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Current modulations, current spikes, and current horns, are observed in a range of accelerator physics
applications including strong bunch compression in Free Electron Lasers and linear colliders, trains of
microbunching for terahertz radiation, microbunching instability and many others. This paper considers the
fundamental mechanism that drives intense current modulations in dispersive regions, beyond the common
explanation of nonlinear and higher-order effects. Under certain conditions, neighboring electron
trajectories merge to form caustics, and often result in characteristic current spikes. Caustic lines and
surfaces are regions of maximum electron density, and are witnessed in accelerator physics as folds in phase
space of accelerated bunches. We identify the caustic phenomenon resulting in cusplike current profiles
and derive an expression which describes the conditions needed for particle-bunch caustic formation in
dispersive regions. The caustic expression not only reveals the conditions necessary for caustics to form but
also where in longitudinal space the caustics will form. Particle-tracking simulations are used to verify
these findings. We discuss the broader implications of this work including how to utilize the caustic
expression for manipulation of the longitudinal phase space to achieve a desired current profile shape.
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I. INTRODUCTION

Caustics are a common occurrence in optics, describing
the bright lines seen in a well-lit coffee cup, or the dancing
networks of light at the bottom of swimming pools on a
sunny day [1,2]. They are a form of “natural focusing” [2]
which possess stability with respect to perturbations in the
system leading to their formation. Figure 1 shows an image
of visible-light caustics forming at the bottom of a coffee
cup. The previously mentioned property of structural
stability here manifests itself in the fact that any small
continuous distortion or reorientation of the cup merely
shifts the “naturally focused” caustic lines without altering
their form.
Electron trajectories forming caustics in particle trajec-

tories could be considered a corollary to caustics found
in geometrical light optics [3,4]. In both cases, particle
trajectories and light rays, the mathematical description of

caustics lies within the broader field of catastrophe
theory [1].
Figure 1 shows a common example of optical caustics—

the bright lines of reflected light in a coffee cup. These
bright caustic lines are the envelope of a family of rays
reflecting from the curved inner surface of the cup [see
Fig. 1(b)]. The intensity of the light rises sharply as the
inverse square root of the distance from the caustic [5] [see
Fig. 1(c)]. This sharp rise in intensity is reminiscent of
some peaked current profiles often observed in accelerator
physics.
Some examples of where current spikes are observed in

an accelerator physics context are illustrated in Fig. 2.
Figure 2(a) illustrates current spikes emerging at the head
and tail of a particle bunch typical of strong bunch
compression in Free Electron Lasers (FELs) and linear
colliders [6–9]. These current spikes are referred to as
current horns in some publications. High-current portions
of the bunch can produce intense coherent synchrotron
radiation (CSR) and result in CSR-induced emittance
growth [10,11]. Another example of current spikes is
microbunching instabilities, illustrated in Fig. 2(b). Small
continuous current and energy modulations initiated by
collective effects can result in current density modulation as
a particle bunch passes through a dispersive region [12–15].
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Current spikes can also be intentional [16] as shown in
Fig. 2(c), where strong wakefield-induced energy modu-
lation results in regions of enhanced current. Trains of
microbunches can be used for producing coherent terahertz
radiation [17–19], and resonant excitation of the wakefields
in plasma and dielectric wakefield accelerators [20].
Finally, Fig. 2(d) shows an intermediate step toward
obtaining a linearly ramped current profile through con-
trolling the second-order longitudinal dispersion via
sextupoles [21]. This current profile is also reminiscent
of single-spike profiles found at some FEL facilities
[22–24] or ramped profiles produced using a superconduc-
ing radio frequency linear accelerator operating at two
frequencies [25].
Examples of each of the current profiles mentioned

above and schematically illustrated in Fig. 2, can be found
in the following literature: (i) for double-horned current
profile, see Fig. 7.7 in [6]; (ii) for microbunching insta-
bilities see Fig. 3 in [12] or Fig. 3 in [26] for experimental
data; (iii) for trains of microbunches, see Fig. 6 in [27];
(iv) for ramped current profiles, see Fig. 5(a) in [21].
In this paper we discuss how these intense current spikes

result from the coalescing of electron trajectories forming
singularities known as caustics. A brief outline of caustics
is presented in Sec. II, followed by a detailed analysis of
how caustics can appear in accelerator physics applications
in Sec. III. This includes derivation of a caustic expression

which describes where in longitudinal position caustics
in a particle bunch will form and under what conditions.
Section IV compares the analytical results with particle–
tracking computer simulations calculated using the

FIG. 2. Illustrations of current spikes induced by caustics in a
variety of applications.
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FIG. 1. Optical caustics, which are analogous to electron–
trajectory caustics found in accelerator physics. (a) image of
caustic lines appearing in a coffee cup. (b) illustration of light rays
forming the caustic (red line), and (c) intensity of the rays in the
vicinity of the caustic.
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“Electron Generation and Tracking” (ELEGANT) software
toolkit [28]. Section V gives an application of this work to
current pulse shaping. Finally, Sec. VI discusses some of
the broader implications of the present work, including how
we may be able to utilize this knowledge of caustics to
avoid current horn formation in strong bunch compression.

II. CAUSTICS

Families of smooth electron trajectories, each of which
may be straight or curved, can exhibit caustic behavior at
points where infinitesimally separated adjacent trajectories
cross. The locus of such crossing points gives an envelope
to the family of trajectories which specifies the caustic
region. At any point where an electron trajectory within the
family of trajectories that comprises the caustic, touches
the caustic surface, it will be tangent to that surface. See
Fig. 1(b) for the visible-light analogue of this where a
family of photon trajectories (shown in blue) generates the
caustic region sketched in red. In the vicinity of the caustic
line the density of trajectories is greatly enhanced as
depicted in Fig. 1(c).
Let us return to the case of electron trajectories. When

tracing such trajectories through a dispersive region,
caustics can be seen in the s–z plane, where z is the
longitudinal position with respect to the center of the bunch
and s is the position along the accelerator. This is visible in
Fig. 3 where the density of trajectories intensifies near the
edges of the bunch after propagating some way through the
dispersive region. This can be regarded as a cusp caustic,
being comprised of two fold caustics that are stitched
together at the point of the cusp [29].
The example shown in Fig. 3 is of a standard 4–dipole

chicane where T566 ¼ −3=2R56 and U5666 ¼ 2R56 with
R56, T566 andU5666 being the first-, second- and third-order

longitudinal dispersion values respectively [30]. Despite
the current being of uniform distribution at s ¼ 0, by the
end of the dispersive region, electron trajectories have
coalesced, creating the increased density of particles in z, at
the head and tail of the bunch. These caustics create the
double-horned cusp-shaped current profile witnessed at
many FEL facilities [6,10].
The second panel of Fig. 3 shows the curvature in the

longitudinal phase space distribution, typical of strong
bunch compressors. When projected onto the z–axis, it
becomes clear how the bifurcation leads to intense current
spikes. These folds in phase space are introduced by
higher-order effects in dispersive regions. This will be
examined in more detail in Sec. IV.

III. CAUSTIC FORMATION IN
PARTICLE TRAJECTORIES

Understanding the current profile through the lens of
caustics, allows us to predict the sharp rise in the current in
the vicinity of caustics when they arise, and also allows us
to determine analytically where and under what conditions
caustics will form.
Throughout this paper, the transfer matrices mapping a

particle from some initial coordinates, Xð0Þ ¼ ðx; x0; y; y0;
z; δÞ, to their final coordinates Xð1Þ, have been used. This
matrix formalism can be expressed as [31,32],

Xið1Þ ¼
X
j

RijXjð0Þ þ
X
j;k

TijkXjð0ÞXkð0Þ

þ
X
j;k;l

UijklXjð0ÞXkð0ÞXlð0Þ; ð1Þ

where R, T, and U are the first-, second-, and third-order
transfer matrices, respectively.

FIG. 3. Electron trajectories through a chicane in s–z plane, showing how the electron trajectories overlap in a caustic at the extreme
values of z (i.e., at the head and the tail of the bunch). (b) Typical phase space distribution and corresponding current profile seen at the
end of a strong bunch compressor [equivalent to s ¼ 9.5 m in (a)].
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In this section we consider an example case of an
electron bunch passing through a bunch compressor chi-
cane or dogleg defined by the first-, second-, and third-
order longitudinal dispersion values of R56, T566, and
U5666. We consider this example of a bunch compressor
in deriving the conditions for caustics to form, which can
then be extended to any relativistic particle bunches
traveling through a dispersive region.
Denoting the relative energy deviation by δ, the final

longitudinal position can be calculated by,

zf ¼ zi þ R56δþ T566δ
2 þ U5666δ

3 þOðδ4Þ; ð2Þ

where zi is the initial longitudinal position of any one
particle. Here geometric terms have been omitted as
chromatic terms will dominate the transformation for
beams with small transverse emittance and large energy
spread [33]. This will be the case for bunch compressors
where a large energy spread is introduced. For other cases,
where chromatic terms do not dominate, geometric terms
(e.g., R51 and R52) should be included.
From here we can approximate how the electron trajec-

tories evolve with position along the compressor, s, with
initial longitudinal positions, zi. This leads to the equation
where the final longitudinal position zf is,

zfðsÞ ¼
�
R56δþ T566δ

2 þ U5666δ
3

sbc

�
sþ zi; ð3Þ

where sbc is the location of the end of the compressor.
Figure 3 shows Eq. (3) evaluated for a range of initial zi
values.
This expression assumes that the longitudinal dispersion

remains constant over the compressor, which is unlikely.
However when evaluated this expression will produce the
same distribution at the compressor exit when compared
to an expression that includes how R56 varies with s.
Therefore whilst Eq. (3) is simply a “smooth approxima-
tion” to how zf varies with s, it accurately predicts zf at the
end of the dispersive region sbc, and when plotted provides
an intuitive snapshot of the caustic formation. Furthermore
this approximation does not impact the derivation of the
caustic expression in the following section.
An energy chirp correlated with zi, is usually established

by the rf voltage and phase of the accelerating section and
harmonic cavity upstream of the compressor [34,35]. This
creates a relative energydeviationof anyparticlewith respect
to the reference particle, expanded to third-order in zi of,

δ ¼ Ei;0

Ef;0
δi þ h1zi þ h2z2i þ h3z3i þOðz4i Þ ð4Þ

where Ei;0 and Ef;0 are the central energy before and
after acceleration respectively, δi is the initial uncorrelated

energy spread and h1, h2, and h3 are the first-, second-, and
third-order energy chirps respectively.
The first-, second-, and third-order energy chirps are

established by the rf voltage and phase of the preceding
accelerating cavities but are also influenced by collective
effects such as wakefields, space charge forces, or other
non-linear effects [11,36]. To create a more realistic
example that includes these effects, we have written an
ELEGANT simulation [28] that traces particles through an
FEL linac. The linac is comprised of an S-band injector
followed by an X-band harmonic cavity to mitigate the
second-order effect of compression [34,35,37], followed by
a 4-dipole chicane (labeled BC1) and an X-band linac.
The bunch distribution taken just before a second bunch
compressor (BC2), includes the high order effects longi-
tudinal wakefields impart on the longitudinal distribution.
A high-order polynomial was fit to this distribution,
capturing the effect of nonlinear forces on the longitudinal
phase space. The distribution and polynomial fit
(δ ¼ c1zi þ c2z2i þ c3z3i ) are shown in Fig. 4.
Whilst the fitted distribution in Fig. 4 appears predomi-

nately linear, small deviations from a linear distribution
lead to large features in both the longitudinal phase space
distribution and current profile at the end of the compressor.
This sensitivity to small continuous perturbations is a
common feature of catastrophe theory [1]. Figure 4(b)
shows the derivative of δ with respect to position, z,

FIG. 4. (a) ELEGANT distribution taken before bunch compres-
sor BC2, with a fit (thin, red curve), δ ¼ 81.06zi þ 5929.08z2i þ
1.30 × 108z3i . (b) Derivative of polynomial fit emphasizing the
nonlinearity of the distribution.
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emphasizing the nonlinearity. This derivative also appears
later in Eqs. (7) and (8).

A. Expression for the caustics

In our treatment, a caustic is the envelope of the family of
particle trajectories coalescing through a dispersion region,
in this case defined by R56, T566, and U5666. As previously
mentioned, this is analogous to geometrical optics where
the caustic is defined by the “family of rays” reflected or
refracted by an optical element.
Consider the particle trajectories in s–z space described

by Eq. (3). Two trajectories infinitesimally spaced at the
beginning of the compressor (s ¼ 0), may cross on a
caustic at some point P, as shown in Fig. 5.
Each trajectory evolves as a function of the initial

longitudinal position zi, where the zi position will have a
corresponding energy deviation, due to the chirp
imposed onto the bunch mainly by the rf phase and
voltage. The family of trajectories will have an envelope
curve, namely a caustic. The caustic line is tangent to
every trajectory forming the family of trajectories. The

points which make up the envelope consists of the limit
points of two neighboring trajectories as one approaches
the other.
Take two trajectories labeled T1 and T2, shown in

Fig. 5. T1 and T2, can be can be defined as the implicit
curves,

T1∶ zfðsÞ ¼
�
R56δðziÞ þ T566δðziÞ2 þ U5666δðziÞ3

sbc

�
sþ zi; ð5Þ

T2∶ zfðsÞ ¼
�
R56δðzi þ dziÞ þ T566δðzi þ dziÞ2 þ U5666δðzi þ dziÞ3

sbc

�
sþ zi þ dzi: ð6Þ

To find the coordinates of the caustic point P (in Fig. 5), we recognize that the envelope of trajectories lies on the limit of
intersections of two members of the family, T1ðR56; T566; U5666; ziÞ and T2ðR56; T566; U5666; zi þ dziÞ, as dzi approaches
zero. Equating Eq. (5) and Eq. (6) gives,

R56

d½δðziÞ�
dzi

þ T566

d½δ2ðziÞ�
dzi

þ U5666

d½δ3ðziÞ�
dzi

þ sbc
s

¼ 0: ð7Þ

Assuming we are only concerned if caustics form by the end of the dispersive region, we can set s ¼ sbc. Finally, the

parametric form for the set of caustic points (~z, ~R56), parametrized by zi is,

~zðziÞ ¼ zi þ
δðziÞ½−1 − T566δðziÞδ0ðziÞ − 2U5666δ

2ðziÞδ0ðziÞ�
δ0ðziÞ

~R56ðziÞ ¼
−1 − 2T566δðziÞδ0ðziÞ − 3U5666δ

2ðziÞδ0ðziÞ
δ0ðziÞ

; ð8Þ

where δðziÞ is the shape of the initial longitudinal phase
space or chirp and δ0ðziÞ is the derivative with respect to zi.
Equation (8) defines the location in z and R56 space

where caustics will form, and hence identifies the regions
of greatly enhanced current. The caustic expression
[Eq. (8)] is plotted in Fig. 6 along with the electron
trajectories which had the initial distribution shown in
Fig. 4. Note, our use of the word trajectories is not referring
to trajectories traveling through physical space, but rather

between z and R56 coordinates. Note also that, for the
particular parameters used here, the caustic in Fig. 6 has
the morphology of a cusp, this being one of an infinite
hierarchy of possible caustics as classified by catastrophe
theory. All of these caustic morphologies are describable by
Eq. (8), albeit with polynomial expressions for δðziÞ that
are in general of higher than cubic order in zi. Examples of
other caustic morphologies, besides the previously men-
tioned fold and cusp, include the swallowtail, elliptic

FIG. 5. Two electron trajectories coalescing at the caustic pointP.
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umbilic, hyperbolic umbilic, parabolic umbilic, and butter-
fly [1]. Each such caustic morphology will leave its own
characteristic caustic motif or fingerprint on the associated
current distribution.

IV. COMPARISON WITH ELEGANT
SIMULATIONS

The caustic nature of the current profile and the caustic
expression in Eq. (8), have been verified using ELEGANT

simulations, which performs 6-D particle tracking of the
vector X ¼ ðx; x0; y; y0; z; δÞ. This illustrative example
is of an X-band linac based on designs presented in
Refs. [38,39]. However it should be noted that the caustic
expressions derived in Sec. III are more broadly applicable
to relativistic bunches traveling through a dispersive region.
In the following illustrative example we use a typical

FEL accelerator layout [38,39], consisting of an S–band
injector, followed by X–band harmonic linearizer, with
two-stage bunch compression. The two bunch compressors
were separated by 50 meters of X-band linac allowing
longitudinal wakefields to affect the energy distribution
along the bunch. Whilst this example uses a predominately
X-band linac, caustics can be found to be the underlying
mechanism behind strong compression resulting in current
spikes for any frequency choice. The longitudinal chirp
at the entrance to BC2, as best described by a high-order
polynomial δ ¼ c5z5i þ c4z4i þ c3z3i þ c2z2i þ c1zi, had the
following fitted parameters,

c1 ¼ 82.45 m−1

c2 ¼ −7832.32 m−2

c3 ¼ −1.947 × 108 m−3

c4 ¼ 9.446 × 1011 m−4

c5 ¼ 1.412 × 1016 m−5:

Aspreviouslymentioned,apolynomial fit of third-orderor
higher is needed to see the emergence of the caustic
analytically. Here we have used a quintic fit, whereas
previously in Sec. III, we opted for a cubic. The quintic
allows for more intricate caustic patterns to be revealed that
would not be visible with just the cubic fit. The cubic fit
however, isoftensufficient to see themainstructureevolving,
e.g., a current-horn in strong compression, because third-
order effects dominate theprocesswhensecond-order effects
have been mitigated through harmonic linearization.
A series of conditions is presented showing the ana-

lytical solution of the caustic expression [Eq. (8)] along-
side the 6D particle tracking simulation results. This is
shown in Fig. 7. The conditions that were varied were the
values of R56, T566, and U5666 of the second bunch
compressor (BC2), and the results shown are taken at
the end of BC2.
The second row of Fig. 7 shows the histogram of current

density obtained by projecting the electron trajectories onto
the z axis at the R56 value indicated by the gray vertical line
in the trajectory plots (top row of Fig. 7).
The third and fourth row of Fig. 7 shows the ELEGANT

simulation results using a compressor matching the longi-
tudinal dispersion values listed in the caption. Good
agreement can be seen between the analytical expressions
and the ELEGANT simulation results. The histograms
produced from the analytical approach show slightly more
pronounced caustics. This is because in the ELEGANT

simulations, and predictably in any experimental results,
the caustics are smeared out due to: (a) nonzero transverse
position to longitudinal position mapping (i.e., nonzero
R15, R25, R35, R45 as well as higher-order terms), (b) chro-
matic variations from the fit of δ as a higher-order
polynomial in zi, and (c) the uniform initial current
distribution that was assumed in the analytical approach.
It should be noted however that the position of the peaks
in rows 2 and 3 of Fig. 7 is very consistent, despite the
smearing out of the caustics due to the above mentioned
reasons.
The three columns of Fig. 7 illustrate three scenarios

where caustics are present. The first column shows the
iconic double-horned current profile often associated with
FEL bunch compression. Another current profile reported
at FEL facilities is the single-spike profile [22–24] shown
in the second column of Fig. 7. This was achieved here
through varying the T566 parameter, however it could also
be found through varying the initial distribution chirp
described by δðziÞ. It can also be shown that varying
T566 can alter the relative heights of the two current peaks
in Fig. 7(a). Finally, the last column of Fig. 7 shows the
flexibility of this approach whereby unusual and intricate
current profiles can be predicted through the caustic
expression and emulated with the ELEGANT simulations.
Earlier, Fig. 3 showed trajectories in s–z space assuming

linear trajectories. This assumes a constant R56 over the
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FIG. 6. Caustic expression [Eq. (8)] shown in red overlayed on
electron trajectories, showing where in z current spikes can be
anticipated for a given R56 value, for a 4 dipole chicane where
T566 ¼ −3=2R56 and U5666 ¼ 2R56.
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chicane, which is an inaccurate assumption. Fortunately
this assumption could be avoided in Sec. III through
switching to z–R56 space. However for completeness, we
used ELEGANT simulations to show how the trajectories are
more likely to evolve over the chicane in physical s–z
space, where R56 is no longer considered constant. This is
shown in Fig. 8, where R56 varies across the chicane, with

most of the compression occurring in the dipoles. Note in
this context, that the possible caustic morphologies (fold,
cusp, swallowtail, etc.) are identical for both linear and
nonlinear continuous trajectory families [2].
Figure 8(a) shows a small number of electron trajectories

as they pass through a chicane and the bunch length is
shortened. This plot was created by extracting the beam

FIG. 7. Electron trajectories caustics seen forming in 3 scenarios differentiated by the different values of the R56, T566, and U5666

encountered. Column (a) shows the double–horned current structure produced at the end of a dispersive region where
R56 ¼ −10.78 mm, T566 ¼ 16.35 mm and U5666 ¼ −11.38mm. Column (b) shows a single-horn current profile produced with
R56 ¼ −10.82 mm, T566 ¼ −41.07 mm and U5666 ¼ 0.40 m, and column (c) shows a current profile produced with
R56 ¼ −11.76 mm, T566 ¼ 16.10 mm and U5666 ¼ 2.60 m. The top row shows trajectories (blue, thin) with the caustic expressions
[Eq. (8)] (red, thick). The second row of images shows histograms of electron density, calculated at the value of R56 indicated by the gray
vertical line in the top row of images. The third and fourth rows of images were created using ELEGANT, showing the phase space
distribution and current profiles, respectively, where the head of the bunch is on the left-hand side of these figures.
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coordinates at 45 slices through the chicane and linearly
interpolating between those slices. A beam distribution of
constant x, x0, y, y0 was used, leaving only variation in the
longitudinal position z and the energy spread δ. Conversely,
the ELEGANT simulations plotted in Fig. 7 were created with
realistic bunch distributions.
Zooming in on the last dipole in Fig. 8(b), we can see the

caustics forming at the head and tail of the bunch. Ten slices
through the final dipole were used to create Fig. 8(b).

V. CURRENT PROFILE SHAPING

We can determine the shape of the current profile
through first determining an expression for the local
compression ratio, Cl, which indicates the degree to which
the electron trajectories are compressed as a function of
longitudinal position z. Figure 9 shows a sketch of two
trajectories through a chicane, for two particles that are
infinitesimally separated in the longitudinal direction. The
ratio of the length a to b is the local compression ratio, Cl,
where a is the separation of the trajectories at the beginning
of the compressor and b is the separation of the trajectories
at some distance s along the compressor.
At the beginning of the chicane, the two trajectories in

Fig. 9 are separated by some small distance, dzi. The
lengtha, that separates the twotrajectoriesats ¼ 0, is simply,

a ¼ zi þ dzi − zi: ð9Þ
The length b can be found through evaluating the

longitudinal positions for each trajectory [Eq. (3)] and
finding the difference to be,

b ¼ 1

s2
fR56½δðzi þ dziÞ − δðziÞ�

þ T566½δ2ðzi þ dziÞ − δðziÞ�
þ U5666½δ3ðzi þ dziÞ − δðziÞ�gsþ dzi: ð10Þ

where s2 is some arbitrary position along the accelerator.

The compression ratio, Cl, which is equal to the ratio of
a to b can be found to be,

Cl¼
a
b
¼ sbch

R56
dðδÞ
dz þT566

dðδ2Þ
dz þU5666

dðδ3Þ
dz

i
sþsbc

: ð11Þ

Substituting in an initial longitudinal distribution of
δðziÞ, and calculating the ratio at the end of the compressor
(i.e., setting s2 ¼ sbc), we find the variation in Cl with zi.
This is shown in Fig. 10 for a standard chicane where
R56 ¼ −11.8 mm (and T566 ¼ −3=2R56 and U5666 ¼
2R56). The three branches indicate the bifurcation points
in Fig. 3, corresponding to where the electron trajectories
fold around on themselves.
Mapping the initial longitudinal positions, zi, to the final

longitudinal position, z, we obtain an expression that
closely resembles the current profile, but has multiple
branches relating to the folds in phase space introduced
in the compression. The mapping is defined by Eq. (3) and
results in the parametric form for the compression ratio
(z, Cl) in the s–z plane, parametrized by zi,

FIG. 8. Electron trajectories (in s–z space) through a bunch compressor. (b) shows a close up of the trajectories through the fourth
dipole [i.e., region outlined with a red box in (a)]. Caustics can be seen forming at head and tail of the bunch in (b).

FIG. 9. Electron trajectories passing through a dispersive
region. Labels a and b are used to mark the longitudinal distance
separating the trajectories at s ¼ 0 and s ¼ s2 respectively.
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zðziÞ ¼ zi þ R56ðc1zi þ c2z2i þ c3z3i Þ þ T566ðc1zi þ c2z2i þ c3z3i Þ2 þU5666ðc1zi þ c2z2i þ c3z3i Þ3

ClðziÞ ¼
1

1þ ½c1 þ zið2c2 þ 3c3ziÞ�ðR56 þ T566zi½c1 þ ziðc2 þ c3ziÞ�f2þ 3U5666zi½c1 þ ziðc2 þ c3ziÞ�gÞ
: ð12Þ

Figure 11 shows the parametric expressions of Eq. (12).
Each branch contributes to the current profile and therefore
the branches need to be added in a correct manner, to obtain
an accurate current profile expression.
Three sets of zi data were used to produce the three

branches visible in Fig. 11. These three data sets
come from the three regions visible in Fig. 10 separated

by asymptotes. The position of the asymptotes can be
found through expanding the denominator of Eq. (11),
truncating to second-order in zi, and finding the values of
zi which result in the denominator going to zero which is
where Eq. (11) will be undefined at the asymptotes. These
asymptotes were found to be located at,

zi lim 1 ¼
−2c2R56 − 2c21T566 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2c2R56 þ 2c21T566Þ2 − 4ð1þ c1R56Þð3c3R56 þ 6c1c2T566 þ 3c31T566U5666Þ

p
6ðc3R56 þ 2c1c2T566 þ c31T566U5666Þ

ð13Þ

and

zi lim 2 ¼
−2c2R56 − 2c21T566 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2c2R56 þ 2c21T566Þ2 − 4ð1þ c1R56Þð3c3R56 þ 6c1c2T566 þ 3c31T566U5666Þ

p
6ðc3R56 þ 2c1c2T566 þ c31T566U5666Þ

: ð14Þ

The most straightforward way to add the three branches
visible in Fig. 11 would be to bin the data generated by the
parametric equations, then add the binned data at the same z
positions. This would allow the branches to be combined,
despite the different initial zi that gave rise to the multi-
plicity in Cl. However this approach, whilst being accurate
would mean we lose the analytical expression. In the
following section we reattain an analytical expression
albeit at the cost of some further approximations.
After binning the data and adding the three branches, the

final step to achieving the current profile, is to determine
the scaling factor required to convert from the local

compression ratio Cl, to current, I. The scaling factor
can be determined if the total bunch charge Q is known.
SettingQ equal to the sum over allCl data points calculated
after the binning, multiplied by the consistent spacing
between the data points in units of time, Δt, and the scaling
factor f, we obtain,

Q ¼ f
X
n

Cl;nΔt: ð15Þ

Equation (12) assumes that the initial current profile is
flat. If this is not the case, the initial current distribution can

FIG. 10. Local compression ratio, Cl varying with the initial
longitudinal position, zi. Where Cl is negative, this indicates that
the electrons with those initial zi values are in fact spreading out
rather than compressing.

FIG. 11. The local compression ratio mapped to the final
longitudinal position values, z. The three colors shown distin-
guish the electrons from each of the 3 sections of the bunch
visible in Fig. 3—the core of the bunch and the two edges which
fold around on themselves in longitudinal phase space.
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be taken into account through multiplying every occurrence
of xi in Eqs. (13) and (14) by ρðziÞ, where ρðziÞ is the
density of the initial bunch distribution.
Incorporating the scaling factor the final current profile is

able to predict the double horn current profile. This is
shown in Fig. 12. A small step in the current profile can be
seen at z ≈ −11 μm. This is due to the flat initial current
profile. As the edges of the bunch folds around upon itself
(see Fig. 6), this results in a step in current density when the
trajectory density is projected onto the z-axis. Figure 11
shows the initial edges of the bunch shown in blue and

green, folded in to result in the step in the current profile
at z ≈ −11 μm.

A. Retaining an analytical current profile expression

We can incorporate some approximations in our
approach in order to retain an analytical expression of
the current profile, with the cost of possible reduction in
accuracy. This section of the paper will present an ana-
lytical expression for current profile that is applicable when
caustics are present as well as when they are not.
The majority of the bunch is comprised of electrons from

the middle section of Fig. 10, which we will refer to as the
core of the bunch. This section corresponds to the portion
of the bunch that does not fold over on itself in longitudinal
phase space (see Fig. 3). This is also shown by the orange
data points in Fig. 11. In the example case shown in
Figs. 10 and 11, the middle portion of the bunch describes
73% of the total bunch. Therefore if we could consider only
this middle portion of the bunch, we could develop an
expression for the current profile comprised of electrons
from the core of the bunch which makes up the majority of
the bunch charge. Furthermore, when a nonuniform initial
current profile is used, for example a Gaussian distribution,
the current populating the noncore fraction of the bunch
would be even smaller.
Considering only the core of the bunch we find that the

current profile behaves as,

zðziÞ ¼ zi þ R56ðc1zi þ c2z2i þ c3z3i Þ þ T566ðc1zi þ c2z2i þ c3z3i Þ2 þ U5666ðc1zi þ c2z2i þ c3z3i Þ3
for zi lim 1 < zi < zi lim 2 ð16Þ

IðziÞ ¼
���� f
1þ ½c1 þ zið2c2 þ 3c3ziÞ�ðR56 þ T566zi½c1 þ ziðc2 þ c3ziÞ�f2þ 3U5666zi½c1 þ ziðc2 þ c3ziÞ�gÞ

����
for zi lim 1 < zi < zi lim 2; ð17Þ

where zi lim 1 and zi lim 2 are defined in Eqs. (13) and
(14), and calculate the zi position of the asymptotes seen
in Fig. 10. For the case where only one or no caustic
folds are present, Eqs. (16) and (17) still hold and the
limits of zi lim 1 and zi lim 2 can be ignored. The magni-
tude of the current expression is taken because in the case
of an overcompressed bunch, where the head and tail
swap position, Cl becomes negative and so the sub-
sequent expression for the current, I, needs to be made
positive.

B. Linearly ramped current profiles

Using the caustic formation information presented earlier
we can investigate the possibility of producing current
profiles of specific shapes, which may be optimal for

different purposes. One such example is the desire to
achieve a linearly ramped current profile for optimal drive
beams in plasma-based accelerator schemes [21,25,40].
England et al. showed experimentally that a linearly
ramped profile could be obtained through using sextupole
magnets located in a dispersive section, imparting nonlinear
correlation in the longitudinal phase space [21,33]. In this
section we derive an analytical approach to gain insight into
generating a linearly ramped profile through altering the
T566 and U5666 of the dispersive region, which could be
achieved through sextupoles and higher-order multipole
magnets [33,41,42].
Expanding Eq. (17) and grouping terms together, we can

write out an expression for the current profile in terms of
these newly defined parameters,

FIG. 12. Current profile calculated with the parametric equa-
tions, Eqs. (16) and (17).
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zfðziÞ ¼ Azi þ Bz2i þ Cz3i

IðziÞ ¼
���� f
Aþ 2Bzi þ 3Dz2i þ 4Ez3i

���� ð18Þ

where

A ¼ 1þ c1R56

B ¼ c2R56 þ c21T566

C ¼ c3R56 þ 2c1c2T566U5666

D ¼ c3R56 þ 2c1c2T566

E ¼ T566ðc22 þ 2c1c3 þ 3c21c2U5666Þ: ð19Þ

The aim is to force IðziÞ [Eq. (18)] to be linear in zf (not
zi). As Eq. (16) is not easily invertible, we can instead force
Eq. (18) to be cubic in zi which should result in the current
profile being linear in zf.
Taylor series expanding Eq. (18) results in,

IðziÞ ¼ f

�
1

A
−
2Bzi
A2

þ ð4B2 − 3ADÞz2i
A3

þ −4ð2B3 − 3ABDþ A2EÞz3i
A4

þO½z4i �
�
: ð20Þ

To obtain a linearly ramped current profile, we need to
obtain a set of parameters for which the following expres-
sions are close to zero,

0 ¼ A −
2B
A2

ð21Þ

0 ¼ B −
ð4B2 − 3ACÞ

A3
ð22Þ

0 ¼ Cþ 4ð2B3 − 3ABEþ A2EÞ
A4

: ð23Þ

Equations (21), (22), and (23) can be used with an
optimizer code to minimize the square of the right-hand
side of each expression. An example which used this
method is shown in Fig. 13. This illustrative example
shows how one can determine the values of R56, T566, and
U5666 required to achieve a mostly linearly ramped current
profile for a given initial bunch distribution.
In this example, we take an arbitrary electron bunch with

initial longitudinal distribution parameters of c1 ¼ 81.06,
c2 ¼ 5929.08, and c3 ¼ 1.302 × 108. This bunch, with a
positive energy chirp (lower energy at the tail and higher
energy at the head of the bunch) can be sent through a
dispersive region to obtain a linearly ramped current
profile. Through the analysis described above, we find
we need the dispersive region to have the properties of
R56¼−16.6mm, T566 ¼ 0.130 m, andU5666 ¼ −1.153 m.

The resultant current profile calculated using Eqs. (16) and
(17), is shown in Fig. 13.
Figure 14 shows the electron trajectories with a gray

vertical line indicating the nominal value of R56 ¼
−16.6 mm. Figure 15 also shows electron trajectories,
varying with position along the dispersive region. This
figure shows the bunch moving beyond the position of
maximal compression, resulting in the overcompressed
bunch where the electrons originally occupying the head
of the bunch have swapped position with the electrons in
the tail. Figure 16 shows a histogram of the electron
trajectory density along the vertical gray line (indicating
the end of the compressor) in Fig. 15. This histogram
corresponds to the current profile shape, and agrees well
with the current profile calculated in Fig. 13.
The longitudinal phase space distribution that exhibits the

linearly ramped current profile is shown in Fig. 17. In order
to achieve the linearly ramped profile, the longitudinal phase
space distribution is curved, such that projection onto the
horizontal axis creates more current at the head of the bunch
(negative z values) and less toward the tail.

FIG. 13. Linearly ramped current profile calculated from
Eq. (17) and obtained through optimizing R56, T566, and U5666.
Note the head of the bunch is on the left-hand side, at negative
values of z.

FIG. 14. Electron trajectories in z–R56 space, and caustic
expression [Eq. (8)] shown in red. The gray vertical line
represents the value of R56 where a linearly ramped current
profile (along the z direction) can be obtained.
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This result was found through overcompressing the
bunch where caustics are less likely to form. A ramped
current profile can also be achieved while undercompress-
ing the bunch however this is more likely to result in a
ramped, cusplike profile. Figure 14 shows that for values
of jR56j < 14 mm which result in undercompression, the
caustic expression (shown in red) is present at the head of
the bunch. When jR56j > 14 mm, which corresponds to
overcompression, the caustics do not form.

VI. DISCUSSION

The third-order term in the δðziÞ distribution (i.e., c3), is
often cited as the root cause of current horn formation
[11,36,43,44]. Generally it is the third-order effects (both
those imprinted onto the longitudinal phase space by the
rf curvature, longitudinal wakefields and other collective
effects as well as the third-order effect encountered in the
dispersive region) that lead to the greatly enhanced current
at the head and tail of the bunch. However the caustic
theory presented in this paper reveals that the cubic chirp is
not solely responsible for the current horn behavior. In fact,
Eq. (7) shows the conditions where current horns can form
even with no cubic or higher order term in the energy chirp.
This is due to the longitudinal phase space distribution,
δðziÞ, being squared and cubed in Eq. (7), producing the
higher order perturbations necessary to result in the double
horn current structure. The analysis presented in this paper
reveals that it is a combination of properties of the chirp and
compressor that determine if current horns will be present,
and the degree of severity (i.e., the height of the current
horns) that will result.
As mentioned in Sec. III, small continuous perturbations

in the chirp δðziÞ, can lead to dramatic local rises of the
associated current profile. Controlling these slight varia-
tions in the phase space distribution of the bunch entering a
dispersive region would be challenging. However it would
be possible to control the evolution of the trajectories
through the dispersive region using higher–order magnets.
With the insight provided by the caustic condition, namely
Eq. (7), R56, T566, and U5666 could be chosen to create
conditions under which caustics do not form. Multipole
magnets can be included in the dispersive region to obtain
the required values of R56, T566, andU5666, as demonstrated
in [33,41,42].
Many variations of the caustic pattern and corresponding

current profile are achievable, beyond the three cases
shown in Fig. 7. Understanding how the current profile
is influenced by caustic lines may provide another per-
spective on the challenge of tailoring current profiles.
Applications of current profile shaping include creating
linearly ramped current profiles for optimal plasma accel-
eration [21,25], current profiles shaped for suppression of
coherent synchrotron radiation induced emittance growth
[45], and optimal current profiles for free electron laser
applications [43], to name a few.
Section V illustrates one way to create a linearly ramped

current profile. It has been shown before that sextupole
magnets can be added to a dogleg to create a linearly
ramped current profile [21]. This work extends upon this
concept through providing the analytical underpinnings, in
Eqs. (16) and (17).
In addition to the above-mentioned current-shaping

applications, consideration of the underlying caustics
may give insight into the conditions leading to micro-
bunching. Equation (8) includes all of the necessary detail

FIG. 16. Histogram of the density of electron trajectories at
the end of the compressor, corresponding to the gray vertical
line in Fig. 15.

FIG. 15. Electron trajectories s–z space, where the gray vertical
line indicates the end of the compressor where the current profile
is evaluated.

FIG. 17. Longitudinal phase space distribution at the entrance
to the beam line (blue) and at the exit (orange), where the final
bunch displays a linearly ramped current profile shown in Fig. 13.
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to investigate how microbunching evolves, so long as the
initial energy distribution takes into account the energy
modulation needed for microbunching to occur.
Figure 3 shows electron trajectories forming a cusp

caustic. However we have seen in Fig. 7 that higher-order
catastrophes can also be produced. Indeed, the three panels
in the top row of Fig. 7 give three different unfoldings of
the butterfly catastrophe [29]. To witness these high order
catastrophes, a high order polynomial fit of the initial
distribution δðziÞ is required. Using only up to cubic fit in
zi, the highest order catastrophe produced analytically is
a cusp.
A surprising result of Eq. (8) is that it is applicable for

all high-order catastrophes such as cusps, swallowtails,
elliptic umbilics, hyperbolic umbilics, etc. [1,2] provided
the initial distribution δðziÞ is a polynomial to sufficiently
high degree, in zi. A hierarchy of motifs (cusps, swallow-
tails, butterflies, elliptic umbilics, etc.) will be generated,
each displaying higher-order complexity, but all being
governed by the same equation, Eq. (8).
Whilst the main examples detailed in this paper refer to

the longitudinal plane, the concept of caustics appearing in
electron trajectories is not limited to the longitudinal plane,
and could be easily considered in the transverse plane. This
would be done by instead considering the final transverse
position xf (or yf) in Eq. (2) with the transfer matrix
elements relevant to the situation being studied.
The examples presented all show a bunch being under-

compressed. It is interesting to note however that caustics
(and the associated current spikes) are much less likely to
form in an overcompressed bunch. This can be seen from
the plots in the top row of Fig. 7. For example the
maximum compression for the case shown in the first
column of Fig. 7 is often calculated by equating
(1þ R56c1) with zero [see Eq. (3)]. For this case,
R56 ¼ −1=c1 ¼ −12.13 mm. For R56 values greater in
magnitude than 12.13 mm, the bunch is overcompressed.
It can be seen from the top left subplot of Fig. 7 that at
considerably smaller values of R56 caustics no longer begin
to form. Local increases in trajectory density can be seen
for these small values of R56 near the vicinity of the caustic,
however the greatly enhanced current spikes will not
appear.
Caustics by their very nature are discontinuities that

result from small continuous perturbations of an input and
reliably produce dramatic changes in the corresponding
output—in this case in the current. Here, use of the word
reliably, refers to the mathematical stability of caustics,
whereby continuous small variations in the control
parameters (e.g., R56, T566, etc.) will still see the caustics
forming, although the location of the caustic may vary.
Because of this, caustics could become a useful diagnostic
tool, allowing us to indirectly measure small variations
that consistently and reliably produce a large measur-
able change. For example, measuring the second- and

third-order chirp of a particle bunch is extremely difficult
at present. However measuring the relative heights of
current peaks at a number of R56 and T566 values would
allow us to extract these chirps.
Finally, it should be noted that whilst the examples

detailed in this paper all involved electron trajectories,
this work is applicable to any particle beam traversing a
dispersive region.

VII. CONCLUSION

We have identified the current spike formations often
seen in FELs as caustic formations of electron trajectories.
However these caustics are also witnessed in a wide range
of accelerator applications, and the methods presented here
are easily adapted to such scenarios. Within the detailed
example of strong bunch compression, a butterfly catas-
trophe was found to be the underlying mechanism behind
the associated double-horned current profile.
The main result of this paper is the caustic expression

for relativistic particle bunches traversing a dispersive
region. This expression reveals where in longitudinal
position and under what conditions caustics will form,
allowing us to predict how caustic formation changes
with R56, T566, and U5666 and the influence of this on the
current profile. An analytical expression for the current
profile has also been derived. This opens up the pos-
sibility of either amplifying or avoiding caustic-induced
current modulations present in a wide range of accel-
erator applications.
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