear theory at the onset of MBI,
the initially imposed density modulation needs to be
small enough to remain in the linear regime while such
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modulation requires to be large enough to rise above the
numerical noises originated from the limited number of
simulation particles. This implies that a large number of
simulation particles and long computation time are required
for reaching convergent results of microbunching gain, and
strenuous efforts are needed to do parametric studies for
machine design or optimization in order to minimize
microbunching effects. A direct solution of the (nonlinear)
Vlasov equation for the 2D longitudinal phase-space dis-
tribution, based on the semi-Lagrangian approach, was
studied by Venturini et al. [6]. The issue of numerical noise
is resolved with this approach, but the transverse effects of
beam intrinsic spread are only approximately counted. The
formulation extended to full 4D or 6D becomes further
intricate [5] and application to machine design would
become prohibitively expensive. To accurately and effi-
ciently quantify the direct consequence of MBI at the onset,
characterized by the microbunching amplification factor
or the microbunching gain, we have recently developed
a semianalytical linear Vlasov solver [7] based on the
frequency-domain treatment. This semianalytical approach
transforms the linearized Vlasov equation to an integral
equation and solves for the bunching factor, and allows the
proper inclusion of the transverse effects of beam intrinsic
spread. The involvement of transverse beam emittances,
causing Landau damping, was confirmed [8–10] to be an
effective stabilizing mechanism for MBI. Our work extended
the existing theoretical formulation [9,10] and included more
relevant collective effects, including LSC, CSR and linac
geometric effects, using analytical impedance expressions
[11–26]. Since we do not directly solve the phase-space
distribution function using mesh, the numerical noise issue is
not a limiting factor and the numerical computation is much
faster than the aforementioned treatments. This allows us to
perform parametric design studies and machine optimiza-
tion. The limitations of our Vlasov solver are the assump-
tions that (1) the microbunching modulation amplitude is
much smaller than the unperturbed bunch density amplitude,
i.e., in the linear growth regime of Vlasov equation or at the
onset of MBI, and (2) beam line optics is linear.
For the rest of this paper, we introduce theoretical

formulation of microbunching gain analysis in Sec. II.
Then we briefly summarize in Sec. III the impedance
models used in our Vlasov simulations. In Sec. IV, we
describe numerical procedures for solving the Volterra-type
integral equation for the bunching factor evolution. For
illustration, we apply our code in Sec. V to two isochronous
arcs and one combined lattice with an arc followed by a
long section of linac, which are typical constituents for a
recirculation machine. There we show the gain functions
and gain spectra for the beam lines and their dependences
on lattice optics, with combinations of various collective
effects. We also discuss the underlying physics in the same
section and finally summarize our observation from the
simulation results in Sec. VI.

II. SEMIANALYTICAL FORMULATION FOR
MICROBUNCHING ANALYSIS

We begin in this section by highlighting the
existing theory and introducing our new development.
Microbunching theory in a single-pass system was early
developed by Saldin et al. [8], Heifets et al. [9], and Huang
and Kim [10]. Saldin et al. [8] treated this problem as a
klystron-like instability, considered the case without bunch
compression, and assumed high-gain approximation. Then,
Heifets et al. [9] extended the treatment including bunch
compression as well as finite transverse beam emittance.
Applying the standard perturbation technique to linearize
the Vlasov equation and the method of characteristics,
Heifets et al. derived a linear integral equation in terms of
the bunching factor. Almost at the same time, Huang and
Kim [10], by an iterative approach, obtained an analytical
formula that can be used to estimate the CSR micro-
bunching gain for a typical magnetic bunch compressor
chicane. The above work was largely based on the
linearized Vlasov equation and assumed constant energy
along the beam line. Among them, we believe the integral
equation derived in Refs. [9,10] can be further extended
and applied to a general transport line.
In our work, to systematically study the microbunching

gain development in a recirculating machine, we have
extended the theoretical formulation [9,10] and incorpo-
rated more relevant physical models by: (i) including both
transverse horizontal and vertical bending, in which the
horizontal bends for recirculation arcs and vertical bends
for spreaders and recombiners; (ii) allowing beam accel-
eration or deceleration for energy boosting or recovery;
(iii) adding more relevant collective effects in addition to
the steady-state free-space CSR that was considered in
Refs. [8–10]. Here we distinguish in three viewpoints our
work in this paper from the existing work done in the early
days. First, although there have been extensive studies on
microbunching dynamics, e.g., phase space fragmentation
(see, for example, [27] and references therein), they mostly
focus on bunch compressors in a linac-based free-electron
laser (FEL) driver. There are still very limited works
reported on quantitative microbunching gain studies in
transport arcs or recirculation machines. To our knowledge,
Borland first [28] did some preliminary studies of micro-
bunching gains on the Advanced Photon Source (APS)
upgrade ERL machine using ELEGANT [1] tracking with
several collective effects included. Further understanding of
the underlying physics would require a more detailed study
of the contribution of each individual physical mechanism
as well as careful benchmarking of particle tracking results
with theory. Thus, more focused studies of the longitudinal
microbunching gain with numerical benchmarking also
serve as a purpose of our work. Second, the intuitive
argument of quantifying microbunching in a beam line as
the product of partial gains in each concatenated section is
in general not self-consistent and the gain is found to be
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underestimated [29]. Our Vlasov solver, incorporated with
ELEGANT [1], adopts a general linear beam line lattice
and all relevant beam and lattice parameters to treat the
microbunching analysis in a consistent way. This also
allows us to systematically study the impact of lattice optics
on MBI. Third, by virtue of the general purpose of
ELEGANT [1], our Vlasov solver can serve as an option
for machine optimization if MBI would be a concern in the
beam line design.
In the following we present the general theoretical

formulation of the Vlasov analysis of microbunching
instability, extended from the work by Huang and Kim
[10]. To quantify MBI in a general linear transport line, we
estimate the microbunching amplification factor GðsÞ
along the beam line. Here GðsÞ is defined by the modular
ratio of bunching factors gk at a location s to the initial
location s ¼ 0 [see Eqs. (11) and (20) below]. The
bunching factor gkðsÞ at a certain location s is defined
as the Fourier transform of the perturbed phase-space
distribution, a complex quantity in general. Based on the
kinetic-model description and the standard linearization
technique, the (linearized) Vlasov equation can be formu-
lated and rewritten in an integral form in terms of bunching
factors [9,10]. To facilitate simulating ERL-based lattices,
which usually contain vertical spreaders and recombiners,
we have extended the existing formulation to include both
transverse horizontal and vertical bending. Furthermore,
the presence of any linac section in a beam line is
considered.
We begin by defining the six-dimensional phase-

space coordinate as X̂ ¼ ðx̂; x̂0; ŷ; ŷ0; ẑ; δ̂Þ, in which the
prime denotes the derivative with respect to s and
δ̂ ¼ ½E − ErðsÞ�=E0. Of our interest, we consider a general
case that beam energy can vary along a beam line. The
formulation is reduced to that obtained in Refs. [9,10] for
constant beam energy. The corresponding Hamiltonian for
pure optics lattice transport can be expressed as

H0 ¼
1

2

 
Kxx̂2 þ x̂02 þ Kyŷ2 þ ŷ02 þ κẑ2

− 2

ffiffiffiffiffiffi
E0

Er

s
x̂ δ̂
ρx

− 2

ffiffiffiffiffiffi
E0

Er

s
ŷ δ̂
ρy

!
; ð1Þ

where Kx and Ky are horizontal and vertical focusing
functions, respectively. ErðsÞ is the reference energy at s,
and E0 ¼ Erðs ¼ 0Þ is the initial energy. ρxðsÞ and ρyðsÞ
are the bending radii of the horizontal and vertical dipoles.

κ ¼ ΔEcavωrf

E0Lcavc
cosϕs with ΔEcav, ϕs, ωrf and Lcav, respec-

tively, the energy gain, synchronous phase, the angular rf
frequency and the length of the accelerating cavity.
The corresponding single-particle equations of motion

are [6]

dx̂
ds

¼ x̂0;
dx̂0

ds
¼ −KxðsÞx̂þ

ffiffiffiffiffiffiffiffiffiffiffi
E0

ErðsÞ

s
δ̂

ρxðsÞ
dŷ
ds

¼ ŷ0;
dŷ0

ds
¼ −KyðsÞŷþ

ffiffiffiffiffiffiffiffiffiffiffi
E0

ErðsÞ

s
δ̂

ρyðsÞ
dẑ
ds

¼ −
ffiffiffiffiffiffiffiffiffiffiffi
E0

ErðsÞ

s �
x̂

ρxðsÞ
þ ŷ
ρyðsÞ

�
;

dδ̂
ds

¼ −κðsÞẑ: ð2Þ

We note that the above equations of motion assume the
rate of energy gain or loss is slow, i.e., adiabatic accel-
eration (or, deceleration), E−1

r dEr=ds ≪ 1.
The general solution to Eq. (2) can be expressed in terms

of a six-by-six transport matrix as

X̂ðsÞ ¼ R̂ðs0 → sÞX̂ðs0Þ ¼ R̂ðsÞX̂ð0Þ; ð3Þ

where R̂ð0 → sÞ≡ R̂ðsÞ. Here only linear elements are
taken into account; effects of nonlinear elements such as
sextupoles are excluded from the current analysis.
As mentioned in this section, all the information regard-

ing the beam parameters and lattice configuration are
adopted from ELEGANT [1], in which the 6D phase-space
coordinate can be referred to be X ¼ ðx; x0; y; y0; z; δÞ, with
the relation to our notation as

�
x̂

ŷ

�
¼
�
x

y

� ffiffiffiffiffiffiffiffiffiffiffi
ErðsÞ
E0

s
;

�
x̂0

ŷ0

�
≃
�
x0

y0

� ffiffiffiffiffiffiffiffiffiffiffi
ErðsÞ
E0

s
;

ẑ ¼ z; δ̂ ¼ δþ 1 − ErðsÞ
E0

; ð4Þ

where the prime denotes the derivative with respect to s and
δ≡ ðE − E0Þ=E0. We note that at s ¼ 0, X̂ð0Þ ¼ Xð0Þ.
When the beam energy is constant, X̂ðsÞ ¼ XðsÞ for all s.
The relation between the conventional transfer matrix
elements Rij and R̂ij here can be obtained from Eq. (4)

with R̂ij ¼
ffiffiffiffi
Er
E0

q
Rijδij where i; j ¼ 1, 2, 3, 4 and R̂ij ¼

Rijδij for i, j ¼ 5, 6, δij is the Kronecker delta function.
The governing equation for the phase-space distribution

function f is formulated by the Vlasov equation,

df
ds

¼ ∂f
∂s þ ff;H0 þH1g ¼ 0; ð5Þ

where f; g denotes Poisson bracket and H1 accounts for
collective effect. The phase-space distribution function is
normalized according to

LINEAR MICROBUNCHING ANALYSIS FOR … PHYS. REV. ACCEL. BEAMS 19, 114401 (2016)

114401-3



Z
fðX; sÞdX ¼

Z
fðX̂; sÞdX̂ ¼ N: ð6Þ

Here N is the total number of particles in the bunch. The
solution to the equation can be an arbitrary function of the
system Hamiltonian. Here we apply the standard perturba-
tion technique by assuming f ¼ f0 þ f1, where f1 ≪ f0.
We further assume the initial unperturbed phase-space
distribution is of the form

f0ðX̂0Þ ¼
n0

ð2πÞ2εx0εy0
ffiffiffiffiffiffi
2π

p
σδ0

× e
−x̂2

0
þðβx0 x̂00þαx0 x̂0Þ2

2εx0βx0
−ŷ2

0
þðβy0 ŷ00þαy0 ŷ0Þ2

2εy0βy0
−ðδ̂0−hẑ0Þ2

2σ2
δ0 ; ð7Þ

where n0 ¼ N=L, with L the total bunch duration, εx0 and
εy0 are the horizontal and vertical geometric emittances,
respectively, αx0, αy0, βx0 and βy0 the initial Twiss or
Courant-Snyder parameters, σδ0 for the rms uncorrelated
(or, slice) relative energy spread assuming Gaussian energy
distribution, and h for the chirp parameter (assuming ẑ > 0
for the bunch head).
In the absence of collective effect, i.e., only pure

optics, from Eq. (5), the phase-space distribution function
at s can be determined by the initial distribution at
s ¼ 0 [10],

fðX̂; sÞ ¼ f½R̂−1ðsÞX̂ðsÞ; 0� ¼ f0ðX̂0Þ: ð8Þ

Assume there exists small density modulation in the
initial beam phase-space distribution, i.e.,

fðX̂0Þ ¼ f0 þ f1 ¼
�
1þ Δnðẑ0Þ

n0

�
f0ðX̂0Þ: ð9Þ

We now would like to consider the collective effect due
to this initial modulation. For small density-modulation-
induced perturbation occurring within an infinitesimal time
interval dτ, the perturbed distribution function can be
Taylor expanded to first order (or, the linearized Vlasov
equation). The integrated effect over the entire particle
trajectory is then [10]

fðX̂; sÞ ¼ f0ðX̂0Þ −
Zs
0

dτ
∂f0ðX̂τÞ
∂δ̂τ

dδ̂
dτ
; ð10Þ

where dδ̂
dτ¼ −Nre

γτ

R dk1
2π Zðk1;τÞgk1ðτÞeik1 ẑτ with re the classical

radius of electron, γ the relativistic factor, Z the impedance
per unit length, and gk the so-called bunching factor
defined as

gkðsÞ≡ 1

N

Z
fðX̂; sÞe−ikzẑsdX̂: ð11Þ

Substituting Eq. (10) into Eq. (11), integrating over X̂τ

by parts, and tracing variables back to initial [by applying
Eq. (8)] gives the following integral equation:

gkðsÞ ¼ gð0Þk ðsÞ þ ikzðsÞre
γ0

Z
dτR̂56ðτ → sÞ

Z
dk1
2π

Zðk1; τÞgk1ðτÞ
Z

dX̂0f0ðX̂0Þe−ikzẑsðX0Þþik1 ẑτðX0Þ: ð12Þ

The integrations over k1 and X̂0 can be analytically done; then Eq. (12) can be expressed in a compact form as the
Volterra-type integral equation,

gkðsÞ ¼ gð0Þk ðsÞ þ
Zs
0

dτKðτ; sÞgkðτÞ; ð13Þ

where

gð0Þk ðsÞ ¼ gð0Þk ð0Þe−
k2ðsÞεx0βx0

2
½R̂51ðsÞ−αx0

βx0
R̂52ðsÞ�2−k2ðsÞεx0

2βx0
R̂2
52
ðsÞ−k2ðsÞεy0βy0

2
½R̂53ðsÞ−αy0

βy0
R̂54ðsÞ�2−k2ðsÞεy0

2βy0
R̂2
54
ðsÞ−k2ðsÞσ2

δ
2

R̂2
56
ðsÞ ð14Þ

and

Kðτ; sÞ ¼ ik0
γ0

I0CðsÞ
IA

CðτÞR̂56ðτ → sÞZ½k0CðτÞ; τ� × ½Landau damping�; ð15Þ

where the expression of [Landau damping] term is
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exp

(
−k20
2

"
εx0βx0ðR̂51ðs; τÞ − αx0

βx0
R̂52ðs; τÞÞ2 þ εx0

βx0
R̂2
52ðs; τÞþ

εy0βy0ðR̂53ðs; τÞ − αy0
βy0

R̂54ðs; τÞÞ2 þ εy0
βy0

R̂2
54ðs; τÞ þ σ2δR̂

2
56ðs; τÞ

#)
ð16Þ

with

R̂56ðτ → sÞ ¼ R̂55ðτÞR̂56ðsÞ − R̂55ðsÞR̂56ðτÞ þ R̂51ðτÞR̂52ðsÞ − R̂51ðsÞR̂52ðτÞ þ R̂53ðτÞR̂54ðsÞ − R̂53ðsÞR̂54ðτÞ ð17Þ

R̂5iðs; τÞ ¼ CðsÞR̂5iðsÞ − CðτÞR̂5iðτÞ ð18Þ

and the bunch compression factor CðsÞ at s is
defined as

CðsÞ ¼ 1

R̂55ðsÞ − hR̂56ðsÞ
: ð19Þ

Other parameters shown in the above equations are: k0 ¼
kzðs ¼ 0Þ is the initial wave number (¼2π=λ), I0 for initial
(peak) beam current, and IA for Alfven current. Here
relevant collective effects Z½k0CðτÞ; τ� are included in the
kernel function Kðτ; sÞ, gkðsÞ is the resultant bunching
factor as a function of the longitudinal position s, given a

wave number k, and gð0Þk ðsÞ is the bunching factor in the
absence of collective effect, i.e., a factor due to the pure
optics effect. We note that the above formulation can be
applicable to the case with focusing in combined-function
dipoles.
In the above formulation, we have made the coasting-

beam approximation: the ripple wavelength on top of
bunch charge density is assumed much shorter than the
entire bunch duration. The transport functions R̂5iðsÞ
(i ¼ 1, 2, 3, 4, 5, 6) can be obtained (e.g., from
ELEGANT [1] in our code) by tracking a sufficient number
of independent macroparticles and retrieving the six-by-
six transport matrices at separate locations through proper
transformations from the dynamic variables [see Eqs. (3)
and (4)]. We notice that the validity of adiabatic accel-
eration (or deceleration, E−1

r dEr=ds ≪ 1) in general may
not be held when a beam is rapidly accelerated at very
low energy.
Of our particular interest is the microbunching gain, as a

function of the longitudinal coordinate s and the initial
modulation wavelength λ (or, the initial wave number
k ¼ 2π=λ), and is defined as

Gðs; k ¼ 2π=λÞ≡
���� gkðsÞ
gð0Þk ð0Þ

����: ð20Þ

Hereafter, we call GðsÞ, which is a function of s for a
givenmodulationwave number, the gain function and refer to
GfðλÞ as the gain spectrum, a function of modulation wave-
length at the exit location of a lattice (the subscript “f”
indicates the exit of a beam line). It is worth mentioning the
general physical meaning of Eqs. (13)–(16): a density pertur-
bation at τ induces an energy modulation through the
impedance Z½k0ðτÞ; τ� and is subsequently converted into
density modulation at s through the momentum compaction
function R̂56ðτ → sÞ. A brief introduction of numerical pro-
cedures to solveEq. (13)would behighlighted later in Sec. IV.

III. IMPEDANCE MODELS

In this section we summarize relevant collective effects
considered in our Vlasov solver, which includes CSR, LSC
and linac geometric effects. For an electron beam traversing
a finite-length dipole, CSR can have both steady-state and
transient effects. In addition, when a beam goes through a
long transport line, LSC can have a significant effect on
accumulating energy modulations. Moreover, when a beam
is accelerated, a long section of linac consisting of rf
cavities is characteristic of the high-frequency geometric
impedance, which can also accrue a certain amount of
energy modulations. Here we quote the relevant impedance
expressions without derivation.

A. CSR in free space and in parallel plate

For a relativistic electron beam (β → 1, but γ < ∞)
traversing a bending dipole, the free-space steady-state
CSR impedance per unit length can be expressed as [11]

RefZs:s:NUR
CSR ½kðsÞ; s�g ¼ −2πkðsÞ1=3

jρðsÞj2=3 Ai0
�½kðsÞjρðsÞj�2=3

γ2

�
þ kðsÞπ

γ2

0
B@ ZðkðsÞjρðsÞjÞ2=3=γ2

0

AiðςÞdς − 1

3

1
CA

ImfZs:s:NUR
CSR ½kðsÞ; s�g≃ 2πkðsÞ1=3

jρðsÞj2=3
(
1

3
Bi0ðxÞ þ

Zx
0

�
Ai0ðxÞBiðtÞ
−AiðtÞBi0ðxÞ

�
dt

)
; ð21Þ
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where x ¼ ½kðsÞjρðsÞj�2=3=γ2, k ¼ 2π=λ is the modulation
wave number, ρðsÞ is the bending radius, and Ai and Bi
are Airy functions. Under ultrarelativistic approximation
(γ → ∞), Eq. (21) is reduced to the well-known expression
[12,13]:

Zs:s:UR
CSR ½kðsÞ; s� ¼ −ikðsÞ1=3A

jρðsÞj2=3 ;

A ¼ −2π½Bi0ð0Þ=3þ iAi0ð0Þ�: ð22Þ

Prior to reaching the steady state, the beam entering a
bend from a straight section would experience the so-called
entrance transient state, where the impedance per unit
length can be obtained by Laplace transformation of the
corresponding wakefield [14,15]:

Zent
CSR½kðsÞ; s� ¼

−4
s�

e−4iμðsÞ þ 4

3s�
½iμðsÞ�1=3Γ

�−1
3

; iμðsÞ
�
;

ð23Þ

where μðsÞ ¼ kðsÞzLðsÞ, s� is the longitudinal coordinate
measured from the dipole entrance, zL ¼ ðs�Þ3=24ρðsÞ2,
and Γ is the upper incomplete Gamma function.
There are also CSR exit transient effects when a beam

exits from a dipole. For the case with CSR fields generated
from an upstream electron (at retarded time, traveling
along the upstream straight section) propagating across
the dipole to downstream straight section, the correspond-
ing impedance per unit length can be similarly obtained as
Eq. (23) by Laplace transformation of the corresponding
wakefield [16]:

Zexit
CSR½kðsÞ; s� ¼

−4
Lb þ 2s�

e
−ikðsÞL2

b
6jρðsÞj2 ðLbþ3s�Þ

; ð24Þ

where s� is the longitudinal coordinate measured from
dipole exit and Lb is the dipole length. Other quantities are
defined the same as above.
For the impedance expression of the case where CSR

fields generated from an electron (at retarded time) within a
dipole propagating downstream the straight section, we
adopt the following expression for the CSR exit transient
impedance [17]:

Zdrif
CSR½kðsÞ; s� ≈

8>><
>>:

2
s� ; if ρ2=3λ1=3 ≤ s� ≤ λγ2=2π
2kðsÞ
γ2

; if s� ≥ λγ2=2π

0; if s� < ρ2=3λ1=3;

ð25Þ

where s� is again the longitudinal coordinate measured
from the exit of the dipole. This expression assumes the
CSR fields come primarily from coherent edge radiation
in the near-field region (i.e., s� < λγ2). Moreover, in our

simulation we only include the exit transient effects at a
nearby upstream bend.
Here we note that the above CSR impedance models are

valid only when the wall shielding effect is negligible. This
shielding effect becomes important when the distance from
the beam orbit to the walls h=2 satisfies h ≤ ðρλ2Þ1=3.
In this situation, one should consider to use the shielded
CSR impedance in evaluating the CSR-induced micro-
bunching gains. Currently we implement the steady-state
CSR impedance based on the parallel-plate model [18,19],
given by

Zp:p:
CSRðkÞ ¼

8π2

h

�
2

kðsÞρðsÞ
�1

3
X∞
p¼0

F0ðβpÞ; ð26Þ

where βp ¼ ð2pþ 1Þ πh ð ρðsÞ
2k2ðsÞÞ

1
3 and F0ðβÞ ¼ Ai0ðβ2Þ ×

½Ai0ðβ2Þ − iBi0ðβ2Þ� þ β2Ai0ðβ2Þ½Aiðβ2Þ − iBiðβ2Þ� and h
is the full height of the vertical displacement of beam pipe.
In the above impedance expressions, the impedance

depends on the beam line coordinate and the wave
number k. Also the wave number depends again on the
beam line coordinate, e.g., if bunch compression is
involved, and the impedance is evaluated for a fixed
wavenumber. The impedances [Eqs. (21)–(26)] assume a
beam with a constant wave number and a bend with
constant radius at each location s.

B. LSC in free space

Below we present two slightly different LSC impedance
expressions implemented in our Vlasov solver. The first
one is the on-axis model, which assumes a transversely
uniform density with circular cross section of radius
rb [20],

Zon−axis
LSC ½kðsÞ; s� ¼ 4i

γrbðsÞ
1 − ξK1ðξÞ

ξ
; ð27Þ

where ξ ¼ kðsÞrbðsÞ
γ and rbðsÞ ≈ 1.747

2
½σxðsÞ þ σyðsÞ� [21].

The second one is the average model, which integrates
the radial dependence of the space charge field [22],

Zave
LSC½kðsÞ; s� ¼

4i
γrbðsÞ

1 − 2I1ðξÞK1ðξÞ
ξ

: ð28Þ

In the following we will use the on-axis model, in
accordance with the built-in LSC impedance expression in
ELEGANT [23].
In Eqs. (27) and (28), the longitudinal field does neither

take into account the offset of bunch centroid nor the
transverse dependence of the field along the bunch. We
note that the expressions are approximate and do not reflect
the most general case.
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C. Linac geometric effect

If a beam experiences acceleration, deceleration or
chirping along a section of linac with rf cavities, the
periodic structure, in general, features a geometric imped-
ance. We incorporate this effect in our simulation by
utilizing the following expression [24–26]:

ZUR
linacðkÞ ¼

4i
ka2

1

1þ ð1þ iÞ αLa
ffiffiffiffi
π
kg

q ; ð29Þ

where α ≈ 1 − 0.4648
ffiffiffiffiffiffiffiffi
g=L

p − 0.07g=L, a is the average
inner (iris) radius, g is the gap distance between irises, and
L is the cell or period length. The expression assumes the
cavity structure is infinitely periodic and cylindrically
symmetric, and the effect is with high-frequency (or,
short-ranged) behavior.
Until now we have introduced the semianalytical for-

mulation and the relevant collective effects of our interest
for linear microbunching gain analysis in a general linear
lattice. In the next section, we would briefly describe how
we numerically implement the above governing equations

[Eqs. (13)–(20)] in our Vlasov solver and take relevant
collective effects [Eqs. (21)–(29)] into consideration.

IV. NUMERICAL PROCEDURES FOR SOLVING
THE INTEGRAL EQUATION

In this paper, we would like to solve the Volterra-type
integral equation, i.e., Eq. (13), with relevant physical
effects taken into account. Equation (1) can be split into the
discrete sum as

gkðsiÞ ¼ gð0Þk ðsiÞ

þ Δs
�
1

2
Kðsi; 0Þgð0Þk ð0Þ þ

Xi−1
j¼1

Kðsi; ujÞgkðujÞ
�

ð30Þ
for si ¼ s0 þ iΔs and uj ¼ u0 þ jΔs being the grid points
along the path length, with i and j the mesh/grid indices.
Here Δs is the mesh spacing, s0 and u0 are the initial
positions. In our case, we assume s0 ¼ u0 ¼ 0. We further
express Eq. (30) in the matrix form to be

2
66666666666664

gkðs1Þ
gkðs2Þ
gkðs3Þ
gkðs4Þ

..

.

gkðsN−1Þ
gkðsNÞ

3
77777777777775
¼

2
6666666666666664

gð0Þk ðs1Þ
gð0Þk ðs2Þ
gð0Þk ðs3Þ
gkðs4Þ

..

.

gð0Þk ðsN−1Þ
gð0Þk ðsNÞ

3
7777777777777775

þ Δs

0
BBBBBBBBBBBBB@

0 0
1
2
Kðs2; s1Þ 0

1
2
Kðs3; s1Þ Kðs3; s2Þ 0

1
2
Kðs4; s1Þ Kðs4; s2Þ Kðs4; s3Þ 0

..

. ..
. ..

. ..
.

1
2
KðsN−1; s1Þ KðsN−1; s2Þ KðsN−1; s3Þ � � � 0

1
2
KðsN; s1Þ KðsN; s2Þ KðsN; s3Þ � � � KðsN; sN−1Þ 0

1
CCCCCCCCCCCCCA

2
66666666666664

gkðs1Þ
gkðs2Þ
gkðs3Þ
gkðs4Þ

..

.

gkðsN−1Þ
gkðsNÞ

3
77777777777775
ð31Þ

or, in a shorthand notation,

gk ¼ gð0Þ
k þKgk: ð32Þ

The upper-right elements of the kernel matrix K vanish
because of causality. For the remaining elements of K,
Eqs. (14)–(19) are evaluated by linear interpolating the
associated transport matrix functions extracted from
ELEGANTwith proper transformations of dynamic variables.
Depending upon the validity of criteria for the impedance
models [Eqs. (21)–(29)] and of our interest, the overall
resultant impedance at a certain location s’ is evaluated by
taking the sum over individual effects.
The numerical integration of Eq. (13) becomes

equivalent to finding the inverse of the matrix (I −K)

in Eq. (32) and multiplied by gð0Þ
k , i.e., gk ¼ ð1 −KÞ−1gð0Þ

k .

Convergence based on Eq. (13) or Eq. (32) requires that
the step size of the numerical integration be small enough
to resolve the fastest variation of the relevant impedance
along a beam line. The convergence tests for examples
presented below have been done before the gain curves
are produced [31].
When constructing the kernel matrix elements,

Kðsi; sjÞ as well as gð0Þk , we read the relevant initial
beam and Twiss parameters and extract transport func-
tions from ELEGANT input/output files [1,31]. In this way,
our Vlasov solver has an advantage of treating a general
linear lattice and also utilizes most of the capabilities
born in ELEGANT [1]. This also makes it easier to
compare results of microbunching gain obtained from
the above-described semianalytical Vlasov solver and
from direct ELEGANT tracking.
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V. EXAMPLES

To illustrate the application of our microbunching gain
analyses, in this section we consider three different lattice
examples, two high-energy recirculation arcs [30] and one
linac-arc combination. Tables I and II summarize initial
beam parameters used in our simulations. The first two
lattice examples are isochronous arcs with the identical
lattice geometry (here termed Example 1 and Example 2
lattices). In the last example, the linac-arc combination, the
linac section is followed by Example 1 arc. In this third
example, the electron beam is accelerated from 50 MeV to
1.11 GeV through a long section of linac which includes
200 accelerating cavities with the voltage gradient
10 MV=m, rf frequency 1497 MHz and on-crest acceler-
ation. The purpose in this section is to demonstrate the
microbunching gain evolution along a general beam line
with inclusion of relevant collective effects and beam
acceleration and to elucidate the underlying physics behind
the simulation results.

A. Recirculation arcs

The first two 1.3 GeV high-energy recirculation arcs are
considered as comparative examples. Figure 1 shows the
optical lattice functions and the momentum compaction
functions across the arcs. Although both lattices have
the same geometric layout, they exhibit distinct magnetic
optical behaviors upon adjusting sets of quadrupole
focusing strengths. Here the Example 1 lattice is a 180°
arc with large momentum compaction R̂56. Moreover, it is a

second-order achromat and globally isochronous with a
large dispersion modulation across the entire arc [see
Figs. 1(a) and 1(c)]. By contrast, the Example 2 lattice
is again a 180° arc with however small momentum
compaction. This arc is also a second-order achromat
but is designed to be a locally isochronous lattice within
superperiods. Such local isochronicity ensures that the
bunch length be kept the same at phase homologous
CSR emission sites [see Figs. 1(b) and 1(d)]. Notably, it
is shown in Figs. 1(c) and 1(d) that the momentum
compaction function R̂56ðsÞ for the Example 2 lattice is
considerably smaller in amplitude compared with that for
Example 1 because of local isochronicity. For the detailed
description of the design for the two example lattices, we
refer the interested reader to Ref. [30].
For both examples, the (peak) beam current is chosen

to be 65.5 A, the transverse normalized emittances are
assumed 0.3 μm, and the uncorrelated energy spread is set
1.23 × 10−5. Other relevant initial Twiss beam parameters
are shown in Table I. In these two examples, we simply turn
on CSR effects [Eqs. (21)–(26)] and in particular studied
the CSR-induced microbunching gains for the two arcs.
Figures 2 and 3 show the CSR-induced microbunching gain
functions and gain spectra, respectively, for the two arcs.
The two upper figures present the gain functions GðsÞ as a
function of s for two different modulation wavelengths with
a different combination of CSR models. One can see in
Fig. 2 the shorter wavelengths enhance Landau damping
through Eq. (16), while longer wavelengths feature a
negligible CSR effect. The two bottom figures show the
gain spectraGfðλÞ at the exits of the lattices as a function of
initial modulation wavelength. A major difference between
the two examples is observed that Example 1 is vulnerable
to the CSR microbunching whereas the microbunching
gain in Example 2 remains around unity (i.e., there is no
microbunching amplification). To validate our linear
Vlasov results, we benchmark the two example lattices
by using ELEGANT [1,3], with which extensive convergence
studies were performed [4]. Both our semianalytical
solutions and ELEGANT tracking results show good agree-
ment in microbunching gain estimation (see Figs. 2 and 3).
From the bottom part of Fig. 2, we find that the

microbunching gain including both steady-state and

TABLE I. Initial beam and Twiss parameters for Example 1 and Example 2 arc lattices.

Name
Example 1

(large R56, global isochronous)
Example 2

(small R56, local isochronous) Unit

Beam energy 1.3 1.3 GeV
Bunch current 65.5 65.5 A
Normalized emittance 0.3 0.3 μm
Initial beta function 35.81 65.0 m
Initial alpha function 0 0
Energy spread (uncorrelated) 1.23 × 10−5 1.23 × 10−5

TABLE II. Initial beam parameters for the linac-arc example
lattice.

Name Value Unit

Beam energy (at linac entrance) 50 MeV
Beam energy (at linac exit) 1.11 GeV
Peak bunch current 88 A
Normalized emittance 0.3 μm
Initial beta function 18 m
Initial alpha function −3.6
Energy spread (uncorrelated) ∼3 × 10−4
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entrance transient CSR effects is slightly lowered from the
case of steady-state CSR alone. This is because the CSR
impedances including entrance transient effect become a bit
reduced near the dipole entrance when the beam traverses

across the bend. We also observe that with the inclusion of
all relevant CSR effects, the microbunching gain increases
about 400% compared with that of the steady-state case.
This indicates that without optical compensation the CSR
exit transient effect can make a significant contribution on

FIG. 1. Twiss and R56 transport functions for 1.3 GeV high-energy transport arc: (a) and (c) with large momentum compaction
function R56 (Example 1); (b) and (d) with small momentum compaction function R56 (Example 2). Note in the two cases R̂56 ¼ R56.

FIG. 2. (Top) Gain functions GðsÞ as a function of s, where the
dashed lines are for λ ¼ 20 μm and solid lines for λ ¼ 40 μm.
(Bottom) Gain spectra GfðλÞ as a function of initial modulation
wavelength. In ELEGANT simulations (dots), the initial density
modulation is set 0.05% for the steady-state case; 0.06% for the
steady-state and the entrance-transient cases; 0.01%–0.04% for all
relevant CSR effects including entrance, exit transients and steady-
state CSR. With larger gain, to keep the microbunching process
remaining in the linear regime, it is required the initial modulation
amplitude be smaller (see also comments in the context).

FIG. 3. (Top) CSR gain functions GðsÞ; (bottom) gain spectra
GfðλÞ as a function of initial modulation wavelength. Initial
density modulations are all set 0.8% in ELEGANT tracking
simulations. The apparent difference between Vlasov solutions
and ELEGANT tracking is actually small; note the vertical scale in
small numerics.
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microbunching gain development. Yet with optical com-
pensation, even with the same dipole configuration over the
beam line, Example 2 is not subject to CSR-induced MBI
(see Fig. 3). This highlights the impact of optical lattice
design for recirculation arcs on microbunching gain devel-
opment. Here we note that, because of extremely high gain
of the Example 1 lattice when we include all relevant CSR
impedances, ELEGANT tracking results were averaged over
a range of initial modulation amplitudes 0.01%–0.04% and
70-million macroparticles were used in the tracking sim-
ulation. In postprocessing of ELEGANT tracking results, we
determine the modulation amplitude at a specific location
by the following procedures [32]: (i) make a z (or t)
histogram from 6D phase space distribution while remov-
ing the leading and trailing part to eliminate possible edge
effects; (ii) fit a polynomial to the remaining data and
remove the constant offset; (iii) take Fourier transform of
the fitted data and select the nominal modulation wave-
length which is supposed to be dominant over a spectral
range. The corresponding spectral amplitude is recorded
as the relative modulation amplitude at that location. The
microbunching gain is then calculated as the ratio of the
current amplitude to the initial one (at s ¼ 0). In Figs. 2
and 3 one can see good agreement of the microbunching
gains from Vlasov solver and ELEGANT tracking. The
reader is referred to Refs. [4,31,32] for more detailed
and systematic convergence tests and postprocessing pro-
cedures to extract the microbunching gains from particle
tracking data. We notice that with the large gain shown in
Fig. 2 the microbunching mechanism may reach the non-
linear regime where linearized Vlasov solutions are no
longer valid from a practical point of view. For the validity
of linear microbunching gain analysis using particle
tracking, it is required that the initial perturbation be
sufficiently small (although in some practical cases it
may not be so small) that the magnitude of the bunching
factor along the beam line should not exceed a certain
value. Here we suggest a merit to our semianalytical Vlasov
approach: since the microbunching gain obtained from
particle tracking depends sensitively on the numerical
parameters used for tracking (e.g., macroparticle numbers,
meshes, bins, and etc.), benchmarking the semianalytical
gain results with the tracking results could also help us to
establish the suitable numerical parameters for particle
tracking that would give convergent physical results.

B. Linac-arc combination

As the third example, we take a recirculation arc of
Example 1, preceded by a long section of linac. Table II
summarizes relevant beam parameters for the linac-arc
combination lattice. Figure 4 shows the dispersion function
and momentum compaction function along the entire beam
line. It can be seen in Fig. 4 that the momentum compaction
function has taken into account the nonultrarelativistic
effect.

Figures 5 and 6 show the evolution of microbunching
gain functions GðsÞ along the beam line. ELEGANT tracking
simulations were performed for a Gaussian beam (over
transverse phase-space and energy coordinates) of 70-
million macroparticles and flattop z-distribution with small
density modulations on top. For consistency of comparison
between our semianalytical solutions with ELEGANT results,
the LSC effect is only applied within drift elements and rf
cavities. The LSC effect within other elements such as
dipoles and quadrupoles is neglected. In Fig. 6, CSR effects
include both entrance transient and steady states inside
individual dipoles, as well as exit transient effects in the
downstream drift sections. We found in Fig. 5 the micro-
bunching gain is slightly reduced in the linac section
because of LSC-induced plasma oscillation along with
beam acceleration. Our linear Vlasov solutions match
well with ELEGANT tracking results throughout the
lattice except at some particular locations (e.g., at
s ¼ 410–440 m, in Figs. 5 and 6). After carefully examin-
ing numerical parameters to ensure the convergence of
ELEGANT tracking results, we found the microbunching
gain deviation between our linear Vlasov solutions and
ELEGANT results is not from numerical issues but originates
from nonuniformity of the bunch profile as a result of

FIG. 4. Dispersion (blue) and momentum compaction (green)
functions of the example linac-arc lattice.

FIG. 5. LSC-induced microbunching gain function GðsÞ for the
linac-arc lattice. Here in ELEGANT tracking we assume 0.1%
initial modulation amplitude.
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existing (nonlinear) rf curvature (see Fig. 7 for the
longitudinal phase space distribution and projected longi-
tudinal bunch profile). Here we assume this rf curvature
from the linac is not compensated by a harmonic cavity, as
usually used in linac-based FELs.
Here we would show that this bunch nonuniformity

profile indeed causes the microbunching gain slightly
reduced. The tracking results would be compared with
our linear Vlasov solutions, which do exclude this effect
from microbunching gain estimation. Because of the
presence of an rf cavity, the accelerated beam is character-
istic of a nonlinear rf curvature (see the top part of Fig. 7).
In the case of on-crest acceleration, we can simply assume
the particle energy deviation for each slice related to its
longitudinal coordinate given by

δi ¼ hzi þ qz2i ; ð33Þ

where the linear chirp h vanishes but the quadratic chirp q
does exist (e.g., negative in our case). With such (z − δ)
correlation, we can define an effective (local) chirp to be

heffðziÞ≡−∂δi
∂zi ¼ −2qzi

⇒

�
<0; for bunch tail ðzi < 0Þ
>0; for bunch head ðzi > 0Þ: ð34Þ

For the head of the bunch, the effective chirp is positive
whereas it is negative for the tail of the bunch. The local
bunch compression factor can be described as

Cðs; ziÞ ¼
1

R̂55ðsÞ − heffðziÞR̂56ðsÞ

⇒

�
>1; for bunch head and R̂56ðsÞ > 0

<1; for bunch tail and R̂56ðsÞ > 0:

ð35Þ

Note that, in the positive momentum compaction region,
the modulation wavelength in the head portion of the bunch
is lengthened (or, decompressed) while that in the tail of the
bunch is shorted (or, compressed) due to the nonzero
quadratic chirp, and vice versa in the negative momentum
compaction region. It is this situation that results in the
nonuniformity of the bunch profile when a beam is
imprinted with a nonlinear chirp.
By the above simple analysis we can explain the

presence of nonuniformity of bunch profile, as shown in
Fig. 7. Note that in the figure the bunch head is to the left.
The nonuniform density-modulated bunch profile broadens
the spectral width around the nominal modulation fre-
quency, and results in a reduced bunching factor as well as
the corresponding microbunching gain.
Figures 8–10 show the microbunching gain spectra for

cases with different collective effects involved. From Fig. 8,
we can see the dependence of modulation wavelength on
LSC-induced microbunching gain. In Fig. 9, both our
Vlasov solver and ELEGANT include all relevant CSR
effects, including both transient and steady states. We
believe the deviation between the two methods comes
from: (i) nonuniformity of the bunch profile; (ii) different

FIG. 8. Microbunching gain spectra with LSC effects. Note
here that in ELEGANT simulation we vary the initial modulation
amplitudes around 0.1%–0.6%.

FIG. 6. CSR-induced microbunching gain functionGðsÞ for the
linac-arc lattice. Here the CSR models include both entrance and
exit transients as well as steady-state effects. Here in ELEGANT

tracking we assume 0.6% initial modulation amplitude.

FIG. 7. (Top) Longitudinal phase space distribution at
s ¼ 410 m. (Bottom) Bunch current density. Note here the bunch
head is to the left.
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models of CSR exit transient models used in our simulation
[see Eqs. (24) and (25)] and in ELEGANT [1,16]. We also
notice that the gain reduction of the nonultrarelativistic
CSR (NUR, black curve) with the ultrarelativistic CSR
(UR, blue curve) is negligible because CSR occurs at the
high energy level. The fluctuations shown in Fig. 9 are from
the CSR exit transient effects, which can be observed both
in our linear Vlasov solutions and ELEGANT results. Here
we notice that the exit transient CSR impedance model
applied in our solver [Eq. (25)] still requires further
improvement.
In Fig. 10 we consider altogether the collective effects

for the microbunching gain calculation. We observe that the
overall microbunching gain is in fact an accumulation
effect of density-energy conversion throughout the beam
line. In the long section of the upstream linac, LSC and
linac geometric effects have accumulated an amount
of energy modulation, and subsequently such energy
modulation converts to density modulation through the

downstream momentum compaction. Then, the converted
density modulation can be further amplified through the
CSR effects downstream the arc.
To end this section, we would like to emphasize one

advantage of using the newly developed Vlasov solver
over particle tracking simulation (e.g., ELEGANT). To the
authors’ knowledge, it is not trivial in time-domain particle
tracking to include all relevant collective effects such as
CSR, LSC and the associated geometric effects into
thorough consideration for MBI analysis. However, with
our Vlasov solver, it is straightforward to add these relevant
impedance models into consideration. Although we do not
expect the Vlasov solver, based on evaluating collective
impedance expressions, to give as rich information as
ELEGANT tracking results do in microbunching analyses,
we point out that the value of this solver lies in its speed in
execution. This advantage makes the solver a powerful tool
for comparative or parametric studies and for design
optimization.

VI. SUMMARY

In this paper we have introduced the theoretical formu-
lation for MBI analysis, which includes the case with beam
energy change based on the scaled dynamical variables.
The coasting-beam approximation was considered and the
collective effects were treated as a perturbation in the
theory. Then we summarized various collective impedance
models relevant to the microbunching instability for our
subsequent analysis. We also outlined the implemented
numerical procedures to solve the governing equation for
bunching-factor evolution. After that, we took three exam-
ples, two recirculation arcs and a linac-arc beam line, to
demonstrate our microbunching gain calculation. From the
simulation results, we conclude that different lattice optics
can give dramatically different microbunching gains, albeit
the geometric layout is identical. From the linac-arc
example, our linear Vlasov solutions match well with
ELEGANT tracking results except at the locations with large
local momentum compaction. We identify that such local
bunch compression comes from the nonuniformity of the
bunch profile which stems from rf curvature existing in the
upstream rf cavities, and can result in microbunching gain
reduction. With inclusion of all relevant collective effects
(i.e., CSR, LSC and linac geometric effects) in the linac-arc
example, the results show that the overall microbunching
gain can be significantly enhanced due to the energy-
density conversion throughout the beam line.
While our newly developed linear Vlasov solver can be

much more efficient [33] and accurate in calculating
microbunching gain than using particle tracking, we would
like to emphasize the limitations of the formalism upon
which our solver bases. First, only the effects of linear
beam line elements can be accounted for. For an ERL or
specialized beam line design with sextupole or higher-order
magnetic elements, their effects are overlooked in our

FIG. 9. Microbunching gain spectra with all relevant CSR
effects. ELEGANT results include both entrance and exit transient
as well as steady-state impedances. The initial modulation
amplitudes are varied around 0.1%–0.6% to ensure numerical
convergence.
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FIG. 10. Microbunching gain spectra with various combina-
tions of collective effects. To simulate the gain with linac
geometric impedance, here we assume the linac parameters are
a ¼ 3.07 cm, L ¼ 10.0 cm, g ¼ 8.0 cm, and α ¼ 0.528. For
better illustration, the gain values with the case of all collective
effects included (black curve) are presented with ×10 smaller
than the calculated values.
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consideration. Second, for the case of large gain, e.g.,
Fig. 2, the linear Vlasov solver cannot be applied to the
nonlinear regime or saturation. Third, since the formulation
(and thus our Vlasov solver) is based on an integral
equation governing the bunching factor gk, it cannot
provide as much information as particle tracking does,
e.g., the detailed evolution of phase space distribution.
Fourth, in the presence of beam acceleration (or deceler-
ation), the method [6] we adopted assumes the rate of
energy gain (or loss) is slow. This may not be valid for rapid
acceleration at very low beam energy. Fifth, the LSC
impedance model adopted in the solver is idealized and
does neither account for bunch centroid offset nor trans-
verse dependence along bunch slides. Further studies are
under way in order to improve the formulation and
impedance models for more general applications.
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